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Model-based action planning 
involves cortico-cerebellar and 
basal ganglia networks
Alan S. R. Fermin1,2,3, Takehiko Yoshida1,2, Junichiro Yoshimoto1,2, Makoto Ito2, 
Saori C. Tanaka4 & Kenji Doya1,2,3,4

Humans can select actions by learning, planning, or retrieving motor memories. Reinforcement 
Learning (RL) associates these processes with three major classes of strategies for action selection: 
exploratory RL learns state-action values by exploration, model-based RL uses internal models to 
simulate future states reached by hypothetical actions, and motor-memory RL selects past successful 
state-action mapping. In order to investigate the neural substrates that implement these strategies, 
we conducted a functional magnetic resonance imaging (fMRI) experiment while humans performed a 
sequential action selection task under conditions that promoted the use of a specific RL strategy. The 
ventromedial prefrontal cortex and ventral striatum increased activity in the exploratory condition; 
the dorsolateral prefrontal cortex, dorsomedial striatum, and lateral cerebellum in the model-based 
condition; and the supplementary motor area, putamen, and anterior cerebellum in the motor-memory 
condition. These findings suggest that a distinct prefrontal-basal ganglia and cerebellar network 
implements the model-based RL action selection strategy.

Using exploration and reward feedback, humans and other animals have a remarkable capacity to learn new 
motor behaviors without explicit teaching1. Throughout most of our lives, however, we depend on explicit or 
implicit knowledge, based upon past experiences, such as a map of the area or properties of the musculoskeletal 
system, to enable focused exploration and efficient learning2,3. After repeated practice, a motor behavior becomes 
stereotyped and can be executed with little mental load4. What brain mechanisms enable animals to employ 
different learning strategies and to select or integrate them in a given situation? In this paper, we take a new 
behavioral paradigm that captures different stages of motor learning during a single experimental session5, and 
using fMRI we explore brain structures that are specifically involved in implementing different learning strategies.

The theory of reinforcement learning (RL)6 prescribes three major classes of algorithms for action selection 
and learning: motor-memory, exploratory, and model-based strategies. The motor-memory strategy reinforces 
the sequence of states and actions that led to successful results in past experiences, which is simple, but requires 
many trials before finding an optimal sequence, unless there are clues to minimize exploration. The exploratory 
strategy recursively updates values of states and actions to efficiently utilize experiences resulting from explora-
tory actions, acquired rewards, and state transitions. The model-based strategy employs an internal model that 
enables simulation of the future state reached by a hypothetical action, or multiple actions. Since these strategies 
require different degrees of pre-acquired knowledge and computational loads for real-time execution, it is reason-
able to speculate that humans may utilize them depending on their experience level with a certain context or task.

Computational models of RL and fMRI studies with humans have explored the neural substrates of 
model-based and motor-memory strategies, given their strong resemblance to classical, psychological, dichot-
omous behavior control employing deliberative and automatic processes, respectively. Activity in the dorsolat-
eral prefrontal cortex (DLPFC) has been associated with the use of model-based strategies when an internal 
model of environmental dynamics is available and can be used for forward planning and prediction of an action’s 
future outcomes7,8,9,10. Conversely, activation of the posterior dorsal striatum is observed when actions become 
automatic after extensive practice, and a motor-memory strategy is more likely to control behavior10,11. 
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However, accumulating behavioral evidence4,5,12,13, supported by computational models of learning and 
decision-making14,15, suggests that humans may use multiple decision strategies for learning, including explora-
tory, model-based, and motor-memory strategies. Furthermore, based on anatomical16,17,18,19, electrophysiological 
and lesion studies with monkeys12,20 and fMRI studies with humans learning complex sequential behaviors12,21,22, 
it has been suggested that such strategies are implemented in the brain by parallel anatomical neural networks 
linking different regions of the PFC, striatum, and cerebellum12,14,23,24. Yet, it remains unclear whether and when 
humans use multiple selection strategies, and whether such strategies are implemented in local or larger brain 
networks.

Our working hypothesis is that humans rely on distinct action selection strategies for learning, depending on 
their level of experience with a task: (1) in the early stage of learning with no prior knowledge of state transition or 
reward setting, the exploratory strategy is used; (2) as learning continues and an internal model of action results is 
developed, the model-based strategy is used to expedite learning; (3) in the late stage, after many successful expe-
riences, a motor-memory strategy is used for robust performance with minimal computational load. In order to 
test this hypothesis and to identify brain mechanisms supporting different action selection strategies, we designed 
a task paradigm, the “grid-sailing task5”, which recreates different stages of motor learning during a single session 
inside an fMRI scanner.

The grid-sailing task requires a subject to move a cursor from its start position to a goal position in a 5 ×  5 
grid by performing a sequence of key presses with the right index, middle, and ring fingers (Fig. 1). Different 
cursor shapes representing key-mapping (KM) rules were combined with different start-goal (SG) positions 
(Fig. 1b). What makes the task interesting is that the cursor can move in only three of eight neighbor posi-
tions, such that reaching the goal requires zigzag movement of the cursor (Fig. S1). This favors model-based, 
multi-step planning of key presses and cursor movements over habitual or exploratory behavior. Subjects per-
formed this task under three task conditions designed to mimic specific learning stages. In Condition 1, sub-
jects learned new action sequences with unknown KM rules; in Condition 2, subjects used pre-learned KMs to 
learn new action sequences, and in Condition 3 subjects performed well-learned action sequences. Our working 
hypothesis predicted that the absence of an internal model in Condition 1 would favor the use of an exploratory 
strategy for action learning. In Condition 2, the availability of internal models of the KMs would promote the 
use of a model-based strategy for forward planning. In Condition 3, after repeated successful experiences, a 
motor-memory strategy would be employed because it requires less computation in real time and allows prompt, 
efficient execution of stored sequential motor responses.

We asked subjects to perform each task condition either with or without a delay after a KM and SG posi-
tions were presented. We expected that subjects would use this pre-start delay period for mental simulation of 
imaginary actions if an internal model of the KM rule was available. We examined behavioral measures to test 
our hypotheses on differential use of action selection strategies and analyzed fMRI signals especially during the 
pre-start delay period, to identify neural networks associated with behavior suggestive of the use of model-based 
action planning.

Results
Subjects (n =  18) performed the “grid-sailing task”5 on two consecutive days (Fig. 1c). The goal of the task was to 
move a cursor from its start position to a target goal position on a 5 ×  5 grid via the shortest possible path. A trial 
started with presentation of a pair of SG positions and the cursor located on the start position. The cursor shape 
represented the KM used in the trial (Fig. 1a). SG positions were chosen so that there was no straight path from 
the start to the goal using either KM. See Fig. S1 for examples of paths learned by subjects. The color of the start 
position specified the start time condition: green for an immediate start or red for a delayed start when subjects 
had to withhold a response for 4 ~ 6 s until the start position turned green (Fig. 1d). If a subject could successfully 
reach the goal position within 6 s, a reward score of 100 points, minus 5 points for each excessive key press devi-
ating from the shortest path was presented. If the subject did not reach the goal a reward score of 0 points was 
presented.

In the training session on day 1, subjects trained with two of the KMs paired with two SGs each (Fig. 1c). The 
KM-SG combinations used on day 1 were counter-balanced across three subject groups. Subjects practiced the 
four KM-SG combinations randomly, in alternate short blocks of immediate or delayed starts, in a total of 60 
trials evenly distributed in three trial blocks (see Supplementary Methods). In the last five trials of the third block, 
the success rate was more than 70% with an average reward score of more than 80 points for every subject, and 
the sample mean of the reward score was 95 points (Fig. S2 and Supplementary Methods for a detailed analysis of 
performance behavior in the training session). This analysis suggests that subjects were well acquainted with the 
KMs and learned fixed action sequences for each trained KM-SG combination, although the question of whether 
they established internal models for those KMs had to be tested by using novel SGs in the test session.

During the test session on day 2 (Fig. 1c), subjects performed combinations of KMs (the two KMs learned in 
the training session and a newly introduced KM) and SG positions (the two SGs used in the training session and 
a new SG), resulting in 3 ×  3 KM-SG combinations. Each of the nine resulting KM-SG combinations was per-
formed with immediate and delayed starts for 20 trials (see Supplementary Methods). The KM-SG combinations 
comprised three task conditions (Fig. 1c): Condition 1 was a combination of a novel KM with three SG positions; 
Condition 2 was a combination of the learned KMs with new SG positions; and Condition 3 was the KM-SG 
combinations learned in the training session.

Behavior performance in the fMRI test session. One important prediction based on our hypothesis 
is that the use of a distinct action selection strategy in each task condition would be associated with a distinct 
behavioral performance. The lack of prior experience and of an internal model due to the introduction of a new 
KM in Condition 1 would be associated with slow learning and a lower reward score relative to performance in 
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Condition 2, where the presence of an internal model of the KMs would lead to fast learning and higher reward 
score, especially in trials preceded by a delay when the internal model of a KM could be used for forward plan-
ning. In Condition 3 we expected a stable, fast, accurate performance for the pre-learned action sequences. In 
support of this prediction, we found a significant effect of task condition (F(2,3204) =  186.54, p <  0.0001), with a 
significantly (p <  0.001) lower overall reward score in Condition 1 (mean =  64.03, SE =  1.08) than in Condition 2 
(mean =  72.77, SE =  0.94) and the largest reward score in Condition 3 (mean =  96.77, SE =  1.33) (See Fig. S3 and 
Supplementary Methods for statistical analysis). A trial-by-trial analysis revealed that subjects learned faster in 

Figure 1. Grid-sailing task and experimental design. (a) Key-mappings (KM) and respective right hand 
fingers (I: index; M: middle; R: ring). Arrows indicate the three directions of motion depending on the current 
position of the cursor. (b) Pairs of Start-Goal (SG) positions used in training and test sessions. Start position 
(red) and goal position (blue). (c) KM-SG sets assigned for practice in training and test sessions for each group 
of subjects. Colored arrows in the training session: magenta – KM-SG sets chosen for retest in the test session; 
black arrows – extra KM-SG sets for training. Colored arrows in the test session: orange – KM-SG sets for test 
Condition 1, blue – KM-SG sets for test Condition 2, and magenta – KM-SG sets for test Condition 3. (d) Task 
sequence flow. The task started with presentation of a 5 ×  5 grid and a fixation cross (FC) for 3 s~5 s. Next, a pair 
of SG positions was displayed. A cursor (triangle) representing one specific KM was simultaneously displayed 
on top of the start position. The color of the start position indicated whether the subject’s response would start 
immediately (green) or after a delay (red) of 4 s~6 s. In trials with a delay, when the color switched from red to 
green, subjects had 6 s to perform the task. The subject’s task was to execute a sequence of finger movements to 
move the cursor to the goal position by the shortest pathway. Performance feedback, with the number of moves 
and the reward score, was displayed for 2 s at the end of the trial, above and below the FC, respectively, after 
which the next trial restarted, following a variable inter-trial interval.
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trials with a pre-start delay and achieved the learning criteria (80% accuracy in reward score) earlier in Condition 
2 (criteria achieved in trial 3, Fig. 2a middle panel) than in Condition 1 (criteria achieved in trial 7, Fig. 2a left 
panel). Across early and later trial blocks, significant increases in reward scores were observed in Condition 1 and 
Condition 2, but not in Condition 3 (Fig. S4 and S5). Reward scores in Condition 1 and Condition 2 were signif-
icantly larger in trials with a delay than in immediate start trials (p <  0.0001), but no such effect was observed in 
Condition 3 (p =  0.86). Furthermore, the reward score in delayed-start trials was significantly larger in Condition 
2 than in Condition 1 (p <  0.0001), whereas no significant difference was found for performances in immediate 
start trials between these conditions (p >  0.05). We did not find a significant effect of subject group, F(2,3204) =  2.74, 
p =  0.0649, indicating that the effect of task condition, trial block, and start time was comparable among groups.

To further investigate the effect of the availability of an internal model of KMs on behavior performance, we 
estimated subjects’ overall trial-by-trial probability of reaching the goal (goal reach probability) and the proba-
bility of reaching the goal by performing the shortest action sequence (optimal goal reach probability). Analysis 
of the goal reach probability found that subjects could reach a learning criterion of 80% success at trial 4 in 

Figure 2. Trial-by-trial analysis of behavior performance in the test session shows the benefit of pre-start 
delay with pre-learned key-maps in Condition 2. (a) Average reward score. In Condition 1 the average reward 
score reached the learning criteria only in trial 7, whereas it was reached in trial 3 in Condition 2. Stars on 
top of each trial in Condition 2 represent the statistical significance against the same trial in Condition 1, for 
performances in trials with the delayed start. The same notation appears in Fig. 2b and Fig. 2c. (b) Goal reach 
probability. This is a measure of successful goal reach. In this analysis, the learning criterion (80% accuracy) was 
not reached in Condition 1, whereas in Condition 2 the criterion was reached in trial 4. (c) Optimal goal reach 
probability was the probability of reaching the goal by performing the shortest sequence of finger movements. 
All trials following a delay period in Condition 2 are statistically significant compared to the same trials in 
Condition 1. Shaded areas represent the standard error.
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delayed-start trials in Condition 2 (versus trial 4 in Condition 1, p <  0.001, Fig. 2b middle panel), but failed to 
achieve the learning criterion in Condition 1 (Fig. 2b left panel). The analysis of optimal goal reach probabil-
ity found a significant difference between Conditions 1 and 2, which emerged in the first trial (p <  0.05) and 
remained significant throughout the entire experimental session (Fig. 2c).

The beneficial effect of a delayed start on sequential action planning was further analyzed by calculating the 
reward gain, defined as the difference between the reward score of the delay and the immediate start trials for 
each KM-SG set. A large, positive reward gain indicates that subjects were able to perform more successful action 
sequences in pre-start delay trials than in immediate start trials. The reward gain in Condition 2 was larger than in 
Condition 1, especially during the first trial block (p <  0.01) (Fig. 3a). We also found a beneficial effect of delayed 
start in Condition 2 relative to Condition 1, when the performance gain was computed using the goal reach prob-
ability (Fig. 3b) and optimal goal reach probability (Fig. 3c). These performance improvements are consistent 
with our hypothesis that internal models of KM in Condition 2 were used for sequential action planning during 
the pre-start delay period.

In order to further quantify performance differences among the task conditions, we classified trials into three 
trial types based on reward score subjects received at the end of each trial: error trials (reward score =  0; failed to 
reach the goal), suboptimal trials (0<  reward score < 100; reached the goal by a longer path), and optimal trials 
(reward score =  100; reached the goal by an optimal path; See Supplementary Methods for detailed statistical 
results). We expected to find a higher rate of error trials in Condition 1 relative to Condition 2 due to the lack of 
experience with the new KM. Conversely, we expected higher rate of optimal trials in Condition 2 given that the 
internal model of KMs could be useful for successful action planning. As for Condition 3, we expected to find 
the lowest rate of error trials and the highest rate of optimal trials, given the well-learned action sequences. These 
predictions were supported by the analysis, which revealed a significant effect of task condition (p <  0.0001), with 
a higher percentage of optimal trials in Condition 2 than in Condition 1 (p <  0.006), especially in delayed start 
trials (p <  0.01; Fig. S8). The percentage of error trials was significantly lower in Condition 2 (p <  0.001) and in 
Condition 3 (p <  0.0001) than in Condition 1 (Fig. S8). Furthermore, the percentage of error trials under the 
delayed-start condition was not significantly different between Conditions 2 and 3 (p >  0.4; Fig. S8).

In order to identify the possible cause of the high error rate in Condition 1, we estimated the mean absolute 
deviation (MAD) as a measure of exploratory behavior. MAD was estimated separately for reward score, the 
number of steps to reach the goal, and execution time, and entered into a group analysis with a three-way ANOVA 
(See Supplementary Methods for further statistical results). This analysis revealed higher performance variabil-
ity in reward score, number of steps, and action sequence execution time in Condition 1, than in Condition 2 
(p <  0.001) or 3 (p <  0.001). These results suggest that the high error rate and variable performance in Condition 
1 may be explained by active action exploration and learning of the new KM.

These results show that subject performance in terms of reward score, overall goal reach and optimal goal 
reach were improved quite significantly in Condition 2, specifically with a delayed start, a finding that replicates 
our previous work5. This is a strong indication that subjects had acquired internal models of KMs in the training 
session and used them during the pre-start delay period in Condition 2 for assessment of hypothetical key-press 
sequences and resulting cursor paths.

Neuroimaging
Delay-period Activity in Conditions 1 and 2. Our main purpose was to identify the neural network that 
accomplishes mental simulation of sequential actions using internal models. Due to the beneficial effect of the 
pre-start delay in accelerating learning in Condition 2 when subjects could use the internal model of the KMs 
to plan sequential actions, we analyzed how the BOLD fMRI signal in the delay period was modulated by differ-
ent task conditions. Using Condition 3 as the control task for Condition 1 (Condition 1 >  Condition 3) and for 
Condition 2 (Condition 2 >  Condition 3), the analysis revealed that both Condition 1 (Fig. 4a) and Condition 
2 (Fig. 4b) activated similar brain areas, including the left DLPFC, dorsal and lateral premotor cortices, parietal 

Figure 3. Performance gains with a delayed start were significantly larger in Condition 2. Performance gain 
is the difference of a specific behavior measure between trials with and without a delay. Significant differences 
between Condition 1 and Condition 2 were found for (a) Mean Reward Gain, (b) Goal Reach Gain, and  
(c) Optimal Goal Reach Gain. Error bars represent standard errors.
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cortices, striatum, and cerebellum bilaterally (p <  0.05, FWE corrected, Table S1). Extension of this activation 
was larger in Condition 2 than in Condition 1 in cortical areas (Fig. 4c), in the striatum (Fig. 4d) and cerebellum 
(4e). In the striatum the number of activated voxels in Condition 2 (left BG =  242 voxels, peak voxel T-value: 6.28; 
right BG =  249 voxels, peak voxel T-value: 6.04) was much larger than in Condition 1 (left BG =  130, peak voxel 
T-value: 5.9; right BG =  71, peak voxel T-value: 5.7).

In order to investigate whether distinct neural networks were associated with the distinct performance profiles 
found in the behavior analysis, we conducted a direct contrast of the delay period signal between Conditions 1 
and 2 (Condition 1 >  Condition 2; Condition 2 >  Condition1). Cortical activation in Condition 1 was found in 
the ventromedial orbital frontal cortex (VMOFC), the somatosensory cortex, the inferior parietal lobule, and 
primary visual cortex (Fig. 5a, p <  0.05, corrected). Contrastingly, cortical activation in Condition 2 was found 
in the left DLPFC, ventral premotor cortex bilaterally, and right inferior temporal gyrus (Fig. 5b, p <  0.05, cor-
rected). Using anatomical mask images we extracted the voxels activated in the striatum and cerebellum. In 
Condition 1 significant activation was found in the anterior-ventromedial part of the striatum (peak voxel: x =   
− 12, y =  20, z =  − 5, Fig. 5d yellow voxel clusters; p <  0.05, corrected for the mask image). Conversely, striatal 
activation in Condition 2 was found in a dorsomedial region (caudate body, peak voxel: x =  9, y =  2, z =  16; 
Fig. 5d blue voxel clusters; p <  0.05, corrected for the mask image). Furthermore, lateral parts of the posterior 
cerebellum were also active in Condition 2 (Fig. 5e).

Delay-period Activity in Condition 3. We also investigated neural mechanisms associated with 
well-learned action sequences in Condition 3. When contrasting the activity of Condition 3 versus the activities 
in Condition 1, Condition 2 or both, no significant activation was found (p >  0.05, corrected). However, when 
analyzing the positive activation (contrast image) of Condition 3 we found significant activity in the dorsal pre-
motor cortex, the supplementary motor area (SMA), and the superior parietal cortex (Fig. 5c; p <  0.05, corrected). 
Activation was also found in the dorsal striatum (putamen region, Fig. 5d, p <  0.05, corrected for the mask image) 
and right anterior cerebellum (Fig. 5e, p <  0.05, corrected for the mask image).

BOLD Signal Change in the Delay-period. The above fMRI analyses revealed activation of distinct pre-
frontal, basal ganglia, and cerebellar regions in each task condition during the pre-start delay. In order to further 
characterize activity in these regions, we estimated the fMRI signal (beta parameters) in the identified prefrontal 

Figure 4. Delay-period BOLD signal was most extensive in Condition 2 in the cerebral cortex, the basal 
ganglia, and the cerebellum. Cortical and subcortical areas showing increased delay-period BOLD signal 
in Conditions 1 and 2 using activity during the delay-period in Condition 3 as a control. (a) Delay-period 
activation in Condition 1 versus Condition 3. (b) Delay-period activation in Condition 2 versus Condition 3. 
This analysis revealed a similar recruitment of brain areas in both Conditions 1 and 2, including the dorsolateral 
prefrontal cortex, lateral and dorsal premotor cortices and posterior parietal cortex. (c) Overlapping activation 
in Condition 1 and Condition 2 (images displayed in a and b) demonstrates broader activation in Condition 
2. (d) Basal-ganglia (caudate and putamen)-extracted voxels from the comparison between Condition 1 and 
Condition 3 (orange voxels) and Condition 2 and Condition 3 (blue voxels). (e) Cerebellum-extracted voxels in 
the same way as in d. As in cortical areas, the extent of activity in the basal ganglia and cerebellum was larger in 
Condition 2 than in Condition 1. The axis in d and e represents the MNI coordinates in millimeters.
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and striatal clusters (See Supplementary Methods for detailed analysis). Signal intensity in the VMOFC and the 
anterior-ventromedial striatum was highest in Condition 1 (Fig. 6, leftmost top and bottom panels). Conversely, 
signal intensity in the DLPFC and dorsomedial striatum was highest in Condition 2 (Fig. 6, middle top and 
bottom panels). Finally, in Condition 3 the highest signal intensity was found in the SMA and putamen (Fig. 6, 
rightmost top and bottom panels).

Performance-period Activity. Unlike activity during the delay period, brain activity during the perfor-
mance period can be a mixture of processes that reflect action planning, motor execution, and learning from the 
results of actions. A direct contrast between Conditions 1 and 2 did not find any significant difference in their 
activities during the performance periods of immediate or pre-start delay trials (p <  0.05, uncorrected) or even 
when using a more lenient statistical threshold of p <  0.001, uncorrected. However, using Condition 3 as the 
control, significant activation was found in Condition 1 (Condition 1 - Condition 3, Fig. 7a) and in Condition 2 
(Condition 2 – Condition 3, Fig. 7b) in the left DLPFC, the bilateral ventral premotor cortices, the pre-SMA, the 
bilateral inferior parietal cortices, and the superior precuneus. Interestingly, we also found activities in Condition 2  
in the right dorsolateral prefrontal cortex and the right posterior cerebellum. A contrast between Condition 3 and 
Condition 1 with Condition 2 (Condition 3 – [Condition 1 +  Condition 2]) showed significant activity in areas 
related to automatic behavior control such as the left somatosensory cortex, left motor cortices, left SMA, left infe-
rior parietal cortex, bilateral ventral precuneus, bilateral posterior putamen, and the anterior cerebellum (Fig. 7c).

Reward-modulated Activity. We also performed a parametric modulation analysis between BOLD sig-
nals in the striatum and reward scores during the feedback period. Delayed-start and immediate start trials were 
analyzed separately (Table S4). In Condition 1, activation in delayed-start trials was found in the anterior-medial 
region of the left caudate nucleus (T-value: 3.39) (Fig. 8a, yellow voxels), whereas in immediate-start trials, activa-
tion was found in the same region, but on the right hemisphere (T-value: 6.06) (Fig. 8b, yellow voxels). Activation 
in Condition 2 in delayed trials was found in the medial (caudate) and lateral (putamen) regions of the right stria-
tum (peak T-value: 4.28) (Fig. 8a, blue voxels), and bilaterally in the putamen and caudate regions of the striatum 
in trials without the delay (peak T-value: 8.09) (Fig. 8b, blue voxels).

Figure 5. Comparison of the delay-period BOLD signal shows signatures of model-free, model-based, 
and memory-based action selection strategies. (a) Brain regions in Condition 1 (subtraction: Condition 1 – 
Condition 2) that we associate with the use of trial-based strategies, showing significantly increased activation 
in the right ventromedial prefrontal cortex, left somatosensory cortex, angular gyrus, posterior cingulate, and 
ventromedial striatum. (b) Regions in Condition 2 (subtraction: Condition 2 – Condition 1) associated with the 
model-based strategy, revealed activity in the dorsolateral prefrontal cortex, anterior cingulate cortex, superior 
medial prefrontal cortex, ventrolateral premotor cortex, ventral precuneus and dorsomedial striatum.  
(c) Delay-period neural activity in Condition 3 (positive contrast image of Condition 3) was found in the 
proper-supplementary motor area, motor cortex, left putamen, and right anterior cerebellum. (d) Striatum voxel 
activation clusters extracted from the results in (a), (b) and (c). Condition 1: orange clusters; Condition 2: blue 
clusters; Condition 3: pink clusters. (e) Cerebellum voxel activation clusters extracted from the results in (a),  
(b) and (c). Condition 1: orange clusters; Condition 2: blue clusters; Condition 3: pink clusters. The x, y and z 
axes in d and e represent MNI coordinates in millimeters.
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Discusssion
In order to clarify what action strategies are used in different stages of learning and to identify the brain networks 
implementing those strategies, we performed an fMRI experiment using the grid-sailing task and showed that the 
behavioral results were in general agreement with our hypothesis and replicated our previous findings using the 
same behavioral paradigm5. In Condition 1, with no initial knowledge of the KM, learning was slow and erratic, 
and performance was highly variable. This behavioral profile suggests the likely use of an exploratory strategy. 
In Condition 2, prior experience with the KM facilitated learning with new goals, especially when a pre-start 
delay was available. This finding indicates that the model-based strategy is likely to have been employed using 
the learned model of the KM for forward planning of the path toward the goal and for corresponding action 
sequences. The stable, accurate, and rapid performance in Condition 3 suggests use of a motor-memory strat-
egy to reproduce pre-learned action sequences. Our simplistic prediction was that the performance advantage 
from the pre-start delay time would be possible only when the internal model of the KM was available, i.e., in 
Conditions 2 and 3. However, the significant advantage of the pre-start delay in Condition 1 suggests that internal 
models can also be acquired and utilized even in the early stage of learning. Another possibility is that there is a 
general advantage to having pre-start preparation time, which is not specific to the use of internal models. This 
may explain performance differences in very early trials in Condition 1, when the use of an internal model was 
highly unlikely.

The exploratory behavior in Condition 1, evidenced by high performance variability, was associated with acti-
vation of the VMOFC and anterior ventral-medial striatum during the delay period (Fig. 5a). Previous brain imag-
ing studies revealed a role of the VMOFC in valuation of goods and complex cues25, in learning action-outcome 
associations26,27 and implicated the ventral striatum in state evaluation (critic)28. The significant activation of both 
the VMPFC and ventral striatum in Condition 1 and their association with stimulus and action value learning 
suggest that an exploratory algorithm with value function learning, such as the actor-critic algorithm, may have 
been used in Condition 1. This interpretation is further supported by a significant activation in Condition 1 of 
the ventral part of the anterior prefrontal cortex (APFC, x =  9, y =  56, z =  − 17, Fig. 5a). Hierarchical models 
of prefrontal function identify the APFC as a coordinator of multiple processes, such as cognitive branching29, 
decision monitoring30, relational integration, and construction of representations31. A model-based fMRI study 
also found a strong correlation between APFC activity and exploratory action selection32. Activation in the APFC, 
VMPFC and ventral striatum have also been found in initial stages of goal-directed learning33 and sequential 
action learning by trial-and-error, when exploratory action selection plays a major role in learning21,22. We spec-
ulate that APFC activity in Condition 1 may have contributed to learning the model of the new KM by creating a 

Figure 6. Distinct cortico-basal ganglia circuits recruited in each task condition, mimicking different 
learning phases. Plots show the BOLD signal intensity (beta parameters), separated for each task condition 
and cerebral hemispheres (left and right bars) in the analysis presented in Fig. 5 The signal for Condition 1 was 
estimated from the VMOFC and ventral striatum, for Condition 2 from the DLPFC and dorsomedial striatum 
and the signal for Condition 3 from the proper-SMA and putamen.
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representation between button press and a cursor motion direction through action exploration and integration of 
action-outcome value signals estimated in the VMPFC and striatum during on-line action exploration.

An important contribution of the present study is the introduction of the pre-start delay, which allows the use 
of internal models if available. When a pre-start delay was available, a significant increase in accuracy in gener-
ating optimal action sequences in the very first trial was observed in Condition 2 (Fig. 2c), a finding consistent 
with that of a previous study using a two-step decision-making task8. Performance improvements in Condition 
2 were associated with activity during the delay in the DLPFC, ventrolateral premotor cortex, pre-SMA, dorso-
medial striatum, and lateral cerebellum. The DLPFC and ventral premotor cortex have been implicated in mental 
imagery and model-based decision making7,8,10,14,34,35. The posterior lateral cerebellum and the dorsomedial stri-
atum have loop connections with the DLPFC16,17,18,19,36. It has been suggested that the lateral cerebellum models 
the body and the environment14,37,38,39. Activities of dorsomedial striatal neurons represent values of actions being 
selected40,41. These observations are consistent with the hypothesis that the cerebellar internal model predicts the 
resulting state from a hypothetical candidate action, the prefrontal cortex holds it as its working memory, and the 
striatum evaluates the goodness of the predicted state for selection or rejection of the candidate action14.

The deliberative role of the prefrontal cortex in learning and model-based decision-making has been demon-
strated by sequential learning and two-step decision-making tasks8,21,22,35,42,43. The activations of the VMPFC in 
Condition 1 and DLPFC in Condition 2 are in general agreement with the role of the prefrontal cortex in deliberative 
control. However, prefrontal activation in different locations and the distinct performance profiles associated with 
Conditions 1 and 2 suggest the use of deliberation for different purposes. The highly erratic and exploratory behav-
ior in Condition 1 suggests that use of a model-based strategy as expected in Condition 2, where optimal sequence 
planning and accuracy following the delay period were significantly higher from the very first trial, is unlikely. The 

Figure 7. BOLD signal during the movement performance period showed distinct activities for newly 
learned and well-learned actions. (a) Brain signal during the performance period in Condition 1 versus the 
performance period in Condition 3. (b) Brain signal during the performance period in Condition 2 versus the 
performance period in Condition 3. (c) Brain signal during the performance period in Condition 3 versus the 
summation of the performance period in Condition 1 and Condition 2. Results presented in a, b, and c reflect 
brain signals in the performance periods of delay-start trials.

Figure 8. Reward score-modulated activities in the basal ganglia differed according to the start time 
condition. The reward score earned at the end of each trial was used as a parametric modulator of the reward 
score display period, separated for each test condition and pooled across the two scanning sessions (p <  0.001, 
uncorrected). Reward score modulated activity in Condition 1 (yellow voxels) was found in the ventromedial 
striatum, in the ventromedial and dorsomedial striatum in Condition 2 (blue voxels), and ventromedial and 
lateral putamen in Condition 3 (magenta voxels). The axes in a and b represent MNI coordinates in millimeters.
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significant activation of the DLPFC in Condition 2 and substantial performance improvements when the internal 
model of KMs could be used for sequential action planning provide support for the hypothesis that the DLPFC 
is also involved in multi-step sequential action planning14. This hypothesis is further supported by a neuroimag-
ing study with humans showing involvement of the DLPFC in a path-planning task44 and by electrophysiological 
recordings in monkeys showing that DLPFC activity codes sequences of immediate and future behavioral goals45.

Analysis of the BOLD signal in the striatum in the delay and feedback periods suggests a possible differenti-
ation of its functions in action valuation and reward-based learning as demonstrated in previous works28,40,41,46. 
Neuroimaging studies strongly point to the role of the ventral striatum in reward-based learning28,33,46 and in 
exploration of novel actions in unfamiliar and uncertain environments47. The finding that striatal activity in 
Condition 1 was located predominantly in the ventral anterior striatum during both delay and feedback periods 
provides further evidence that action selection and learning in this condition were guided primarily by explora-
tion and reward feedback. Conversely, in Condition 2 delay activity was found in the dorsomedial striatum and 
feedback period activity was found in the anterior putamen and extended into the ventral striatum. Given the 
anatomical connections between the DLPFC and dorsal striatum16,18,19,36,48 we speculate that the dorsomedial 
caudate may evaluate the goodness of predictions generated in the DLPFC-cerebellum network during the delay 
period, whereas activity in the anterior putamen and the ventral striatum may evaluate the quality of the executed 
actions based on actual feedback so that successful sequence of actions would be reinforced for future reuse.

High accuracy and fast reaction time in Condition 3 (Fig. 2, Figs S3 and S7) were associated with activity 
in the SMA, posterior putamen, and right anterior cerebellum during the delay period. Activity in the SMA, 
putamen, and anterior cerebellum increases significantly in advanced stages of motor learning when actions 
become automatic and are generated with little cognitive and attentional effort10,12,21,22,23,24,49. The network linking 
the SMA and putamen has been suggested as the neural locus for the storage of sequential motor memories, since 
lesions in these areas impair performance of well-learned sequences, but not the learning of new ones12. The cur-
rent findings suggest that sequence generation in Condition 3 was predominantly under the control of automatic 
processes implemented in the network linking the SMA, putamen and anterior cerebellum. Furthermore, reward 
score-modulated activity was not observed in the striatum or in other cortical areas during the feedback period in 
Condition 3. Since predictions are nearly accurate in Condition 3, as demonstrated by the high reward score accu-
racy, subjects rarely encountered unexpected outcomes, which may explain the absence of a reward-modulated 
signal during the feedback period. These behavioral and neuroimaging results support the hypothesis that a 
motor-memory strategy takes control of well-learned action sequences. Conversely, activity in the left DLPFC, left 
ventrolateral premotor cortex, posterior parietal cortex, and anterior striatum were still observed after the delay 
period in both Conditions 1 and 2 (Fig. 7a,b) and suggests that action selection in these conditions was still under 
deliberative control during the execution time.

Neuroimaging studies with humans have also investigated the neural basis of sequential behavior using a 
variety of behavioral paradigms, such as the serial reaction time task50, the 2 ×  10 sequence task12,51,52,53, and 
trial-and-error auditory feedback tasks21,22. One significant difference between previous experiments and the 
current study is that the grid-sailing task with pre-start delay explicitly tested that the use of internal models, 
explicitly represented in the KMs, for action sequence generation, while previous studies required sequential 
learning based on simple associations between finger movements and visual or auditory cues.

Recent studies of action learning and decision-making focused on the dichotomy between model-based 
and model-free action selection RL strategies, respectively7,8,9. In the current study, behavioral and neuroimag-
ing results suggest a three-system action selection framework: an exploratory strategy playing a predominant 
role in early stages of learning, under the control of the network linking the VMOFC and anterior striatum; a 
model-based strategy takes control when a model of the environment is available and it is implemented in the 
network linking the DLPFC, dorsomedial striatum, and posterior cerebellum; and after extensive experience and 
acquisition of stereotypical movement patterns, a motor-memory, model-free strategy governs action selection 
via a network linking the proper-SMA, putamen, and anterior cerebellum. It is possible that particular types and 
orders of strategies used for action selection may depend on different features of the task, such as the steps of 
actions and the stochasticity of state transition, and the prior experience of the subject, as demonstrated in the 
current study. Despite the strong indication based on behavior and neuroimaging findings that subjects utilized 
different selection strategies, a limitation of the current study is the lack of use of computational models to sub-
stantiate our hypothesis and interpretations, and to assure that different action selection strategies were indeed 
used under each task condition. Future computational model-based studies may provide more compelling evi-
dence for the current findings.

Perhaps the most important contribution of the present study is that it provides evidence that the network 
linking the prefrontal cortex, the posterior lateral cerebellum, and the dorsomedial striatum is likely to be involved 
in model-based action planning, or mental simulation. It remains unclear how models are learned, where action 
memories are stored in the brain, and how and at which levels (systems, molecular) the brain arbitrates between 
decision strategies. Switching from deliberative to automatic control may also depend on prefrontal-subcortical 
systems54. A recent model-based fMRI study with humans found evidence implicating the inferior lateral prefron-
tal cortex and frontopolar cortex in arbitration from model-free to model-based strategies for decision-making43. 
The neuromodulator, serotonin, has been suggested to regulate the time scale of future reward prediction55,56,57, 
but it may also regulate the process of model-based planning58. Additional studies will be needed to clarify exactly 
what function each of these brain areas performs, and how such functions are realized by local neural circuits.

Methods
Subjects. Eighteen healthy, right hand-dominant subjects (4 female; age 21–39, 26 ±  5 yrs), non-musicians, 
with normal vision, or vision corrected to normal (by contact lenses), participated in this study. All subjects were 
screened for history of psychiatric, neurological problems, or drug use at the time of the experiment. Subjects gave 
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written informed consent and the experiment was approved by the ethics and safety committee of the Advanced 
Telecommunications Research Institute International (ATR), Kyoto, Japan, and they meet the Declaration of 
Helsinki requirements. Methods were carried out in accordance with approved guidelines. A fixed payment was 
made to subjects for their participation in this study. Due to technical fMRI pre-processing problems, we report 
the imaging results of only sixteen subjects.

Apparatus. In the training session, performed outside the fMRI scanner, subjects sat comfortably at a table 
approximately 40–50 cm from the computer monitor. The task was run on a regular desktop computer and key-
board. Subjects used the index, middle, and ring fingers of the right hand to press the ‘v’, ‘b’, and ‘n’ keyboard 
buttons, respectively. Stimulus generation and behavioral data recording were done by custom-made programs 
written in MATLAB (version 7.0), using Psychophysics Toolbox functions (PTB-3). The test session was per-
formed inside the fMRI scanner and the task was displayed through an imaging projector on a mirror inside the 
scanner mounted on top of the head coil. An fMRI-compatible response optic button box was used, obeying the 
same finger-key association used in the training session.

Task Design. The goal of the “grid-sailing task” was to perform the shortest sequence of finger movements 
to move a cursor from its start position to a target goal position (Fermin et al., 2010). Subjects were given verbal 
instructions about task rules before training began, and received brief verbal feedback during the first training 
trials to ensure that they fully understood how to execute the task. The task started with an inter-trial interval of 
3~5 s in which the computer displayed a 5 ×  5 grid (10 cm ×  10 cm) with a red fixation cross (FC) on top of the 
center square matching the monitor center position (Fig. 1). A trial started with presentation of a pair of start-goal 
(SG) positions together with a cursor (black triangle) on the start position. The shape of the cursor indicated 
which of the three KMs would be used during that trial. The color of the start position specified the start time 
condition to initiate a response: immediate start (green) – subjects were instructed to begin immediately after 
presentation of the SG and cursor; delayed start (red) – subjects had to wait 4~6 s for the go signal, when the start 
position switched from red to green. The color of the goal position was always blue. After the go signal, subjects 
were allowed a maximum response time of 6 s, which they were not explicitly informed of. During the response 
period, subjects performed key presses to move the cursor from the start position to the goal position. Immediate 
visual feedback of cursor position transition was provided after a keystroke. Any key press leading the cursor to 
leave the grid boundaries was invalid and was indicated by rapid blinking of the cursor, which did not move. A 
trial had three possible endings depending on the subject’s performance: a) successful trial with the execution of 
an optimal action sequence (shortest path to goal); b) successful trial with the execution of a suboptimal action 
sequence (longer path); c) unsuccessful trial due to failure to reach a goal position within the response time. 
Performance feedback containing the number of keystrokes and the reward score was displayed for 2 s right after 
the subject reached a goal position or following the end of the response time in unsuccessful trials. The reward 
was 100 points for the execution of an optimal action sequence; a discount of 5 points for each excessive keystroke 
for a suboptimal sequence, and 0 points for unsuccessful trials.

Three cursors, all triangular, were used in this experiment. For each, the acute angle indicated a direction 
(90 °, 180 °, 270 °) and was assigned to one of three different key-mappings (KM), which were associated with a 
three-move direction rule (Fig. 1a). Five different pairs of SG positions were prepared in advance (Fig. 1b). We 
created several combinations of KM and SG positions, so that specific KM-SG pairs could be used exclusively in 
training and test sessions (Fig. 1c). Initially, subjects knew neither KMs nor action sequences, and had to learn by 
trial-and-error. A target goal position could be reached via multiple optimal action sequences. However, in order 
to measure learning-related behavioral changes, subjects were instructed to learn a single optimal action sequence 
for each KM-SG pair, and to perform it as quickly and accurately as possible. No constraints were imposed on a 
sequence to be learned, and subjects were free to learn the action sequence they felt most comfortable performing.

Subjects performed one training session and one test session on consecutive days, with one night of sleep 
between sessions. Training and test sessions were further divided into three and two trial blocks, respectively, 
with trial blocks separated by 5-min rest intervals. Subjects were randomly assigned to one of three groups and 
remained in that group during the two experimental sessions. During training, only two KMs and four SG posi-
tions were employed by each group (Fig. 1c). Each of the KMs was combined with two different SG positions 
so that each subject group trained on four different KM-SG sets. A KM-SG set was practiced for 60 trials in the 
training session (20 trials per training block: 10 immediate start and 10 delayed-start trials). Immediate-start and 
delayed-start trials were alternated in short blocks of four trials, and each KM-SG set appeared randomly once 
in a short block.

During a test session, subjects performed the task inside the fMRI scanner, under three task conditions 
(Fig. 1c): Condition 1 – new KM: a KM not used in the training session was introduced and was combined 
with three SG pairs. Subjects had to learn both the new KM and an action sequence for each new KM-SG set. 
Condition 2 – learned KMs: KMs learned in the training session were combined with different SG pairs, and 
subjects essentially had to retrieve the appropriate KM rule and use it for planning and learning of new action 
sequences. Condition 3 – learned KM-SG sets: two of the four KM-SG sets practiced in the training session were 
chosen for re-testing. A single KM-SG set was practiced for 20 trials (10 trials per trial block: 5 immediate-start 
and 5 delayed-start trials). In total, subjects performed nine different KM-SG sets during the test session: three 
KM-SG sets in task Condition 1, four KM-SG sets in task Condition 2, and two KM-SG sets in task Condition 3. 
As in the training session, the task was performed in blocks of nine randomly generated trials, with alternation 
of the start time every nine trials. These task conditions were intended to mimic distinct levels of experience in 
action selection that might depend on implementation of specific action selection methods.

Subjects performed a short version (6 immediate- and 6 delayed-start trials) of the training task right 
before the start of fMRI scanning in order to ensure that they still remembered the task procedures, and more 
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importantly, the action sequences learned for each KM-SG set on the previous day. At the end of this short 
pre-fMRI practice, subjects received explicit instruction regarding introduction of different task conditions that 
they had to perform inside the fMRI scanner.

Behavior Analysis. We analyzed the following behavioral performance variables: a) reward score – number 
of points earned in a trial; b) over-step – number of excessive keystrokes executed to reach the target goal; c) 
reaction time (RT) – time elapsed from go signal to onset of the first keystroke; d) execution time (ET) – time 
from onset of the first keystroke to the execution of the last. These behavioral measures were separately subjected 
to a series of n-way ANOVA with Group (3), Task Condition (in the fMRI test session: Condition 1, Condition 2, 
and Condition 3), Trial Block (3 in the training session, and 2 in the fMRI test session), and Start Time Condition 
(immediate and delay) as factors. The statistical analysis also included multiple comparison procedures with 
Scheffe’s post-hoc test to seek for significant differences between pairs of levels.

fMRI Data Acquisition. Scanning took place at the ATR Brain Activity Imaging Center, Kyoto, Japan. 
Detailed anatomical data were collected using a multiplanar, rapidly acquired gradient echo (MP-RAGE) 
sequence. T2* -weighted echo planar images (EPIs) with blood oxygen level-dependent (BOLD) contrast were 
acquired on a Siemens Tesla 3 Magnet Trio MRI scanner (TR: 2000 ms, TE: 23 ms, FOV: 192 mm, flip angle: 80 °). 
Thirty coronal oblique slices (3 ×  3 ×  5 mm) were acquired parallel to the plane containing the anterior and pos-
terior commissures (AC-PC plane) after prescribing slice position based on automatic measurements of rotation, 
translation, and tilt of the structural images relative to an average image. The fMRI session was split into two 
runs, each lasting approximately 22 min, with the number of acquired imaging volumes dependent upon subject 
performance.

Imaging Analysis. Statistical parametric mapping with SPM8 software (Wellcome Trust Centre for 
Neuroimaging, UCL) was used to preprocess all fMRI data, which included correction for slice time acquisition, 
spatial realignment of all volumes to the first image, spatial normalization using regressor parameters estimated 
by the unified segmentation process with voxel size resampled to 3 ×  3 ×  3 mm, and smoothed using a Gaussian 
kernel with an isotropic full width at half maximum of 8 mm. High-pass temporal filtering with a cutoff of 128 s 
was applied to remove low-frequency drifts in signal, and global changes were removed by proportional scaling.

Statistical analysis was conducted using a general linear model and a set of boxcar functions. Subject-specific 
design matrices were created, including two-trial events (Response Period and Reward delivery)  
of immediate-start condition trials and three events (Delay, Response Period and Reward delivery) of the 
delayed-start condition trials modulated separately by subject performance variables (number of keystrokes, 
execution time, and reward) for each of the three task conditions. A nuisance partition containing head motion 
regression parameters estimated in the realignment procedure was also entered in the design matrix. A series of 
contrast images were generated for each subject using a subtraction approach and were subsequently taken to a 
second-level for a random effects group analysis using one-sample t-tests. We were primarily interested in the 
specific effect of task condition on the delay-related period activity. Region of interest analysis (ROI) was car-
ried out using the rfxplot toolbox (http://rfxplot.sourceforge.net/) and neuro-anatomically defined mask images 
generated using the WFU Pickatlas toolbox for the caudate and putamen, and the Anatomy Toolbox for the 
cerebellum. The Multicolor toolbox was used to plot voxels extracted from the basal ganglia and the cerebellum.
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