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Abstract

Motivation: Despite recent advances in algorithms design to characterize structural variation using

high-throughput short read sequencing (HTS) data, characterization of novel sequence insertions

longer than the average read length remains a challenging task. This is mainly due to both compu-

tational difficulties and the complexities imposed by genomic repeats in generating reliable assem-

blies to accurately detect both the sequence content and the exact location of such insertions.

Additionally, de novo genome assembly algorithms typically require a very high depth of cover-

age, which may be a limiting factor for most genome studies. Therefore, characterization of novel

sequence insertions is not a routine part of most sequencing projects.

There are only a handful of algorithms that are specifically developed for novel sequence insertion

discovery that can bypass the need for the whole genome de novo assembly. Still, most such algo-

rithms rely on high depth of coverage, and to our knowledge there is only one method (PopIns)

that can use multi-sample data to “collectively” obtain a very high coverage dataset to accurately

find insertions common in a given population.

Result: Here, we present Pamir, a new algorithm to efficiently and accurately discover and geno-

type novel sequence insertions using either single or multiple genome sequencing datasets. Pamir

is able to detect breakpoint locations of the insertions and calculate their zygosity (i.e. heterozygous

versus homozygous) by analyzing multiple sequence signatures, matching one-end-anchored se-

quences to small-scale de novo assemblies of unmapped reads, and conducting strand-aware local

assembly. We test the efficacy of Pamir on both simulated and real data, and demonstrate its po-

tential use in accurate and routine identification of novel sequence insertions in genome projects.

Availability and implementation: Pamir is available at https://github.com/vpc-ccg/pamir.

Contact: fhach@{sfu.ca, prostatecentre.com} or calkan@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genomic structural variations (SVs) are broadly defined as alter-

ations that affect more than 50 base pairs (bp) of DNA (Alkan

et al., 2011), and they have major impact on both evolution and

human disease (Alkan et al., 2011; Sharp et al., 2006). Such alter-

ations may be in various forms including deletions, insertions, in-

versions, duplications, and retrotranspositions (Alkan et al.,

2011). Thanks to the wide availability and cost efficiency of high

throughput sequencing (HTS), we now have the ability to

characterize SVs in the genomes of many individuals, as exempli-

fied by large-scale projects such as the 1000 Genomes Project

(Mills et al., 2011; The 1000 Genomes Project Consortium, 2015).

Accurate characterization of SVs required the development of

many novel algorithms (Alkan et al., 2011; Medvedev et al., 2009)

that are benchmarked within the 1000 Genomes and the Genome

in a Bottle (Zook et al., 2014) projects.

Novel sequence insertions, or alternatively, “deletions from the

reference”, are genomic segments that are not represented in the
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reference genome assembly (Kidd et al., 2010a). Similar to “dele-

tions from the sequenced sample”, they may harbor sequences of

functional importance such as coding exons or regulatory elements

(Kidd et al., 2010a), which underline the importance of their accur-

ate characterization. The non-reference sequences identified in vari-

ous genome studies are thus “added” to the reference genome as

additional sequence. However, due to the complexity of these new

sequences and their polymorphism in different populations, there is

now a push towards building graph-based representations (Church

et al., 2015; The Computational Pan-Genomics Consortium, 2017).

Although several forms of SVs such as deletions, tandem dupli-

cations and mobile element insertions are investigated to a certain

extent (Alkan et al., 2011; Chaisson et al., 2015a,b), characteriza-

tion of novel sequence insertions longer than read lengths is still

lagging. This is mainly because long sequence insertions can be dis-

covered only through sequence assembly, which is computationally

challenging and may lead to incorrect or fragmented sequence re-

constructions due to common repeats that may lie within or close

to such insertions (Hajirasouliha et al., 2010; Kidd et al., 2010a).

Cortex (Iqbal et al., 2012) aims to improve the accuracy in com-

plex regions by using colored de Bruijn graphs, but a recent study

found that it has high computational requirements (Kehr et al.,

2015).

Aside from computationally intensive assembly-based algo-

rithms, only a handful of mapping and local assembly based meth-

ods for novel sequence insertion discovery are currently available.

The first of such algorithms is NovelSeq (Hajirasouliha et al.,

2010) that we have previously developed to find inser-

tions>200 bp using paired-end whole-genome Illumina sequence

data. Briefly, NovelSeq identifies one-end anchored reads (OEA),

where one end of a pair maps to the reference and the other re-

mains unmapped, and calculates the best match between local as-

sembly of OEA reads and de novo assembly of orphan (both ends

unmapped) reads to identify both the content and the approximate

location of the insertion. However, NovelSeq was designed to ana-

lyze one genome at very high sequence coverage. It could find in-

sertions of length up to a couple of kilobase pairs, but it does not

provide the exact content of the insertion, the exact breakpoint lo-

cation and the genotyping information. MindTheGap (Rizk et al.,

2014) was developed for finding insertion breakpoints and their se-

quences in a single sequenced genome based on an assembly-first

strategy. BASIL & ANISE (Holtgrewe et al., 2015) are also de-

signed for detecting novel sequence insertions where BASIL detects

the breakpoints by clustering one-end anchored reads and ANISE

assembles the novel insertions with an overlap-layout-consensus

graph based assembler.

A more recent algorithm, PopIns (Kehr et al., 2015) follows a

similar approach and also incorporates the split-read sequence sig-

nature (Alkan et al., 2011) to discover and then genotype common

sequence insertions within a large cohort of samples. Using “soft-

clipped” reads, another algorithm Swan (Xia et al., 2016) can only

find breakpoints of long insertions without providing its content.

In this paper, we present Pamir, a new tool to provide exact

breakpoint positions, sequence contents, and genotypes of novel se-

quence insertions either in single or multiple genomes sequenced

with the Illumina technology. We show that, when a single genome

is used, it outperforms MindTheGap (Rizk et al., 2014), BASIL &

ANISE (Holtgrewe et al., 2015), and PopIns (Kehr et al., 2015).

Additionally, using simulated low coverage data (5 samples at 10X

coverage each) we demonstrate that Pamir has better precision and

recall rates than PopIns, which is the only other insertion character-

ization tool that can use multiple genomes.

2 Materials and methods

We developed Pamir to characterize novel sequence insertions using

paired-end whole genome sequencing (WGS) data generated by the

Illumina platform. Pamir is based on the observation that structural

events such as “novel sequence insertion” leave a group of one-end

anchors, i.e. one-end is mapped while the other is unmapped,

around their breakpoint location when aligning the donor sequences

to the reference genome (Hajirasouliha et al., 2010; Kidd et al.,

2010a,b). Furthermore, the insertions longer than the paired-end

fragment size will leave another group of reads known as orphan

reads, i.e. read pairs where none of the ends can be mapped to the

reference. Figure 1 depicts the mapping information in the vicinity

of the hypothetical novel insertion. Pamir uses both types of reads to

characterize the novel sequence contents and their insertion break-

points. First, it starts with generating a de novo assembly of the or-

phan reads to obtain orphan contigs. Next, Pamir clusters the OEA

read pairs based on their mapping locations on the reference gen-

ome. It then remaps the OEA reads to orphan contigs to match the

orphan contigs with OEA clusters. Finally, it outputs the putative

novel insertion by assembling the updated cluster and re-aligning the

generated contig to the respective reference region (Fig. 2). In this

section, we provide a detailed description of the Pamir algorithm.

Pamir versus NovelSeq. While they both are based on similar obser-

vations, Pamir significantly improves accuracy, performance, and

usability of NovelSeq. For a candidate insertion breakpoint location,

NovelSeq first assembles two OEA clusters on its upstream (OEAþ)

and downstream side (OEA-), and then matches these two OEA con-

tigs with orphan contigs. Rather than providing precise breakpoints

and insertion content, NovelSeq reports a range of breakpoint loca-

tions based on associations between OEA contigs and orphan con-

tigs. On the other hand, Pamir collects nearby OEAs to build a

cluster, and includes all relavant orphan contigs to this cluster based

on the association obtained from mapping OEA reads to orphan

contigs. It then assembles each cluster and obtains the insertion con-

tent through aligning the contig to the respective reference region.

Combined with the post-analysis steps, Pamir provides the break-

point locations at single-nucleotide resolution, exact insertion con-

tent, and genotype information, which are all missing in NovelSeq.

2.1 Pre-processing
Pamir accepts both raw reads (in FASTQ format) or aligned reads

(in SAM/BAM files) as input. If raw reads are provided, Pamir first

maps them to the reference genome using mrsFAST-Ultra (Hach

et al., 2010, 2014) in best mapping mode. Pamir skips the mapping

step if the read alignment is provided, i.e. BAM file. Next, Pamir

Fig. 1. Classification of donor sequence regions in terms of read mappings.

Concordant read: both ends map in correct orientation and within expected

insert size. OEA read: one-end anchored, only one end maps to the reference.

Split read is an OEA read whose unmapped end crosses the breakpoint and

generates split mapping. Orphan read: none of the ends map to the reference
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extracts OEA and orphan reads using the alignment results. Pamir

then remaps the OEA reads using mrsFAST-Ultra in multi-mapping

mode since the breakpoints of a sequence insertion may lie within

repeats, which causes mapping ambiguity (Bailey et al., 2001;

Firtina and Alkan, 2016) (Fig. 2A). Using multi-mapping locations

may introduce false positives in repeat regions, which we eliminate

in a post-processing step. Pamir assembles the orphan reads using

Velvet (Zerbino and Birney, 2008) with the k-mer length set to

31 bp, although any other assembler may also be used for this step

(Fig. 2B). After the assembly, we subject the contigs to a contamin-

ant filter by querying the nt/nr database, and we remove those con-

tigs that map to vector and/or bacterial sequences and other known

contaminants. We then map the unmapped end of OEA read pairs

to the orphan contigs using mrsFAST-Ultra in the multi-mapping

mode to match the OEAs to the corresponding orphan contigs. In

this way, the OEA-to-orphan remapping stage allows an OEA to be

aligned to more than one orphan contig (Fig. 2C). To avoid missing

any associations between split reads (Fig. 1) and orphan contigs, we

also split the unmapped OEAs from the previous stage into a half,

i.e. balanced splits, and remap them to the orphan contigs.

In summary, the pre-processing step generates four types of in-

formation required to discover a novel sequence insertion event: (i)

the mapping information of the OEA mapped reads; (ii) unmapped

OEA sequences; (iii) orphan contigs; and (iv) pairwise association

between unmapped OEA reads and orphan contigs.

2.2 Cluster formation
Pamir clusters OEAs based on the mapping locations of their

mapped end to detect potential insertion breakpoints. It then em-

ploys an iterative greedy strategy, which anchors the first cluster

with the leftmost mapping locus x of an OEA on the genome. Next,

it extends the cluster to include any other OEA mappings overlap-

ping with the interval ½x; xþ 2L� where L is the fragment size (Let L

be the fragment size of paired-end reads which can be estimated

from concordant mappings. For an insertion in breakpoint p, most

of its OEA anchors should be mapped within ½p� L;pþ L�, which

spans a 2�L interval on the reference genome). Once all such OEA

mappings are added to the existing cluster, the iterative strategy

then greedily anchors the next cluster with the first OEA mapping

that is not included in the previous cluster. Note that in this strategy

each OEA mapping can only be part of a single cluster. However, a

single read pair may generate multiple OEA mappings (and thus be-

long to multiple OEA clusters) due to the use of multi-mapping

strategy.

After the first clustering pass is completed, Pamir adds the un-

mapped OEA mates of the reads and their associated orphan contigs

into each cluster (Fig. 2C). To find the associated orphan contigs,

the “OEA-to-orphan contig” mapping information generated in the

pre-processing step is used. A contig is added to a cluster if (i) the

cluster contains OEAs that map to the both ends of the orphan con-

tig; or (ii) at least 30% of the OEAs in the cluster map only to either

end of the contig. We allow the second condition to avoid missing

any partially assembled orphan contigs.

In summary, each cluster generated in this step contains the fol-

lowing information: (i) the number of the OEA reads and their asso-

ciated contigs; (ii) the leftmost OEA mapping location; (iii) the

rightmost OEA mapping location; (iv) unmapped OEA read infor-

mation (see below); and (v) contigs associated with unmapped OEA

reads. For each unmapped end of an OEA read pair, the following

information is kept in the cluster: (i) read name; (ii) strand (based on

its corresponding mapped mate); and (iii) read sequence.

2.3 Insertion discovery
2.3.1 Candidate insertion contig assembly

Pamir generates a new assembly for each cluster to compute the pu-

tative insertion that consists of both left and right flanking regions

that overlap with the reference genome and its main body which

constitutes the insertion (Fig. 2C). The resulting cluster-aware as-

sembly represents a potential novel insertion sequence.

We assemble the reads and contigs in each cluster using an effi-

cient in-house overlap-layout-consensus (OLC) assembler. We

found most of the available off-the-shelf assemblers to be too slow

for this task, especially because the total number of clusters is meas-

ured in millions. Additionally, existing tools cannot be modified to

consider strand information that can be inferred from the mapping

information while our in-house assembler is strand-specific.

Furthermore, use of naı̈ve greedy strategy for assembly is not suit-

able for our goal because such method cannot obtain optimal con-

tigs necessary for accurate insertion detection.

The objective of the in-house assembler is to construct a contig

that maximizes the total sum of overlaps between the reads. This

problem can be optimally solved by modeling it as an instance of

maximum weighted path problem in a directed graph G(V, E) as fol-

lows. Let each vertex v represent a read in the cluster. Two vertices

m and v are connected with a directed edge em;v of weight wm;v if the

maximum prefix-suffix overlap between the reads represented by

those vertices is of length wm;v. We can optimally calculate the max-

imum weighted path via a dynamic programming formulation as

follows.

Suppose that there exists some ordering < v of the vertices of G,

where parentðvÞ< vv always holds for any vertex v and its parent,

parentðvÞ. Furthermore, let r be the root of the graph G (as long as

< v exists, root can be selected as the smallest vertex with respect to

< v). We can calculate the value of maximum path from the root r

to any vertex v, denoted as f(v) by the following equation:

f ðvÞ ¼ maxparentðvÞff ðparentðvÞÞ þwparentðvÞ;vg (1)

assuming that initially f(r)¼0 for any root r (i.e. vertex with no in-

coming edges). The Equation (1) can be implemented in iterative

fashion by iterating over vertices v in order < v. This dynamic pro-

gramming formulation has the complexity OðjRj þ jEjÞ, where jRj

A B

C

D

Fig. 2. General overview of Pamir
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denotes the number of reads in the given cluster, and jEj is the total

number of edges in G, since we visit each vertex only once, and for

each such visit, we only consider the incoming edges. Furthermore,

it will always produce the optimal solution as long as there exists

ordering < v with the above-mentioned properties. The most natural

choice for < v is topological ordering of G, which maintains the ne-

cessary invariant parentðvÞ< vv. Topological ordering can be effi-

ciently calculated in OðjRj þ jEjÞ using Kahn’s algorithm (Kahn,

1962).

However, both topological sorting and Equation (1) require

acyclic G, which might not be always true, especially if the target re-

gion contains some repeat. In that case, maximum weighted path

problem is NP-hard, which can be easily shown by reducing the lon-

gest path problem in a graph to the maximum weighted path prob-

lem. If cycles are present, we remove any cycle from G in a greedy

fashion by iteratively removing cycle edges whose endpoint is the

vertex with the smallest indegree in G in order to provide a feasible

assembly. Because the size of each cluster is small, and because the

repeats are not often present in G, such cyclic graphs are not com-

mon. Thus, in the majority of the cases, our assembler is guaranteed

to produce an optimal assembly for a given cluster.

2.3.2 Breakpoint and content detection

The cluster assembly provides the sequence content. The insertion

breakpoint can be inferred using the provided assembled contigs, the

leftmost and the rightmost mapping locations kept for each cluster.

Thus, to characterize the exact insertion breakpoint, we align the

assembled contigs to the reference in the vicinity of each cluster

using a modified variant of Smith-Waterman (Smith and Waterman,

1981) algorithm where the assembled contig is fully aligned to a

substring of the genomic sequence, i.e. global to local alignment. We

only consider those candidate insertions that align to the reference

by at least 6bp at both sides. We finally return the sequence between

these two flanking sequences as the novel insertion and the end of

the left-mapping flank as the exact breakpoint location (Fig. 2D).

2.4 Post-processing and genotyping
2.4.1 False positive removal

To refine our candidate list and eliminate false positives, for a data-

set with fragment size L, we construct a temporary reference seg-

ment by concatenating three sequences: (i) L bp upstream of the

breakpoint from the reference; (ii) the obtained insertion sequence

from the previous step; and (iii) L bp downstream of the breakpoint

from the reference. We then map all OEAs and orphan reads to this

temporary reference and we report the insertion if for each break-

point, there exists a concordant mapping in which only one mate

overlaps the insertion sequence and the other mate is in the flanking

region. With this method, we guarantee that both breakpoints are

covered by supporting reads, which are signatures of an insertion.

A false positive case will miss these reads and will be eliminated.

2.4.2 Mapping ambiguity resolution

There might be still some reads which map to multiple novel inser-

tions. We assign each such read to the insertion with the highest sup-

port via set-cover algorithm, where the set of reads represents the

universe, and where clusters represent the sets. By selecting the min-

imal number of sets which describe all of the available reads, we

eliminate low-support insertions and ensure that each read belongs

to only one insertion event. Because the set cover is an NP-hard

problem, we use a fast greedy strategy to calculate the minimal set

of events that covers all reads (Johnson, 1974).

2.4.3 Genotyping

Finally, we perform a genotype inference from the reported se-

quences as follows. We first construct the following two temporary

sequences I and R as shown in Figure 3: I is the concatenation of (i),

(ii) and (iii) as the temporary donor sequence that contains the novel

insertion as described above. R is the concatenation of (i) and (iii) as

the temporary reference that does not contain the insertion. We then

align all reads to these two temporary reference sequences. Let r be

the number of reads that align across the breakpoint location in R

and il, ir be the number of reads that align across, respectively, the

left and right breakpoint locations in I. We then predict the geno-

type using the Equation (2) below. We tested various values for c
and we found c ¼ 0:3 yielded the best genotyping accuracy in simu-

lated data. We report the final set of calls in standard VCF format

(Danecek et al., 2011).

i ¼ il þ ir
2

;x ¼ i� r

iþ r
; Genotype ¼

No Insertion if x � �c

Homozygous if x � c

Heterozygous otherwise

8>><
>>:

(2)

2.5 Discovery with pooled data
Pamir supports population-scale insertion discovery by first detect-

ing insertions in pooled samples, and then genotyping all events in

each sample. In other words, Pamir extracts OEAs and orphans

from all samples to construct one OEA dataset and one orphan data-

set. It then analyzes the combined dataset to detect the list of poten-

tial insertions for the whole population. After obtaining the initial

list of potential insertions, Pamir genotypes each insertion for each

sample using the reads from that specific dataset, as explained in

Section 2.4.

3 Results

We performed four sets of experiments to evaluate our method: two ex-

periments with simulated data, and two experiments using real data.

In simulation experiments, we inserted 350 new sequences into

chromosome 21 of the GRCh37 reference in 7 different size ranges

(10–100 bp, 100–200 bp, 200–500 bp, 500–1K bp, 1K–2K bp, 2K–

5K bp, 5K–10K bp) with each range containing 50 insertions. We

used randomly selected segments from the Methylobacterium refer-

ence genome for this purpose, which are guaranteed to be missing in

the human genome reference. Next we generated 6 high coverage

WGS datasets using the ART read simulator (Huang et al., 2012) to

test Pamir under different conditions:

Fig. 3. Genotyping novel sequence insertions with Pamir. Here we show an

example for calculating r, i and x based on the Figure: r¼ 2 (the # of mappings

passing through the breakpoint on R); il¼ 9 (the # of mappings passing

through the left breakpoint on I); ir¼7 (the # of mappings passing through the

right breakpoint on I); i¼ (ilþir)/2¼8; x ¼ (i-r)/(iþ r)¼0.6
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1. error-free reads generated as (a) 2x100bp Illumina HiSeq 2000,

(b) 2x100bp Illumina HiSeq 2500, and (c) 2x150bp Illumina

HiSeq 2500;

2. noisy reads, i.e. introduced small variants as SNPs and indels

and sequencing errors, generated as (a) 2x100bp Illumina HiSeq

2000, (b) 2x100bp Illumina HiSeq 2500, and (c) 2x150bp

Illumina HiSeq 2500.

All 6 high coverage simulated datasets were created at 30x se-

quence coverage using default parameters of ART that are set for

each sequencing machine’s error model.

We also evaluated the efficacy of Pamir on low-coverage multi-

sample data. For this purpose, we simulated 5 2x100bp WGS data-

sets at 10x sequence coverage using ART’s default parameters for

noisy Illumina HiSeq 2500 sequencer. Each of the 5 datasets is

sampled from a different simulated genome: the first genome in-

cludes all 350 novel insertions, and the remaining 4 each includes

280 randomly selected insertions. In all single-sample simulation ex-

periments we compared Pamir with MindTheGap, BASIL &

ANISE, and PopIns using their default parameters. In multi-sample

datasets, we compared Pamir with PopIns (the only tool before

Pamir capable of finding insertions in multi-sample data), using de-

fault parameters of PopIns.

We tested Pamir on real datasets in two experiments. First, we

applied Pamir on a high coverage WGS dataset generated from a

single haploid sample (CHM1) (Chaisson et al., 2015b) and com-

pared our results with novel insertions found in the same genome

with the SMRT-SV algorithm that uses long read, i.e. Pacific

Biosciences, sequencing technology. Finally, we evaluated Pamir ’s

performance in multi-sample insertion discovery and genotyping

using 10 low-coverage WGS datasets generated as part of the 1000

Genomes Project (The 1000 Genomes Project Consortium, 2015).

3.1 Simulations
3.1.1 High coverage single sample

We compared all tools in terms of precision ( TP
TPþFP, where TP is num-

ber of True Positives and FP is number of False Positives) and recall

( TP
TPþFN, where TP is number of True Positives and FN is number of

False Negatives). We summarize the results of our simulation experi-

ment in Table 1. Briefly, Pamir outperforms BASIL & ANISE,

MindTheGap and PopIns in all simulation experiments in terms of

recall. In terms of precision, Pamir outperforms PopIns and BASIL

& ANISE; and has better or equal precision to MindTheGap. Here

we consider a predicted insertion to be correct only if the breakpoint

matches that of the simulated insertion. Note that if we also require

the lengths of the predicted insertions to be the same with the simu-

lation, Pamir has the best precision and recall among the tools we

tested (Supplementary Table S10 and Supplementary Fig. S1). We

present range specific precision recall rates of all tools for error-free

Illumina HiSeq2000-100bp data in Table 2. A detailed version of

this table can be found in Supplementary Table S1.

3.1.2 Low coverage multiple samples

Next, we tested the prediction performance of Pamir when multiple

genomes with low coverage data are available. In this experiment

we compared Pamir only with PopIns, as it is the only other multi-

sample novel sequence insertion discovery tool. To evaluate the

importance of multiple samples, we tested the same five genomes

simulated at 10x sequence coverage both separately and collectively

(Table 3). We found that Pamir ’s precision was substantially higher

than that of PopIns when each sample is processed separately, and

use of multiple genomes resulted in higher recall rates for both tools.

We also predicted genotypes on all five samples using Pamir

(Table 4). Here we first characterized insertions using all five sam-

ples simultaneously as described above, and then calculated geno-

types for each predicted insertion in all samples separately. We

observed no incorrect heterozygous versus homozygous genotyping

results for any insertions, except 5 calls in 3 samples are identified as

heterozygous although they were homozygously inserted. All 5 in-

sertions map to common repeats, i.e. LINE elements.

Table 1. Precision and recall of Pamir, PopIns, MindTheGap and BASIL & ANISE on simulated 30x datasets generated for different sequenc-

ing platforms with varying read lengths

Error free Noisy

HiSeq2500-100 bp HiSeq2500-150 bp HiSeq2000-100 bp HiSeq2500-100 bp HiSeq2500-150 bp HiSeq2000-100 bp

P a Rb Pa Rb Pa Rb Pa Rb Pa Rb Pa Rb

Pamir 1.000 0.954 1.000 0.960 1.000 0.951 1.000 0.926 1.000 0.943 1.000 0.826

PopIns 0.973 0.814 0.958 0.726 0.972 0.823 0.969 0.800 0.968 0.789 0.938 0.709

MindTheGap 1.000 0.900 1.000 0.900 1.000 0.900 1.000 0.900 0.965 0.897 0.905 0.811

BASIL & ANISE 0.989 0.757 0.989 0.763 0.989 0.763 0.989 0.757 0.989 0.754 0.974 0.743

Best results are marked with bold typeface.
aPrecision.
bRecall.

Table 2. Precision and recall rates of perfect Illumina HiSeq2000-

100 bp simulation data with respect to different ranges of insertion

sizes where each range contains 50 insertions

Insertion Pamir PopIns MindTheGap BASIL &

ANISE

Length (bp) Ra Pb Ra Pb Ra Pb Ra Pb

10–100 1.00 1.00 0.10 1.00 0.88 1.00 0.00 1.00

100–200 1.00 1.00 0.82 0.98 0.92 1.00 0.60 1.00

200–500 1.00 1.00 0.84 0.95 0.92 1.00 1.00 1.00

500–1K 0.98 1.00 1.00 0.98 0.88 1.00 0.98 1.00

1K–2K 0.96 1.00 1.00 0.94 0.92 1.00 1.00 0.98

2K–5K 0.92 1.00 1.00 0.93 0.84 1.00 0.98 1.00

5K–10K 0.80 1.00 1.00 0.93 0.94 1.00 0.98 1.00

Total 0.95 1.00 0.82 0.97 0.90 1.00 0.76 0.99

Best results for total are highlighted in boldface.
aR: Recall.
bP: Precision.
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3.2 Real data
3.2.1 High coverage sequencing of CHM1

Our tests using real data also included two types of datasets: i)

high coverage single sample WGS, and ii) low coverage multiple

sample WGS. First, we evaluated Pamir using WGS data at 40x

coverage generated from a haploid cell line with the Illumina tech-

nology (CHM1, SRA ID: SRX652547) (Chaisson et al., 2015b).

We have identified a total of 22,676 insertions that corresponds to

593.5 Kb in total, of which, 2,444 were>50bp (348 Kb total)

(Table 5). Chaisson et al. (2015) also generated de novo assembly

of the same genome using a long read sequencing technology

(Pacific Biosciences) from the same cell line, and predicted inser-

tions with the SMRT-SV algorithm using this dataset (Chaisson

et al., 2015b). Here we used an updated call set (� 50bp) mapped

to human GRCh38 (Huddleston et al., 2016) for comparisons.

Pamir showed low recall rates when compared to the long read-

based SMRT-SV results (Chaisson et al., 2015b). We could identify

only 488 of the 12,998 insertions detected by SMRT-SV when we

consider only nearby matches (less than 10bp distance) in break-

point predictions. One of the reasons for such discrepancy is the

fact that more than half of PacBio-predicted insertions are located

within various repeat regions (Table 6), and short-length Illumina

reads are not sufficient to properly assemble such regions. The

same effect was also observed in the original publication (Chaisson

et al., 2015b), where only a handful of insertions were also identi-

fied in another assembly of the same genome that was constructed

with a reference-guided methodology using both Illumina WGS

and bacterial artificial chromosome datasets (Steinberg et al.,

2014). We observed that approximately 45% of the insertions

characterized by SMRT-SV are contain either very low (�20%) or

high (�60%) GC%, which are known to be problematic to se-

quence using the Illumina platform (Benjamini and Speed, 2012;

Ross et al., 2013). Additionally, we found that 14,121 out of our

22,676 predicted insertions were reported in dbSNP version 147

(Within 10 bp breakpoint resolution.).

Table 3. Precision and recall rates of 5 simulated samples (noisy HiSeq2500 2*100 bp 10x)

Pooled Individual

Samples All S1 S2 S3 S4 S5

# of Insertions 350 350 280 280 280 280

Pa Rb Pa Rb Pa Rb Pa Rb Pa Rb Pa Rb

Pamir 1.000 0.911 1.000 0.726 1.000 0.711 1.000 0.704 1.000 0.714 1.000 0.714

PopIns 0.977 0.811 0.575 0.657 0.591 0.675 0.575 0.657 0.574 0.646 0.603 0.668

Best results are marked with bold typeface.
aPrecision.
bRecall.

Precision and recall rates of both individual and pooled calls of five low coverage samples. The paired-end reads (2*100 bp) are generated using Illumina

HiSeq2500 error model. We have simulated 350 insertions in this dataset: S1 have all insertions, and genomes of the other four individuals contains 280 events.

The column All shows performances of Pamir and PopIns based on pooling simulation reads, and each column Si represents single sample detection results for i-th

individual.

Table 4. Evaluation of predicted genotypes using 5 simulated genomes

Samples S1 S2 S3 S4 S5

# of Insertions 350 280 280 280 280

# of Insertions not in the sample 0 70 70 70 70

Pamir PopIns Pamir PopIns Pamir PopIns Pamir PopIns Pamir PopIns

Correct (INS) 317 284 253 210 252 214 253 225 259 227

Correct (REF) – – 66 54 66 56 64 59 60 57

Incorrect zygosity 2 0 0 0 1 0 2 0 0 0

No call (INS) 31 66 27 50 27 52 25 55 21 53

No call (REF) – – 4 16 4 14 6 11 10 13

Best results are marked with bold typeface.

Evaluation of genotyping results for the same five samples as in Table 3, based on pooling simulated reads. The paired-end reads (2*100 bp) are generated using

Illumina HiSeq2500 error model. We have simulated 350 insertions in this dataset: S1 have all insertions, and genomes of the other four individuals contains 280

events. Correct (INS) lists the number of insertions that are correctly genotyped. Correct (REF) shows the number of detections discarded after genotyping, which

are not actual insertions in an individual but falsely predicted based on pooling reads. Incorrect zygosity provides the number of insertions incorrectly genotyped

as heterozygous; only 5 calls were identified as heterozygous in S1, S3 and S4 although they were homozygously inserted. All insertions map to common repeats.

The No call (INS) row shows the number of insertions missed in the pooled run for each sample, i.e. false negatives. No call (REF) provides the number of inser-

tions missed in the pooled run but the insertion was not inserted into this sample.

Table 5. Summary of insertions predicted in CHM1

All � 50bp > 50bp

Number of insertions 22,676 20,232 2,444

Minimum length 5 5 51

Maximum length 4,135 50 4,135

Average length 26.20 12.12 142.51
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To test whether the insertions we predicted in CHM1 were also

previously discovered in other studies, we mapped the longer inser-

tions (>50 bp) with spanning regions around the breakpoint on the

reference (GRCh37) to the latest version of the reference (GRCh38)

using BLAST (Altschul et al., 1990). Note that our predictions were

based on the GRCh37 version. In this experiment we required only

highly identical (�98%) hits that covered at least 98% of the pre-

dicted insertion. We repeated the same remapping experiment to

both the long read-based assembly (Chaisson et al., 2015b) and the

alternative reference-guided assembly of the same genome

(Steinberg et al., 2014). Finally, we also mapped the same sequences

to the nt/nr database to detect whether the sequences were also con-

tained within other WGS studies, in particular, fosmid end-sequence

data (Kidd et al., 2008). In summary, out of 2,444 (>50 bp) inser-

tions we predicted, 1,446 are not found in any database, of which

1,212 mapped to common repeats (Table 7). We performed the

same experiment using PopIns (Table 7). 1,014 out of 3,399 PopIns

calls are not found in any database, of which 388 mapped to com-

mon repeats. 56% of PopIns calls map to long insert clones, but

only a handful were included in the latest version of the human gen-

ome reference, and assemblies of the same DNA resource.

3.2.2 Low coverage genomes from the 1000 genomes project

Finally, we tested Pamir using low coverage WGS datasets generated

from 10 samples as part of the 1000 Genomes Project (The 1000

Genomes Project Consortium, 2015) (Table 8). We found 39,554 in-

sertions when we pooled all 10 genomes, 13,255 of them were re-

ported in 1000 Genomes project, and another group of 11,019

insertions was seen in dbSNP version 147 (Considering 10 bp break-

point resolution.). We then genotyped for each sample (Table 9).

Table 6. Comparison of insertions in CHM1 by SMRT-SV using PacBio reads versus Pamir and PopIns using Illumina reads allowing 10bp

breakpoint resolution

PacBio Illumina

SMRT-SV Pamir PopIns

Insertion Length Prediction Prediction Shared with SMRT-SV Prediction Shared with SMRT-SV

1–50 bp 187a (60%, 57%) 20,232 (56%, 38%) 27 (63%, 14%) 21 (71%, 24%) 0

50–100 bp 4,384 (54%, 53%) 1,273 (70%, 18%) 205 (52%, 14%) 246 (73%, 4%) 17 (70%, 0%)

100–200 bp 2,959 (54%, 50%) 815 (75%, 13%) 125 (58%, 13%) 793 (66%, 4%) 120 (62%, 1%)

200–500 bp 3,123 (55%, 37%) 291 (74%, 7%) 97 (61%, 1%) 1,074 (65%, 3%) 141 (58%, 1%)

>500 bp 2,345 (60%, 32%) 65 (63%, 3%) 34 (50%, 3%) 1,286 (59%, 3%) 207 (51%, 1%)

All 12,998 (55%, 45%) 22,676 (58%, 36%) 488 (56%, 10%) 3,420 (58%, 3%) 485 (56%, 1%)

For each category, we report (i) the percentile of the calls that fall into repeat regions compared to repeat masker file, and (ii) the percentile of the calls with

biased GC ratios (�20% or �60%) in the form (% of repeat regions, % of biased GC ratios) in the parentheses.
aAll events reported have a length of 50bp. Note that the comparisons are based only on breakpoint positions without consideration about contents of inser-

tions. If we simultaneously consider insertion lengths and contents, most of PopIns predictions will be filtered out as shown in Supplementary Tables S5 and S6. It

is worth mentioning that Pamir can call most of the predictions as PopIns. However, it filters most of them because of the stringent rules.

Table 7. Hierarchical non-redundant analysis of predicted CHM1 insertions with Pamir and PopIns with respect to other datasets

Pamir PopIns

50 - 200 bp 200 - 500 bp >500 bp Total 50 - 200 bp 200 - 500 bp >500 bp Total

# of insertions 2,088 291 65 2,444 1,038 1,075 1,286 3,399

In GRCh38 17 1 1 19 0 1 1 2

In CHM1_1.1 (Steinberg et al., 2014) 251 54 2 307 15 8 1 24

In CHM1 PacBio (Chaisson et al., 2015b) 213 13 23 249 5 2 12 19

In SMRT-SV (Huddleston et al., 2016) 73 47 11 131 118 132 193 443

In long insert clonesa (Kidd et al., 2008) 212 21 1 234 565 627 705 1,897

In repeat regions 1,065 126 21 1,212 221 191 214 626

Remainder 257 29 6 292 114 114 160 388

Here we provide a hierarchical non-redundant breakdown of comparison of insertions we predicted in the CHM1 genome with Pamir and PopIns. We compare

the predictions in the following order: the GRCh38 assembly, then remaining to the reference-guided CHM1_1.1 assembly, the Pacific Biosciences (PacBio) as-

sembly, SMRT-SV call set, long insert clones and those that are in repeat regions.
aLong insert clones include both fosmid clones and bacterial artificial chromosomes (BAC). Since we apply more stringent rules to filter false positives in Pamir,

many of our discarded calls are still kept by PopIns. This will affect recall rate of Pamir, especially for longer insertions whose orphan contigs are difficult to be

assembled.

Table 8. Summary of novel sequences found in 10 low coverage

WGS datasets from the 1000 Genomes Project

Total > 50bp

Number of insertions 49,473 6,846

Minimum length 5 51

Maximum length 1,928 1,928

Average length 28.872 128.085

In 1000 Genomes Project 14,837 425

In dbSNP version 147* 14,409 2,027

*We intersected with dbSNP after removing those insertions that are found

in the 1000 Genomes Project.
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To test whether the insertions we predicted in these 10 samples

were also previously discovered in other studies, we mapped the lon-

ger insertions (>50 bp) to the latest version of the reference

(GRCh38) using BLAST (Altschul et al., 1990). We also mapped the

same sequences to the nt/nr database (Table 10).

3.3 Detections of insertions within repeat regions
To better understand the improvements in detecting insertions falling

within repeat regions, we compared the performance of Pamir,

PopIns, and MindTheGap using the Illumina HiSeq2500 100bp simu-

lation dataset. 170 out of 350 insertions in our simulation are in re-

peat regions. As shown in Figure 4, Pamir maintains a zero false

positive rate in repeat regions. In contrast, PopIns has a false positive

rate of 5.4% (8/147), higher than the rate when considering only the

insertions in unique regions (6/152, about 3.9%). In Figure 5, we

show that Pamir also outperforms MindTheGap in finding insertions

within repeat regions. These results demonstrate that Pamir has an

edge in detecting insertions with ambiguously mapped reads, which is

a major issue for insertion detection when using NGS datasets.

3.4 Running times
Finally, we evaluated the running time of all the benchmarked

software. We ran Pamir, PopIns, MindTheGap and BASIL &

ANISE on a 800Mhz AMD machine with 256Gb memory with

1 thread on a high coverage simulation dataset (2*100bp error-

free reads sampled from human chromosome 21 based on Illumina

HiSeq2500 model at 30X coverage) until genotyping phase.

Running times are given in Table 11. Pamir takes �3.6 times

less time than BASIL & ANISE and �4.3 times less time

than MindTheGap where PopIns takes �5.7 times less time than

BASIL & ANISE and �6.8 times less time than MindTheGap.

Note that PopIns is faster than Pamir, but in many cases it does not

provide the full inserted sequences.

4 Discussion

The last few years since the introduction of HTS platforms wit-

nessed the development of many algorithms that aim to characterize

genomic structural variation. The first such algorithms focused

mainly on the discovery of deletions, and other forms of complex

SV, especially inversions and translocations were largely neglected

due to the sequence complexity around their breakpoints and the

ambiguity in mapping to these regions.

Although novel sequence insertions can be considered “simpler”

than most other SV classes, their accurate characterization is still

lacking due to the need for constructing either global or local de

novo assembly. However, they may fail to generate long and accur-

ate contigs due to the repeats that may occur around or within novel

sequence insertions.

Table 9. Genotyping results for the novel sequences found in the

1000 Genomes Project datasets

Homozygous Heterozygous Total insertion length (bp)

NA06985 22,971 10,246 941,868

NA07357 22,582 10,158 921,225

NA10851 23,274 9,465 930,766

NA11840 20,973 12,745 959,017

NA11918 22,610 9,994 953,968

NA11933 21,049 11,092 936,615

NA12004 19,024 12,650 928,371

NA12044 18,753 13,002 919,212

NA12234 20,841 10,804 916,251

NA12286 19,027 12,622 922,799

Table 10. (Pamir & PopIns) Analysis of insertions found in low-coverage samples with respect to other datasets

Pamir PopIns

50–200 bp 200–500 bp >500 bp Total 50–200 bp 200–500 bp >500 bp Total

# of insertions 6,050 667 129 6,846 5,963 4,068 2,838 12,869

In GRCh38 31 2 1 34 0 0 4 4

In long insert clones 1,072 89 31 1,192 3,515 2,592 1,784 7,891

In repeat regions 3,837 488 71 4,396 1,542 947 613 3,102

Remainder 1,110 88 26 1,224 906 529 437 1,872

Here, we provide a hierarchical non-redundant breakdown of comparison of insertions we predicted in the 10 1000 genomes. We compare our predictions in

the following order: the GRCh38 assembly, then remaining to the long insert clones and those that are in repeat regions. Before mapping to GRCh38 reference we

extracted 200 bp left and right spanning regions of the insertion breakpoints on GRCh37 reference sequence, inserted the discovered sequence in between and

searched the obtained sequence in GRCh38.

Fig. 4. Performance comparison of PopIns and Pamir in Illumina

HiSeq2500 100bp simulation dataset with 170 calls falling in repeat regions

Fig. 5. Performance comparison of PopIns and MindTheGap in Illumina

HiSeq2500 100bp simulation dataset with 170 calls falling in repeat regions
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In this paper, we presented Pamir, a new algorithm to discover

and genotype novel sequence insertions in one or multiple human

genomes. Pamir uses several read signatures (one-end-anchored,

read pairs, split reads, and assembly) to characterize insertions that

span a wide size range. We demonstrated its performance on both

simulated and real datasets and showed that it outperforms the

existing tools designed for the same purpose. We believe that further

development and extensive testing of the Pamir algorithm will help

make the novel insertion discovery a routine analysis for whole gen-

ome sequencing studies.

Acknowledgement

We thank Alex Gawronski for proof reading and suggestions during the prep-

aration of the manuscript.

Funding

The work was supported by an installation grant from the European

Molecular Biology Organization to C.A. (EMBO-IG 2521), NSERC

Discovery grant, and NSERC Discovery Frontiers grant on ‘Cancer Genome

Collaboratory’ to F.H. P.K. acknowledges foreign collaborative research

study support by The Scientific and Technological Research Council of

Turkey, T€UB_ITAK- B_IDEB under the 2214-A programme. I.N. was supported

by Vanier Canada Graduate Fellowship.

Conflict of Interest: none declared.

References

Alkan,C. et al. (2011) Genome structural variation discovery and genotyping.

Nat. Rev. Genet., 12, 363–376.

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Bailey,J.A. et al. (2001) Segmental duplications: organization and impact

within the current human genome project assembly. Genome Res., 11,

1005–1017.

Benjamini,Y. and Speed,T.P. (2012) Summarizing and correcting the gc con-

tent bias in high-throughput sequencing. Nucl. Acids Res., 40, e72.

Chaisson,M.J.P. et al. (2015a) Genetic variation and the de novo assembly of

human genomes. Nat. Rev. Genet., 16, 627–640.

Chaisson,M.J.P. et al. (2015b) Resolving the complexity of the human genome

using single-molecule sequencing. Nature, 517, 608–611.

Church,D.M. et al. (2015) Extending reference assembly models. Genome

Biol., 16, 13.

Danecek,P. et al. (2011) The variant call format and vcftools. Bioinformatics,

27, 2156–2158.

Firtina,C. and Alkan,C. (2016) On genomic repeats and reproducibility.

Bioinformatics, 32, 2243–2247.

Hach,F. et al. (2010) mrsFAST: a cache-oblivious algorithm for short-read

mapping. Nat. Methods, 7, 576–577.

Hach,F. et al. (2014) mrsFAST-Ultra: a compact, SNP-aware mapper for high

performance sequencing applications. Nucl. Acids Res., 42(Web Server

issue), W494–W500.

Hajirasouliha,I. et al. (2010) Detection and characterization of novel sequence

insertions using paired-end next-generation sequencing. Bioinformatics, 26,

1277–1283.

Holtgrewe,M. et al. (2015) Methods for the detection and assembly of novel

sequence in high-throughput sequencing data. Bioinformatics, 31,

1904–1912.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Huddleston,J. et al. (2016) Discovery and genotyping of structural variation

from long-read haploid genome sequence data. Genome Res., doi: 10.1101/

gr.214007.116.

Iqbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-

ored de Bruijn graphs. Nat. Genet., 44, 226–232.

Johnson,D.S. (1974) Approximation algorithms for combinatorial problems.

J. Comput. Syst. Sci., 9, 256–278.

Kahn,A.B. (1962) Topological sorting of large networks. Commun. ACM, 5,

558–562.

Kehr,B. et al. (2015) PopIns: population-scale detection of novel sequence in-

sertions. Bioinformatics, 32, 961–967.

Kidd,J.M. et al. (2008) Mapping and sequencing of structural variation from

eight human genomes. Nature, 453, 56–64.

Kidd,J.M. et al. (2010a) Characterization of missing human genome sequences

and copy-number polymorphic insertions. Nat. Methods, 7, 365–371.

Kidd,J.M. et al. (2010b) A human genome structural variation sequencing re-

source reveals insights into mutational mechanisms. Cell, 143, 837–847.

Medvedev,P. et al. (2009) Computational methods for discovering structural vari-

ation with next-generation sequencing. Nat. Methods, 6 (11 Suppl), S13–S20.

Mills,R.E. et al. (2011) Mapping copy number variation by population-scale

genome sequencing. Nature, 470, 59–65.

Rizk,G. et al. (2014) MindTheGap: integrated detection and assembly of short

and long insertions. Bioinformatics, 30, 3451–3457.

Ross,M.G. et al. (2013) Characterizing and measuring bias in sequence data.

Genome Biol., 14, R51.

Sharp,A.J. et al. (2006) Structural variation of the human genome. Annu Rev.

Genom. Hum. Genet., 7, 407–442.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

Steinberg,K.M. et al. (2014) Single haplotype assembly of the human genome

from a hydatidiform mole. Genome Res., 24, 2066–2076.

The 1000 Genomes Project Consortium. (2015) A global reference for human

genetic variation. Nature, 526, 68–74.

The Computational Pan-Genomics Consortium. (2017) Computational pan-

genomics: status, promises and challenges. Brief. Bioinform, doi:10.1093/

bib/bbw089.

Xia,L.C. et al. (2016) A genome-wide approach for detecting novel insertion-

deletion variants of mid-range size. Nucl. Acids Res., 44, e126.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Zook,J.M. et al. (2014) Integrating human sequence data sets provides a re-

source of benchmark SNP and indel genotype calls. Nat. Biotechnol., 32,

246–251.

Table 11. Running times of Pamir, PopIns, MindTheGap, and

BASIL & ANISE on a 2*100bp simulation dataset based on

HiSeq2500 model with 30X coverage

Pamir PopIns MindTheGap BASIL & ANISE

3min 9sec 1min 59sec 13min 25sec 11min 16sec

Novel sequence insertions i169


	btx254-TF1
	btx254-TF2
	btx254-TF3
	btx254-TF4
	btx254-TF5
	btx254-TF6
	btx254-TF7
	btx254-TF8
	btx254-TF9
	btx254-TF10
	btx254-TF11
	btx254-TF12
	btx254-TF13
	btx254-TF14
	btx254-TF15
	btx254-TF16
	btx254-TF17
	btx254-TF18

