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Abstract

Although embankment seismic damages are very complex, there has been little seismic fra-

gility research yet. Researches on seismic fragility of bridges, dams and reinforced concrete

(RC) structures have achieved fruitful results, which can provide references for embank-

ment seismic fragility assessment. Meanwhile, the influencing degrees of retaining struc-

tures, such as retaining walls on the embankment seismic performances are still unclear.

The K1025+470 embankment of the Xi’an-Baoji expressway was selected as the research

object, and the finite difference models of the embankment fill-soil foundation system and

embankment fill-soil foundation-retaining wall system were established. The ground-motion

records for Incremental Dynamic Analysis (IDA) were selected and the dynamic response

analysis were conducted. Probabilistic Seismic Demand Analysis (PSDA) was used to deal

with the IDA results and the seismic fragility curves were generated. Based on the assess-

ment results, the influences of the retaining wall on the embankment seismic fragility were

further verified. The research results show that regardless of which seismic damage param-

eter is considered or the presence or absence of the retaining wall, larger PGAs always cor-

respond to higher probabilities of each seismic damage grade. Seismic damages to the

embankment fill-soil foundation-retaining wall system are always lower than those of the

embankment fill-soil foundation system under the same PGA actions, thus, the retaining

wall can decrease the embankment seismic fragility significantly.

1 Introduction

Earthquakes are natural disasters occur in bursts and severely endanger people’s lives and

properties [1]. The 1976 Tangshan earthquake in Hebei, China, the 1999 Chi-Chi earthquake

in Taiwan, China, the 2008 Wenchuan earthquake in Sichuan, China, the 2010 earthquakes in

Haiti and Chile, and the 2011 earthquake of the Pacific coast of Tōhoku in Japan and other

previous violent earthquakes, highway embankments suffered from varying degrees of dam-

ages, which seriously disrupted the highway networks, becoming the “Gordian knots” for the
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whole earthquake relief work [2–5]. Embankment seismic fragility refers to the exceeding

probabilities of different damage grades under earthquake actions, it can not only describe the

relations between the ground-motion intensities and embankment damage grades, but also

portray the embankment seismic performances [6–8]. The assessment results of the embank-

ment seismic fragility can be used as the basis for embankment design and engineering fortifi-

cation, suggesting reasonable options for improving highway seismic capacities [9–11].

Seismic fragility assessment started with the nuclear power plant, and reflected the results

with the fragility curves and/or fragility matrixes [12–14]. A. Melani et al. [15] determined the

financial risks on the basis of results of Incremental Dynamic Analysis (IDA) of reinforced

concrete (RC) frames using nonlinear time history analyses with a suite of 20 ground motion

records. Wang et al. [16] investigated the seismic fragility of arch dams using the dynamic

damage analysis model of dam-reservoir-foundation systems, in which the radiation damping

of semi-unbounded foundation rock, opening of contraction joints and damage cracking of

dam concrete were taken into account. Ko and Yang [17] performed nonlinear finite element

analyses using PLAXIS 2D for the seismic responses of sheet-pile wharves, and the modeling

approach was verified to be satisfactory by simulating a 1-g scale-model shaking table test. Liu

et al. [18] performed the seismic fragility analysis of recycled aggregate concrete (RAC) bridge

columns with different recycled coarse aggregate (RCA) replacement ratios subjected to

freeze-thaw cycles (FTCs) by the cloud analysis method. Yoon et al. [19] carried out nonlinear

time history analyses for the pipeline considering soil-pipeline interaction represented by

beam on nonlinear Winkler foundation model, and 12 ground motions were employed and

four different analytical cases were considered to evaluate the effect of the uncertainty of soil

parameters. Bao et al. [20] used both as-recorded and artificial seismic sequences as input to

conduct the nonlinear dynamic analysis, and the effect of fault types of aftershocks on a main-

shock-damaged containment was investigated in terms of the global response and local dam-

age respectively. Chen et al. [21] used a small-scale shaking table model test to investigate the

characteristics of the granular landslide deposits under influences of seismic wave, the results

showed that vibration frequency significantly influenced the deposit shape. Pan et al. [22]

employed the Latin hypercube sampling (LHS) technique to generate random samples of dif-

ferent uncertain parameters, and IDA was carried out to establish probabilistic seismic

demand models (PSDMs) and develop fragility curves. Sainct et al. [23] proposed a methodol-

ogy based on Support Vector Machine (SVM) coupled with an active learning algorithm to

estimate fragility curves. Sarno and Pugliese [24] assessed the seismic fragility of typical exist-

ing RC structures subjected to earthquake sequences and various levels of corrosion, and a

probabilistic approach and three different seismic intensity measures (IM) were proposed.

Liang et al. [25] performed the approximate IDA and the slippage and sliding area ratio were

chosen as the engineering demand parameters (EDPs), and different damage levels were iden-

tified by the slippage-based rule and sliding area ratio-based rule respectively according to

their corresponding overall mean IDA curves. Kumar and Samanta [26] determined the log-

normal variability functions by accounting for both the aleatory uncertainties and epistemic

source uncertainties, and seismic fragility assessment was performed for different building cat-

egories in Patna, India. Ciano et al. [27] investigated the accuracy of fragility curves for an

actual building struck by the 2016 Italian earthquake, and numerical analyses considering both

linear and non-linear behavior of a multi-degree of freedom structural system subjected to this

earthquake were performed. Ebrahimi et al. [28] used a number of effective techniques includ-

ing LHS simulation, fuzzy set theory and α-cut approach to quantify the median of the collapse

fragility curve as the fuzzy-random response. Ding et al. [29] conducted a series of shaking

table tests of utility tunnels with and without a joint connection, the results showed that the
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structure without a joint connection presented a more significant acceleration response and

horizontal soil pressure response than those with a joint connection.

Although embankment seismic damages are very complex, there has been little seismic fra-

gility research yet. Researches on seismic fragility of bridges, dams and RC structures have

achieved fruitful results, which can provide references for embankment seismic fragility assess-

ment. Meanwhile, the influencing degrees of retaining structures, such as retaining walls on

the embankment seismic performances are still unclear [7, 30]. In view of this, seismic fragility

assessment of the K1025+470 embankment of the Xi’an-Baoji expressway was performed by

IDA and Probabilistic Seismic Demand Analysis (PSDA), and fragility curves were generated.

Based on the assessment results, the influences of the RC retaining wall on the embankment

seismic fragility were further verified.

2 Methodology

Embankment seismic fragility assessment can be divided into empirical and theoretical meth-

ods. Empirical method is based on the field survey of the earthquake zone, and the empirical

fragility curves are obtained through the integration of different ground-motion intensities

and seismic damage grades [31–33]. Although the results of this method are accurate, its prac-

tical applicability is limited due to the following reasons [34–36]:

1. This method requires detailed ground-motion parameter distribution figures of the earth-

quake zone, but currently the figures are mainly obtained based on the existing attenuation

laws combined with the monitoring site record values, their accuracy cannot completely

meet the demand.

2. This method requires the damage grade figures of all the structures in the earthquake zone.

On the one hand, determining the damage grade is highly subjective and the results are dis-

crete; on the other hand, current damage surveys are mainly sampling surveys that do not

cover all the structures in the earthquake zone.

3. This method can reflect the total seismic performances of one type of structure in the earth-

quake zone, but cannot reflect the specific seismic fragility characteristics of an monomer

structure.

It is difficult to apply the empirical method over a wide range, particularly for highways and

other linear structures [31, 35–37], therefore, the theoretical method was selected to perform

the seismic fragility assessment of the K1025+470 embankment of the Xi’an-Baoji expressway,

the main contents were as follows: (1) divide the embankment seismic damage grades, select

the embankment seismic damage parameters and establish the relations between the seismic

damage grades and seismic damage parameters; (2) establish the finite difference models of

the embankment fill-soil foundation system and embankment fill-soil foundation-retaining

wall system; (3) select the ground-motion records for IDA and clarify the dynamic response

rules of the embankment; (4) determine the exceeding probabilities of different embankment

damage grades under different PGAs and generate the fragility curves; (5) verify the influences

of the retaining wall on the embankment seismic fragility.

3 Data preparation

Seismic damage grade classification method must be ascertained before assessing the embank-

ment seismic fragility [38, 39]. In HAZUS99, bridges are classified into five states according to

seismic performance, namely no damage, slight damage, moderate damage, severe damage

and complete destruction [40]. In Japan, seismic damages to bridges, tunnels, slopes and
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highways are divided into five grades, namely severe, major, moderate, minor and very minor

[41]. Referring to the above studies, embankment seismic damages were divided into five

grades, namely basically intact, minor damage, moderate damage, severe damage and

destroyed.

Little research has been reported on parameterizing the embankment seismic damages, but

by analyzing the seismic damage parameters of other structures, it can be found that the selec-

tion of embankment seismic damage parameters should consider the following principles [42–

45]:

1. Displacement is the most intuitive reflection of the seismic damages and the definitions of

displacement parameters are simple, clear and easy to obtain, therefore, seismic damage

parameters are mainly selected based on the displacement failure criterion.

2. Seismic damage parameters are comprehensive reflections of both local and overall seismic

damages, they are also quantitative reflections of the degree of use-function reduction,

therefore, more than one parameters often be chosen according to the actual situation.

The maximum lateral displacement rate (εmax) and maximum subsidence rate (zmax) on the

surface of the embankment were selected as the seismic damage parameters based on the dis-

placement failure criterion. εmax and zmax are defined in Eq (1).

εmax ¼
dmax

D
;zmax ¼

hmax

H
ð1Þ

Where dmax is the maximum lateral displacement on the surface of the embankment, D is the

width of the embankment fill, hmax is the maximum subsidence on the surface of the embank-

ment, H is the maximum height of the embankment fill. According to the investigation results

of the Wenchuan earthquake, embankments at the epicenter (Yingixiu town) suffered from

the most severely damage, i.e. destroyed, and εmax and zmax reached 1.059% and 1.210%

respectively [46–48], therefore, considering εmax = 1.0% and zmax = 1.2% as the critical values

of “severe damage” or “destroyed” is reasonable. Besides, the critical values of εmax and zmax

among other embankment damage grades were further determined based on the equidistant

classifying method [20, 38], as summarized in Table 1.

4 IDA of the embankment

4.1 Embankment model

Xi’an-Baoji expressway is located in the Guanzhong plain where some sections are in the form

of embankment [49, 50], the K1025+470 embankment was selected as the research object. By

referencing on Castaldo et al. [51], a finite difference model of the embankment fill-soil foun-

dation system was established via Flac software. The width of the embankment fill was 24.5m,

the right slope was 2.6m high (minimum), the left slope was 6.1m high (maximum) and the

Table 1. Critical values of εmax and zmax.

Embankment seismic damage grades Seismic damage parameters

εmax/% zmax/%

Basically intact εmax<0.2 zmax<0.2

Minor damage 0.2�εmax<0.4 0.2�zmax<0.4

Moderate damage 0.4�εmax<0.6 0.4�zmax<0.8

Severe damage 0.6�εmax<1.0 0.8�zmax<1.2

Destroyed εmax�1.0 zmax�1.2

https://doi.org/10.1371/journal.pone.0246407.t001
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slope ratio was 1: 1.5. The dip angle of the soil foundation was 24˚, the thickness was 30m and

the width was 120m. Among them, the vehicle loads had been converted to the thickness of

the embankment fill according to the elastic layer theory [52], as shown in Fig 1. To verify the

influences of the retaining wall on the embankment seismic capabilities, the existence of a RC

retaining wall on the left slope of the embankment fill-soil foundation system was assumed, as

shown in Fig 2.

An elastoplastic constitutive relation was employed in modeling the embankment fill and

soil foundation, while an isotropic elastic constitutive relation was employed in modeling the

retaining wall. The Mohr-Coulomb criterion was used as the yield criterion [51], and the

mechanical properties of the embankment fill, soil foundation and retaining wall were deter-

mined, as shown in Table 2.

Under the actions of the ground-motions, the fundamental motion equation of the

embankment fill-soil foundation system and embankment fill-soil foundation-retaining wall

system is shown in Eq (2) [53].

M€u þ C _u þ Ku ¼ � MJ€ug ð2Þ

Where M refers to the total mass matrix containing the added vehicle mass, C refers to the

total damping matrix, K refers to the total stiffness matrix, J refers to the indicator matrix of

each seismic component, €ug refers to the action of the ground-motion; €u, _u and u refer to the

acceleration array, speed array and displacement array of the nodes respectively. The free-

Fig 1. Finite difference model of the embankment fill-soil foundation system.

https://doi.org/10.1371/journal.pone.0246407.g001

Fig 2. Finite difference model of the embankment fill-soil foundation-retaining wall system.

https://doi.org/10.1371/journal.pone.0246407.g002
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surface boundary was selected as the boundary conditions of the finite difference models, that

was, the grids were generated on the model boundaries and the unbalanced forces of the free-

surface grids were applied on the main grid boundaries [54]. The Rayleigh damping was

adopted as the model damping, which simplified the damping matrix to a linear combination

of the mass matrix and stiffness matrix [55]. The seismic fragility assessments were conducted

on the embankment fill-soil foundation system and embankment fill-soil foundation-retaining

wall system respectively, and the results were then compared [56, 57].

4.2 Determination of the ground-motion records

15 ground-motion records of 8 earthquakes provided by the United States Pacific Earthquake

Engineering Research Center (PEER) were selected for IDA [58–60]. The epicentral distances

(Ed) of them are in the range of 10.9km to 50.9km, the magnitudes (Mw) are in the range of 5.7

to 7.6 and the original PGA are in the range of 0.094g to 0.968g [61, 62], as shown in Table 3.

Due to the limited space, the acceleration time history curves of the No.1-No.3 ground-

motion records are listed in Fig 3.

In order to get the dynamic response characteristics of the embankment fill-soil foundation

system and embankment fill-soil foundation-retaining wall system under different ground-

motion intensities, the selected ground-motion records need to be adjusted to higher or lower

intensity levels, that is, the amplitude modulation of ground-motion records. PGA of each

ground-motion record was adjusted to 0.2g, 0.4g, 0.6g, 0.8g, 1.0g and 1.2g respectively, and

obtained 90 ground- motion records [63, 64].

4.3 Dynamic response analysis

The 90 ground-motion records were input to the established models of the embankment fill-

soil foundation system and embankment fill-soil foundation-retaining wall system for 180

Table 2. Mechanical properties of the embankment fill, soil foundation and retaining wall.

Materials Shear modulus Density Elastic modulus Poisson’s ratio

Embankment fill 17.91MPa 1970.00kg/m3 48.00MPa 0.34

Soil foundation 15.67MPa 1630.00kg/m3 42.00MPa 0.34

Retaining wall 1282.05MPa 2300.00kg/m3 3000.00MPa 0.17

Materials Bulk modulus Internal friction angle Cohesive force

Embankment fill 50.00MPa 33.00˚ 34.00KPa

Soil foundation 43.75MPa 28.00˚ 31.00KPa

Retaining wall 1515.15MPa - - - -

https://doi.org/10.1371/journal.pone.0246407.t002

Table 3. Seismic ground-motion records.

No. Earthquake Ed Mw Original PGA No. Earthquake Ed Mw Original PGA

1 Kobe_Japan 49.9km 6.9 0.094g 9 Cape Mendocino-2 18.5km 7.1 0.385g

2 Landers 50.9km 7.3 0.117g 10 Chalfont Valley-3 11.7km 6.0 0.447g

3 Bishop (Rnd Val) 19.0km 5.7 0.128g 11 Cape Mendocino-3 13.5km 7.1 0.591g

4 San Simeon_CA 38.0km 6.5 0.132g 12 Chi-Chi, Taiwan-1 26.0km 7.6 0.639g

5 Duzce_Turkey 34.3km 7.1 0.138g 13 Chi-Chi, Taiwan-2 18.8km 7.6 0.724g

6 Chalfont Valley-1 20.0km 6.0 0.143g 14 Chi-Chi, Taiwan-3 13.4km 7.6 0.821g

7 Cape Mendocino-1 33.8km 7.1 0.229g 15 Chi-Chi, Taiwan-4 10.9km 7.6 0.968g

8 Chalfont Valley-2 16.2km 6.0 0.248g

https://doi.org/10.1371/journal.pone.0246407.t003
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dynamic response analysis. A total of 50 monitoring points were set up at every 0.5m on the

surface of the embankment. The lateral displacement d and subsidence h at different monitor-

ing points and different times as well as their mean values were recorded, and εmax, zmax and

their mean values were calculated as shown in Tables 4 and 5.

Fig 4 illustrates the time histories of the mean values of εmax and zmax on the monitoring

point No.1 (left edge of the surface) of the embankment fill-soil foundation system and

embankment fill-soil foundation-retaining wall system when PGA = 1.2g. It is evident from

Fig 4 that the retaining wall reduces εmax and zmax by 13.02% and 10.63% respectively.

4.4 IDA results

According to Karthik et al. [65], Alielahi and Moghadam [66] and Pang [67], εmax and PGA

follow the exponential relation, as shown in Eq (3).

ln εmax ¼ ln a1þb1 ln PGA ð3Þ

Where a1 and b1 are estimated parameters. Similarly, zmax and PGA follow the relation shown

in Eq (4).

ln zmax ¼ ln a2þb2 ln PGA ð4Þ

Fig 3. Acceleration time history curves of the No.1-No.3 ground-motion records.

https://doi.org/10.1371/journal.pone.0246407.g003

Table 4. Dynamic response analysis results of the embankment fill-soil foundation system.

Serial number of the ground- motion records 0.2g 0.4g 0.6g 0.8g 1.0g 1.2g

εmax/% zmax/% εmax/% zmax/% εmax/% zmax/% εmax/% zmax/% εmax/% zmax/% εmax/% zmax/%

1 0.1579 0.1812 0.4239 0.4876 0.5219 0.6389 0.8126 0.9937 1.3648 1.1854 1.4047 1.7159

2 0.2203 0.1438 0.3568 0.4471 0.5868 0.6977 0.7534 0.8543 1.2694 1.3148 1.5843 1.5342

3 0.1629 0.1398 0.3459 0.5128 0.5098 0.6018 0.8637 0.8875 1.1458 1.2991 1.4143 1.6487

4 0.2164 0.1716 0.4103 0.4095 0.5717 0.6844 0.8225 0.9109 1.3694 1.2675 1.5436 1.5846

5 0.1854 0.1379 0.3846 0.4167 0.5529 0.5079 0.7201 0.8456 1.1129 1.2834 1.5756 1.5241

6 0.1788 0.1812 0.4572 0.4891 0.5324 0.6047 0.7968 1.0077 1.2287 1.2037 1.5149 1.6008

7 0.1763 0.1251 0.3521 0.4359 0.6487 0.6387 0.7816 0.9768 1.1567 1.3651 1.5884 1.6017

8 0.1944 0.1723 0.3854 0.4765 0.5249 0.6916 0.8055 0.8391 1.3042 1.2513 1.4371 1.5418

9 0.1724 0.1454 0.4086 0.4123 0.6273 0.5721 0.7484 0.8746 1.1964 1.2789 1.6294 1.7309

10 0.1605 0.1948 0.3695 0.4896 0.5951 0.5948 0.7338 0.9427 1.2523 1.3811 1.5055 1.5281

11 0.1864 0.1335 0.4187 0.4312 0.5437 0.6989 0.8219 0.9009 1.0894 1.2846 1.5156 1.6807

12 0.2039 0.1861 0.4531 0.5195 0.5892 0.6251 0.7218 0.8248 1.1746 1.3718 1.5786 1.5438

13 0.1686 0.1565 0.4015 0.4047 0.5684 0.6984 0.6146 0.9986 1.1989 1.3064 1.4572 1.7158

14 0.1701 0.1779 0.4365 0.5464 0.5145 0.7478 0.7343 1.1001 1.3568 1.4049 1.3926 1.7872

15 0.1912 0.1248 0.3486 0.3751 0.6367 0.5495 0.7965 0.8064 1.1057 1.1285 1.6357 1.4597

Mean values 0.1830 0.1581 0.3968 0.4569 0.5683 0.6368 0.7685 0.9176 1.2217 1.2884 1.5185 1.6132

https://doi.org/10.1371/journal.pone.0246407.t004
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According to the dynamic response analysis results, regressions on a1, b1, a2 and b2 were

performed and Fig 5 was obtained.

The relations between εmax, zmax and PGA of the embankment fill-soil foundation system

are shown in Eqs (5) and (6), and the relations between εmax, zmax and PGA of the embank-

ment fill-soil foundation-retaining wall system are shown in Eqs (7) and (8).

εmax ¼ 1:1317PGA1:1618: ð5Þ

Table 5. Dynamic response analysis results of the embankment fill-soil foundation-retaining wall system.

Serial number of the ground- motion records 0.2g 0.4g 0.6g 0.8g 1.0g 1.2g

εmax/% zmax/% εmax/% zmax/% εmax/% zmax/% εmax/% zmax/% εmax/% zmax/% εmax/% zmax/%

1 0.1192 0.0918 0.2771 0.2404 0.5276 0.5723 0.7542 0.8132 0.9679 1.1926 1.0257 1.1859

2 0.1097 0.1397 0.3281 0.3235 0.4151 0.4475 0.6343 0.6908 0.9287 1.0737 1.2459 1.2062

3 0.1412 0.1146 0.2932 0.2862 0.4292 0.5314 0.6537 0.7345 0.8782 0.9822 1.1732 1.2048

4 0.1266 0.1251 0.2906 0.2533 0.5387 0.4097 0.6443 0.6825 0.9103 1.0246 1.0362 1.3659

5 0.0958 0.0995 0.3393 0.2962 0.4262 0.5681 0.7016 0.7936 0.8583 1.0251 1.0842 1.4351

6 0.1481 0.1182 0.2806 0.2777 0.4384 0.4561 0.6732 0.7233 0.9437 0.8681 1.2235 1.2392

7 0.1026 0.1004 0.2414 0.2546 0.5007 0.5217 0.6497 0.7951 0.8831 1.0147 1.0267 1.4732

8 0.1408 0.1332 0.2995 0.2892 0.4116 0.5362 0.7316 0.8063 0.9059 0.9462 1.3006 1.1687

9 0.1129 0.1287 0.3056 0.2685 0.4282 0.4417 0.7096 0.7092 0.9635 1.0726 1.1876 1.2054

10 0.1487 0.1263 0.2414 0.2751 0.4997 0.4393 0.6472 0.7846 0.8847 1.0055 1.1046 1.3296

11 0.1243 0.1035 0.2298 0.2994 0.4258 0.5406 0.7351 0.7156 0.8462 1.1233 0.9258 1.4387

12 0.1074 0.0986 0.3037 0.2424 0.5081 0.5571 0.6943 0.6973 0.9517 1.0687 1.2533 1.2057

13 0.1286 0.0909 0.2834 0.2615 0.4679 0.4236 0.6625 0.8481 0.9028 1.1254 1.0932 1.3288

14 0.0919 0.1184 0.2587 0.2796 0.4136 0.5672 0.6234 0.8762 0.9716 0.9239 0.9953 1.4841

15 0.1489 0.1365 0.3316 0.2681 0.5517 0.4153 0.7768 0.6672 0.8346 0.9013 1.2782 1.1561

Mean values 0.1231 0.1150 0.2869 0.2744 0.4655 0.4952 0.6861 0.7558 0.9087 1.0232 1.1303 1.2952

https://doi.org/10.1371/journal.pone.0246407.t005

Fig 4. Time histories of the mean values of εmax and zmax (positive values represent subsidence, negative values represent tilt).

https://doi.org/10.1371/journal.pone.0246407.g004
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zmax ¼ 1:2747PGA1:264 ð6Þ

εmax ¼ 0:8992PGA1:2416: ð7Þ

zmax ¼ 1:0085PGA1:3675: ð8Þ

5 Embankment seismic fragility assessment results

5.1 Seismic fragility curves

Eqs (5)–(8) were substituted into the classical calculation equation of the seismic fragility to

obtain Eqs (9)–(12), which Eqs (9) and (10) were the seismic fragility equations of the embank-

ment fill-soil foundation system considering εmax and zmax as the seismic damage parameters

respectively, and Eqs (11) and (12) were the seismic fragility equations of the embankment fill-

soil foundation-retaining wall system considering εmax and zmax as the seismic damage param-

eters respectively [68–70].

Pj ¼ Fð2 � ln ð1:1317PGA1:1618=SjÞÞ ð9Þ

Pj ¼ Fð2 � ln ð1:2747PGA1:264=SjÞÞ ð10Þ

Pj ¼ Fð2 � ln ð0:8992PGA1:2416=SjÞÞ ð11Þ

Pj ¼ Fð2 � ln ð1:0085PGA1:3675=SjÞÞ ð12Þ

Fig 5. IDA results.

https://doi.org/10.1371/journal.pone.0246407.g005
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Where Pj refers to the exceeding probability of the embankment seismic damage grade j, and

j = 1 represents basically intact, j = 2 represents minor damage, j = 3 represents moderate dam-

age, j = 4 represents severe damage, j = 5 represents destroyed; Sj refers to the structural perfor-

mance level shown in Table 1, namely S2 = 0.20, S3 = 0.40, S4 = 0.60, S5 = 1.00 when

considering εmax as the seismic damage parameter, and S2 = 0.20, S3 = 0.40, S4 = 0.80, S5 = 1.20

when considering εmax as the seismic damage parameter [71–73]. The embankment seismic

fragility curves were generated according to Eqs (9)–(12), as shown in Fig 6.

5.2 Discussion

According to Fig 6, PGAs corresponding to each seismic damage grade with exceeding proba-

bilities of 30%, 50% and 80% of the embankment fill-soil foundation system and embankment

fill-soil foundation-retaining wall system were obtained, as summarized in Table 6.

It is evident from Table 6 that although the coupling mechanism and mechanical process of

the embankment fill, soil foundation and retaining wall under the earthquake actions are

unclear, the embankment fill-soil foundation- retaining wall system always suffers from less

damages than those of the embankment fill-soil foundation system. For example, for exceeding

Fig 6. Seismic fragility curves.

https://doi.org/10.1371/journal.pone.0246407.g006
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probabilities of 30%, 50% and 80%, the PGAs corresponding to the embankment fill-soil foun-

dation-retaining wall system are 20.56%, 20.12% and 17.75% higher than those of the embank-

ment fill-soil foundation system respectively when “destroyed” occurred, therefore, more

serious seismic damages are less likely to happen to the embankment fill-soil foundation-

retaining wall system. Similarly, the probabilities of each seismic damage grade of the embank-

ment fill-soil foundation system and embankment fill-soil foundation-retaining wall system

corresponding to different PGAs were calculated, as summarized in Table 7.

Table 6. PGAs corresponding to each seismic damage grade with different exceeding probabilities.

Exceeding probabilities Research objects PGAs

Minor damage Moderate damage Severe damage Destroyed

30% Embankment fill-soil foundation system 0.1868g, 0.1947g 0.3393g, 0.3370g 0.4809g, 0.5831g 0.7465g, 0.8036g

Embankment fill-soil foundation-retaining wall system 0.2504g, 0.2616g 0.4377g, 0.4343g 0.6067g, 0.7209g 0.9155g, 0.9697g

50% Embankment fill-soil foundation system 0.2250g, 0.2310g 0.4085g, 0.3997g 0.5792g, 0.6917g 0.8990g, 0.9533g

Embankment fill-soil foundation-retaining wall system 0.2980g, 0.3063g 0.5208g, 0.5085g 0.7219g, 0.8442g 1.0893g, 1.1356g

80% Embankment fill-soil foundation system 0.3031g, 0.3039g 0.5505g, 0.5258g 0.7804g, 0.9099g 1.2114g, 1.2540g

Embankment fill-soil foundation-retaining wall system 0.3939g, 0.3947g 0.6884g, 0.6552g 0.9543g, 1.0877g 1.4400g, 1.4630g

Note: the first data in each blank is the PGA when considering εmax as the seismic damage parameter, while the second data is the PGA when considering zmax as the

seismic damage parameter.

https://doi.org/10.1371/journal.pone.0246407.t006

Table 7. Probabilities of each seismic damage grade corresponding to different PGAs.

Research objects Seismic damage

parameters

Seismic

damage grades

Exceeding probabilities of each seismic damage grade corresponding to different PGAs

0.1g 0.2g 0.3g 0.4g 0.5g 0.6g 0.7g 0.8g 0.9g 1.0g 1.1g 1.2g

Embankment fill-soil

foundation system

εmax Basically intact 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Minor damage 0.0298 0.3923 0.7482 0.9094 0.9683 0.9887 0.9958 0.9984 0.9994 0.9997 0.9999 0.9999

Moderate

damage

0.0005 0.0485 0.2365 0.4804 0.6806 0.8141 0.8946 0.9408 0.9668 0.9812 0.9893 0.9939

Severe damage 0.0000 0.0067 0.0632 0.1949 0.3664 0.5327 0.6701 0.7736 0.8471 0.8978 0.9320 0.9547

Destroyed 0.0000 0.0002 0.0054 0.0299 0.0864 0.1737 0.2805 0.3932 0.5010 0.5977 0.6804 0.7489

zmax Basically intact 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Minor damage 0.0171 0.3578 0.7456 0.9174 0.9745 0.9921 0.9975 0.9992 0.9994 0.9996 0.9998 0.9999

Moderate

damage

0.0002 0.0400 0.2340 0.5006 0.7142 0.8477 0.9217 0.9603 0.9799 0.9898 0.9948 0.9973

Severe damage 0.0000 0.0009 0.0173 0.0831 0.2059 0.3596 0.5120 0.6434 0.7471 0.8242 0.8795 0.9181

Destroyed 0.0000 0.0000 0.0017 0.0141 0.0514 0.1209 0.2174 0.3288 0.4421 0.5481 0.6412 0.7196

Embankment fill-soil

foundation-retaining wall

system

εmax Basically intact 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Minor damage 0.0036 0.1610 0.5067 0.7676 0.9006 0.9589 0.9830 0.9929 0.9970 0.9987 0.9994 0.9997

Moderate

damage

0.0000 0.0087 0.0854 0.2562 0.4597 0.6374 0.7686 0.8568 0.9128 0.9474 0.9683 0.9809

Severe damage 0.0000 0.0007 0.0146 0.0713 0.1809 0.3230 0.4695 0.6007 0.7080 0.7908 0.8522 0.8965

Destroyed 0.0000 0.0000 0.0007 0.0064 0.0266 0.0693 0.1361 0.2217 0.3177 0.4159 0.5096 0.5949

zmax Basically intact 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Minor damage 0.0011 0.1219 0.4772 0.7672 0.9099 0.9670 0.9881 0.9957 0.9984 0.9994 0.9998 0.9999

Moderate

damage

0.0000 0.0054 0.0745 0.2557 0.4816 0.6745 0.8089 0.8924 0.9408 0.9678 0.9826 0.9906

Severe damage 0.0000 0.0000 0.0023 0.0205 0.0760 0.1752 0.3042 0.4415 0.5695 0.6784 0.7654 0.8319

Destroyed 0.0000 0.0000 0.0001 0.0022 0.0124 0.0405 0.0929 0.1690 0.2624 0.3640 0.4653 0.5600

https://doi.org/10.1371/journal.pone.0246407.t007
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It is evident from Table 7 that regardless of which seismic damage parameter is considered

or the presence or absence of the retaining wall, larger PGAs always correspond to higher

probabilities of each seismic damage grade. For example, when PGA = 1.2g, the probabilities

of the embankment fill-soil foundation system being “destroyed” are 11.12% and 18.46%

respectively higher on average than those when PGA = 1.1g. On the other hand, the seismic

damages to the embankment fill-soil foundation-retaining wall system are always lower than

those of the embankment fill-soil foundation system under the same PGA actions. For exam-

ple, when PGA = 1.2g, the probability of the embankment fill-soil foundation-retaining wall

system being “destroyed” is 27.15% lower than that of the embankment fill-soil foundation sys-

tem, thus, the retaining wall can decrease the embankment seismic fragility significantly.

6 Conclusions

1. Embankment seismic damages were divided into 5 grades, the maximum lateral displace-

ment rate (εmax) and maximum subsidence rate (zmax) on the surface of the embankment

were selected as the seismic damage parameters. The K1025+470 embankment of the

Xi’an-Baoji expressway was studied, the structure forms of the embankment fill-soil foun-

dation system and embankment fill-soil foundation-retaining wall system were determined

and the finite difference models were established via Flac software. The ground-motion rec-

ords for IDA were selected and the dynamic response analysis were conducted. The PSDA

was used to deal with the IDA results and generated the seismic fragility curves, the influ-

ences of the RC retaining wall on the embankment seismic fragility were further

determined.

2. Regardless of which seismic damage parameter was considered or the presence or absence

of the retaining wall, larger PGAs always correspond to higher probabilities of each seismic

damage grade. Under the same PGA actions, the seismic damages to the embankment fill-

soil foundation-retaining wall system are always lower than those of the embankment fill-

soil foundation system, thus, the retaining wall can decrease the embankment seismic fra-

gility significantly.

3. Although the embankment seismic fragility assessment was studied in this paper, the fol-

lowing problems still remained. First, while εmax and zmax have feasibilities as the embank-

ment seismic damage parameters, they still could not fully reflect the embankment seismic

damage characteristics, selecting more reasonable parameters is yet to be studied. Second,

there are multiple factors influencing the embankment seismic fragility, the influences of

the retaining wall were quantitatively studied, the influences of other factors are yet to be

studied. Third, design parameters of the embankment, such as the dip angle of the soil

foundation may play an important role in the embankment seismic performance according

to existing studies, therefore, sensitive analysis about dip angle should be performed in sub-

sequence studies.
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