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Background: Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease
affecting the intra- and extrahepatic bile ducts, and is strongly associated with ulcerative
colitis (UC). In this study, we explored the peripheral blood DNA methylome and its
immune cell composition in patients with PSC-UC, UC, and healthy controls (HC) with the
aim to develop a predictive assay in distinguishing patients with PSC-UC from those with
UC alone.

Methods: The peripheral blood DNA methylome of male patients with PSC and
concomitant UC, UC and HCs was profiled using the Illumina HumanMethylation
Infinium EPIC BeadChip (850K) array. Differentially methylated CpG position (DMP) and
region (DMR) analyses were performed alongside gradient boosting classification
analyses to discern PSC-UC from UC patients. As observed differences in the DNA
methylome could be the result of differences in cellular populations, we additionally
employed mass cytometry (CyTOF) to characterize the immune cell compositions.

Results: Genome wide methylation analysis did not reveal large differences between
PSC-UC and UC patients nor HCs. Nonetheless, using gradient boosting we were
capable of discerning PSC-UC from UC with an area under the receiver operator curve
(AUROC) of 0.80. Four CpG sites annotated to the NINJ2 gene were found to strongly
contribute to the predictive performance. While CyTOF analyses corroborated the largely
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similar blood cell composition among patients with PSC-UC, UC and HC, a higher
abundance of myeloid cells was observed in UC compared to PSC-UC patients.

Conclusion: DNA methylation enables discerning PSC-UC from UC patients, with a
potential for biomarker development.
Keywords: primary sclerosing cholangitis, ulcerative colitis, DNA methylation/methylome, peripheral blood, 850k
methylation array, mass cytometry
INTRODUCTION

Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver
disease, characterized by inflammation and fibrosis of the intra-
and extrahepatic bile ducts. The etiology of PSC is largely
unknown and there is still no medical treatment with a proven
benefit on disease progression (1). The male to female ratio is 2:1,
and interestingly, up to 80% of PSC patients has concomitant
inflammatory bowel disease (IBD), of which the majority has
ulcerative colitis (UC) (2–4). Comparing patients with UC and
patients with PSC-UC could give more insights in
pathophysiological processes underlying PSC.

The co-occurrenceofPSCand IBDhas led tovarioushypotheses
linking these two disease entities. One of these hypotheses is the
aberrant gut-homing lymphocyte paradigm, which hypothesizes
that circulating T-lymphocytes that are primed in the gut and
express gut-homing molecules integrin a4b7 and C-Chemokine
Receptor 9 (CCR9), can infiltrate in the liver via aberrantly
expressed adhesion molecules in PSC-affected liver (5, 6). This
mechanismmay be due to genetic predisposition of the host and/or
epigenetic changes in circulating lymphocytes.

Over the past few years, several genome-wide association
studies (GWAS) in PSC have identified multiple susceptibility
loci for PSC-IBD, with none of the loci being associated with this
gut-lymphocyte homing paradigm. Interestingly, PSC-IBD
patients and IBD patients share only a limited number of risk
loci, suggesting that the combination of PSC-IBD comprises a
distinct disease manifestation (7–9). Nevertheless, genetic
variation alone cannot account for total disease liability in
PSC-IBD, emphasizing the role of internal and external
exposures (the “exposome”) including epigenetic factors that
may contribute to the disease (10).

Epigenetics comprises heritable processes that involve
transcriptional regulation without changing the nucleotide
sequence. One of the most studied epigenetic marks is DNA
methylation, which represents the addition of a methyl to a base,
typically a cytosine that is directly followed by a guanine (CpG).
DNA methylation in the promotor region of a gene has been
inversely associated with gene expression and is thought to
prevent binding of transcription factors, thereby silencing gene
expression (11, 12). Differences in DNA methylation of blood
cells has been described previously in the context of IBD, where
patients with Crohn’s disease (CD) differed from patients with
UC (13) and healthy controls (14). Similar observations have
been made in colonic tissue of IBD patients (13). Furthermore,
patients with PSC with and without IBD share common
methylation differences compared to controls (15). Recently, it
org 2
was reported that in patients with PSC the DNAmethylation age,
as estimated using the so-called Horvath clock, was higher than
the chronological age (16, 17). This age acceleration has proven
to have predictive properties regarding disease activity in
different diseases, both based on peripheral blood as well as,
amongst others, in liver tissue (16–18).

In this study, we hypothesized that the peripheral blood DNA
methylome of patients with concomitant PSC-UC is distinct from
that of patients with UC without PSC and healthy controls (HC).
Accordingly, we investigated the DNAmethylome and performed
supervised classification analyses to see whether we could
accurately discern PSC-UC from UC and identify CpG loci that
contributed to this classification. To ascertain that discriminating
differences in DNA methylation between PSC-UC and UC were
not solely the result of underlying differences in cellular
composition in these different disease states, we also performed
mass cytometry to characterize the cellular heterogeneity.
MATERIALS AND METHODS

Patients
Patients included in the current study were selected from a well-
characterized cohort of the ‘Epi PSC PBC project’, a large
population-based cohort to study patients with cholestatic liver
diseases [PSC and primary biliary cholangitis (PBC)] as well as
IBD patients in the Netherlands (2). Patients with prior liver
transplantation, colorectal carcinoma, cholangiocarcinoma or
prior bowel surgeries were excluded. Out of 1183 cases, 18
patients with PSC-UC, 17 patients with UC, as well as 12
healthy controls (HC) were selected for DNA methylation
analysis. Only male patients were included, and groups were
matched for age, UC and medication use (Table 1).

For mass cytometry analysis, peripheral blood was collected
from 10 patients with PSC-UC, 10 patients with UC and 9
healthy volunteers (Table 1). Again, only male patients were
included, and biological use was an exclusion criterion to
minimize influences on immunological cell distribution. Both
protocols were approved by the Medical Ethics Committee at the
Amsterdam UMC, University of Amsterdam (METC 06–267/E
and METC 2018-050). All samples were collected with written
informed consent.

DNA Isolation and In Vitro DNA
Methylation Analysis
GenomicDNAwas extracted fromwhole peripheral blood samples
using an Autopure LS system (Qiagen, according to the
March 2022 | Volume 13 | Article 840935
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manufacturer protocol) and stored at 4°C. Genomic DNAwas sent
to GenomeScan (Leiden) for bisulfite conversion and DNA
methylation profiling. In short, bisulfite converts unmethylated
cytosines into uracil, whereas the methylated cytosines remain
unchanged. DNA methylation profiling was performed using the
Illumina HumanMethylation Infinium EPIC BeadChip (850K)
array, yielding the methylation status of approximately 850.000
CpG sites (19). Samples were randomized across the different chip
slides to reduce possible batch effects.

In Silico DNA Methylation Analysis
Raw microarray data was imported in R statistical programming
environment (v4.0.2) using the Bioconductor (v3.11) packageminfi
(v1.32.0) (20). Quality control was performed using MethylAid
(v1.22.0) (21) and shinyMethyl (v1.24.0) (22), suggesting no
apparent technical issues, such as slide-related batch effects. The
raw data was then normalized either through functional
normalization for differential methylation analyses using limma
(v3.44.3) (23), or through noob for classification analyses (24).
Preprocessing of the data consisted of removing probes that were
associated to knowngenetic variants and cross-reactive probes (25).
Allosome-associated probes were not specifically filtered out in the
preprocessing steps as the cohort consisted of onlymales. Repetitive
element-binding probes were not excluded as their effect on the
percentage methylation was found to be minimal (26). Quality
control based on principal component analysis resulted in the
removal of one sample with PSC-UC due to its outlier status.
Differential methylation analyses using limma were performed
using the following design matrix:

methylation ∼ age + steroids + UC : PSC,

where we compared PSC-UC with UC and PSC-UC with HC.
The resultant p-values were adjusted for multiple testing using
the Benjamini–Hochberg method. For the hypothesis-driven
approach we extracted all probes of length Ngene associated to a
particular gene of interest and calculated the aggregated p-value
using the Fisher method. Next, we constructed a null distribution
of p-values by aggregating p-values calculated from 5000
randomly selected stretches of Ngene consecutive of probes
thereby capturing the correlated nature of DNA methylation
that occurs in a particular region. By comparing the observed
aggregated p-value with that of the null distribution, we obtained
the final p-value. Visualizations were generated using ggplot2
(v3.3.2) (27) and ggbio (v1.36.0) (28).

DNA Methylation Acceleration Analysis
The DNA methylation age in years was calculated using the
Horvath clock as implemented in wateRmelon (v2.0.0) (17, 29).
The difference between the DNA methylation age and the
chronological age called the age acceleration.

DNA Methylation Blood Cell Estimation
The blood cell distribution as estimated from the DNA
methylation data using the estimateCellCounts2 function as
implemented in the FlowSorted.Blood.EPIC (v1.12.1) package
(30). In short, this package estimates the cellular composition
per sample using a quadratic programming approach. Resultant
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estimates were subsequently compared between groups using a
two-way ANOVA test as implemented in R.

Gradient Boosting Analysis
Gradient boosting analysis was used to classify patients with
PSC-UC from patients with UC. To identify the CpGs that
contributed the most to the predictive performance, covered
information disentanglement (CID) was implemented (31–34).
In short, data was split up in a train (2/3) and test (1/3) set,
whereupon the classifier was trained through repeated cross-
validation on the training set. The performance of the resulting
model was subsequently evaluated on the withheld test set. The
area under the receiver operating characteristic (AUROC) scores
were computed within each repetition of cross-validation and
averaged for the final test AUROC. We reported the CID-derived
feature importance scores for the CpG sites that contributed the
most to the prediction model (31, 32).

DNA Sequencing NINJ2
DNA sequencing of NINJ2-associated loci was performed
through Sanger sequencing using the BigDye Terminator v1.1
Cycle Sequencing kit. In short, primers were designed against the
region encompassing the CpG loci of interest (Supplementary
Figure 5 and Supplementary Table 4). Genomic DNA of all
patients included in the DNAmethylation data was used as input
for specific PCR amplification of the region of interest. A
comprehensive overview of the PCR amplification protocol can
be found in the supplementary methods. The resultant PCR
products were subsequently sequenced at the Core Facility
Genomics, Amsterdam UMC. Reads were then aligned using
BioEdit and the CpGs of interest were analyzed for variants that
might have introduced bases other than cytosine. Seven samples
(n=3 PSC-UC and n=4 UC) were excluded after quality control.

mQTL Database Analysis
The mQTL database was interrogated for the NINJ2-associated
predictor CpGs to identify the potential relationship with
catalogued genetic variants (mQTL; http://www.mqtldb.org/).

Bisulfite Conversion, PCR and Illumina
MiSeq Sequencing
Technical validation of the NINJ2-associated loci of interest
(cg26654770 and cg14911689) annotated to the NINJ2 gene
was performed through targeted amplicon sequence analysis
using the Illumina MiSeq platform. Primers were designed in
MethPrimer (35) (Supplementary Table 4). DNA samples from
five PSC-UC, two UC and two HC patients (cohort 1, Table 1)
were bisulfite converted according to standard protocol using the
EZ DNAmethylation kit (Zymo Research) (36). Amplicons were
made from bisulfite converted DNA PCR and further purified
with the Agencourt AMPure PCR purification kit (Beckman
Coulter). During a second PCR, amplicons were elongated using
TruSEQ indices and Illumina sequence adapters, whereupon
they were purified and pooled in stoichiometric amounts.
Quality control of the amplicon length within the pools was
performed using Agilent 2100 BioAnalyzer. DNA concentrations
were measured using Qubit 2.0 Fluorometer (ThermoFisher) and
Frontiers in Immunology | www.frontiersin.org 4
equalized to equimolar concentrations for all subject pools.
MiSeq amplicon sequencing was then performed according to
the standard protocol. Raw sequence data was mapped, aligned,
and analyzed using Bismark (37) and visualized using Integrative
Genomics viewer (v 2.3.57) against the bisulfite-converted
human genome hg19. A minimum of 120 reads per sample-
derived amplicon was deemed successful.

Quantitative Real-Time Polymerase
Chain Reaction
Messenger RNA was extracted from frozen PBMCs using the
Bioline ISOLATE II RNA mini kit (GC biotech B.V. Alphen a/d
Rijn, the Netherlands) according to manufacturer’s instructions.
RNA concentration was measured using the Nanodrop 1000
spectrophotometer (Nanodrop Technologies, Wilmington, DE,
USA). cDNA was synthesized using the Revertaid first strand
cDNA synthesis kit (Fermentas, St. Leon-Rot, Germany). A
quantitative polymerase chain reaction (qPCR) was performed
using SensiFAST SYBR No-ROX (GC Biotech B.V.) on a BioRad
(CFX96 real-time qPCR thermocycler). Resultant gene expression
levelswere calculated usingLinRegPCR (38).After stability analysis
in geNorm, two human reference genes were selected for
normalization; Glyceraldehyde 3-Phosphate Dehydrogenase
(GAPDH) and Hypoxanthine-guanine-fosforibosyl-transferase
(HPRT) (39). Primers were either obtained by Qiagen or
synthesized by Sigma (Supplementary Table 4).

Mass Cytometry
Cryopreserved PBMCs were thawed and washed with medium
(RPMI+20% fetal bovine serum (FBS)) whereupon they were
resuspended in PBS. For cellular viability assessment, single-cell
suspensions were incubated with Cisplatin (5 µM, Fluidigm) for 5
minutes andwashedwith cell staining buffer (CSB, Fluidigm). Cells
were incubated with Human TruStain FcX Fc receptor blocking
solution (Biolegend), after which cells were stained with a mix of
metal-conjugated antibodies against cell surface markers
(Supplementary Table 5, ‘pre-fixation’), washed with CSB and
fixed with 1.6% PFA. Cells were permeabilized byMaxpar Barcode
Perm Buffer (Fluidigm), incubated with mass tag barcodes and
stained with the remaining metal-conjugated antibodies
(Supplementary Table 5, Fluidigm). For intracellular staining,
cells were washed with Perm-S buffer (Fluidigm) and incubated
with antibodies against CTLA-4 and CES-1 (Supplementary
Table 5, ‘nuclear staining’), washed and incubated with the
corresponding secondary antibodies. Antibodies were fixated with
1.6%PFA/PBS,washedand incubatedovernightwith 191/193IrDNA
intercalator (1:4000) diluted in Fix-and-Perm Buffer (Fluidigm).
Acquisition was performed on the Cytometry by time of flight
(CyTOF)3-Helios. Sample was diluted in H2O and supplemented
with 10% v/v of EQ Four Element Calibration beads (Fluidigm).
After acquisition data was normalized and individual files were
deconvoluted using the CyTOF software v6.7 functions.

Normalized.fcs files were uploaded in to Cytobank (40) for
analysis and quality control. Viable CD45+ singlets were selected
according to gating strategy previously described (41). Both
batches of samples included a technical replicate. Potential
batch effects were investigated through manual inspection of
March 2022 | Volume 13 | Article 840935
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marker distributions and overlap in clusterings. Different
lineages (B-cells, CD4+ T-cells, CD8+ T-cells, myeloid cells and
NK-cells) were clustered and color-coded using FlowSOM and
subsequent manual annotation (42). Data is visualized using
viISNE, a visualization tool for high-dimensional single-cell data
based on the t-dDistributed Stochastic Neighbor Embedding
(t-SNE) algorithm (43).

Patient Characteristic Statistical Analyses
Patient characteristics are presented as median and interquartile
range (IQR; 25th- 75th percentile). Dichotomous variables are
presented as percentage (%) of the cohort. Differences were
calculated with the chi-square test or Fisher’s exact test for
categorical variables. Numerical data were compared using a
Mann‐Whitney U test or One-way ANOVA, or a Kruskal‐Wallis
test with Dunn’s correction for multiple testing. Statistical
analysis was performed in SPSS statistical software for
Windows version 26.0 (SPSS, Chicago, USA) or GraphPad
Prism 8. A p-value <0.05 was considered statistically significant.
RESULTS

The Genome-Wide Methylome of Patients
With PSC-UC Is Comparable to That From
Patients With UC and Healthy Controls
DNA methylation was investigated in peripheral blood samples
from 17 patients with PSC-UC, 17 patients with UC and 12 HCs.
Frontiers in Immunology | www.frontiersin.org 5
The characteristics of the included patients are shown in Table 1
(cohort 1). To limit the number of variables, we included only
male patients, with all groups being matched for age (median age
41, 34 and 39 years for PSC-UC, UC and HC, respectively), UC
duration (16 and 11 years for PSC-UC and UC, respectively) and
medication use (all patients with PSC-UC and UC used
mesalazine, 50% used thiopurins and none used biologicals).
Median PSC duration at time of inclusion was 5 years. None of
the patients had undergone liver transplantation at the time
of sampling.

Global methylation analysis through principal component
(PC) analysis did not present a clear separation of the samples
according to disease status (Figure 1A). Notably, PC1 presented
a larger separation between HC and UC (p-value = 0.021),
than HC and PSC-UC (p-value = 0.347) or PSC-UC and UC
(p-value = 0.292) (Figure 1B).

Next, we specifically investigated whether any of the probes
were differentially methylated when comparing PSC-UC with UC.
While we were able to observe differentially methylated positions
(DMPs) that were visibly differentially methylated (Figure 1C),
they were not statistically significant after correction for multiple
testing (Table 2). The most differentially methylated probe was
cg02169981 (annotated to WNT11), which displayed
hypermethylation among patients with UC compared to patients
with PSC-UC (Supplementary Figure 1A). Expanding our search
to regions of contiguous differential methylation (DMRs) when
comparing either PSC-UC with UC, or PSC-UC with HC yielded
no statistically significant differences (Supplementary Table 1).
A B

D E

C

FIGURE 1 | The genome-wide methylome of patients with PSC-UC is comparable to that from patients with UC and healthy controls. (A) Principal component (PC)
analysis of the methylome of patients with PSC-UC (light grey), UC (grey) and HC (dark grey). (B) Association of PC1 with all groups. (C) Heatmap of top 50
differentially methylated positions between PSC-UC (blue) and UC (green). (D) Correlation between chronological age (years) and estimated DNA methylation age
(years) in patients with PSC-UC, UC and HC. (E) Comparison of accelerated age (difference between chorological age and estimated age) between patients with
PSC-UC, UC and HC. A p-value <0.05 was considered statistically significant (*p < 0.05).
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Having identified no clear differences in methylation at a
genome-wide level, we adopted a hypothesis-driven approach
where we interrogated the methylation status of previously
reported loci/genes of interest, obtained from previous
genome- (GWAS) or transcriptome- wide association studies
(TWAS) (7–9, 44–49). When comparing PSC-UC with UC, only
two genes were significantly enriched for nominally differentially
methylated probes: BACH2 and ASAP2 (Supplementary Table 2
and Supplementary Figure 2). Comparing PSC-UC with HC
indicated that probes associated with eight genes showed a
statistically significant difference (Supplementary Table 2).
UBASH3A, the most significant SNP in a large GWAS study
and associated with a lower risk of PSC (8), showed differential
methylation centering around the promotor region when
comparing PSC-UC with HC (Supplementary Figure 2C).

In a recent study, it was reported that patients with PSC
presented an increased DNA methylation age relative to their
chronological age, which was especially apparent in samples
obtained from patients at an advanced disease state (16). Using
the same method we estimated the DNA methylation age of all
samples and compared the estimated and chronological age (17).
Overall, we found that the DNA methylation age correlated well
with the chronological age (Figure 1D; Spearman’s Rho 0.942,
p-value < 0.001). Calculating the difference between the DNA
methylation age and the chronical age revealed a median
difference of 2.1 years in patients with PSC-UC (range -5.6-8.6),
which did not significantly differ from either patients with UC or
HCs (median 2.3 (range -3.3-9.7) and 1.5 (range -3.4-10.7),
respectively (p-value = 0.874, Figure 1E). We note however that
the use of different normalization methods resulted in larger or
smaller differences between the predicted age and the chronological
age, with a more notable deviation when using quantile
normalization. However, even with the larger differences from the
quantile normalization, we did not identify any significant
differences between phenotypes (Supplementary Figure 3).

Taken together, we observed no big differences between the
three groups at a DNA methylome-wide level, nor did we find
any statistically significant differences between DMPs or DMRs
of patients with PSC-UC and either patients with UC or
healthy controls.
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Classification Analysis Distinguishes
PSC-UC From UC
Next, we investigated whether DNA methylation could be of use
for distinguishing patients with PSC-UC from patients with UC
without PSC. To this end, we performed a classification analysis
using repeated cross-validation with gradient boosting, where we
sought to capitalize on potential non-linear relationships
between the CpG loci of interest and the presence of PSC-UC
(34). Altogether, the classification analysis yielded a predictive
model with an area under the receiver-operator characteristic
curve (AUROC) of 0.80. Subsequent permutation analyses
indicated that 18 CpGs contributed significantly to the model
(Table 3 and Figure 2A). Of these 18 CpGs, PSC-UC-associated
hypermethylation was observed for NINJ2, cg12219587,
SERPINB9, DNAJC17, cg19079513, OR51A7, cg12313868 and
SOX6 whereas hypomethylation was found for cg00980980,
TTC15, THUMPD1, TRAPPC12 and CYP4F22 (Figure 2B).

While most predictive CpGs were embedded in a gene as
single CpG, four were found to be all localized within the gene
NINJ2. All four of the NINJ2-associated predictor CpGs were
adjacent to one another and were located in an intronic region
(Figure 3A and Supplementary Figure 5). Technical validation
through bisulfite sequencing of two of the four predictor CpGs
(cg26654770 and cg14911689) confirmed the methylation
pattern (Figure 3B). Notably, the observed methylation signal
of the NINJ2-associated DMPs presented itself as a clustered
pattern around 0%, 50% and 100% methylation (Figure 3C), a
pattern characteristic of underlying genetic variants (50).
However, sequencing the underlying region of interest revealed
no single nucleotide polymorphism (SNP) or other local genetic
variants at the loci of interest (Figure 3D). As more distal genetic
variants might affect DNA methylation, which have been termed
methylation quantitative trait loci (mQTL), we interrogated the
mQTLs database (http://www.mqtldb.org) (51) to identify
potential catalogued genetic variants that have been associated
with the DNA methylation of our sites of interest. Altogether, we
identified 1330, 1374, 1329 and 1329 mQTLs where genetic
variation was strongly associated with the loci cg01201512,
cg26371957, cg14911689 and cg26654770, respectively
(Additional File_mQTLs).
TABLE 2 | Differentially methylated positions (DMPs) when comparing PSC-UC with UC.

Location Associated gene Chromosome Difference in methylation
in PSC-UC vs UC

p-value Adj. p-value Name

cg02169981 WNT11 Chr 11 Hypomethylation 2.20E-06 0.770179 Wnt Family Member 11
cg26193427 INPP5A Chr 10 Hypermethylation 5.44E-06 0.770179 Inositol Polyphosphate-5-Phosphatase A
cg07953344 NRP2 Chr 2 Hypomethylation 5.59E-06 0.770179 Neuropilin 2
cg17421991 MNX1 Chr 7 Hypermethylation 5.80E-06 0.770179 Motor Neuron And Pancreas Homeobox 1
cg08012199 ARHGAP20* Chr 11 Hypermethylation 6.23E-06 0.770179 Rho GTPase Activating Protein 20
cg27019059 RYK* Chr 3 Hypomethylation 8.73E-06 0.770179 Receptor Like Tyrosine Kinase
cg13200031 FAM163A Chr 1 Hypermethylation 9.66E-06 0.770179 Family With Sequence Similarity 163 Member A
cg09990876 Chr 1 Hypermethylation 1.04E-05 0.770179
cg00753630 ATP6VOE2-AS1 Chr 7 Hypermethylation 1.18E-05 0.770179 Vacuolar Proton Pump Subunit E 2
cg18617091 TIMPRSS6 Chr 22 Hypomethylation 1.36E-05 0.770179 Transmembrane Serine Protease 6
The 10 most differentially methylated positions. *Neighbour gene. P-values were calculated through linear regression using limma and adjusted for multiple testing using the Benjamini–
Hochberg method.
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Next, we sought to investigate whether the relation between
CpG methylation that we found associated with PSC-UC was
reflected in differential gene expression of this particular gene,
through measuring NINJ2 transcripts using quantitative PCR.
However, we found no differential expression of NINJ2 between
PSC-UC and UC patients (Figure 3E), suggesting that the
observed difference in methylation does not affect the
expression of NINJ2.

Additional classification analysis on PSC-UC and HC
samples yielded a predictive model with an area under the
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receiver-operator characteristic curve (AUROC) of 0.83. The
CpG positions observed in this classification did not overlap with
the CpGs as compared to the predictive model on PSC-UC and
UC (Supplementary Table 3).

Peripheral Blood Cell Distribution Is
Comparable Between Patients
With PSC-UC and UC
Due to the epigenetic and hence cell-specific nature of DNA
methylation, observed differences could be the result of
TABLE 3 | Predictor CpG loci capable of distinguishing PSC-UC from UC.

Location Associated gene Chromosome Difference in methylation
in PSC-UC vs UC

Feature
Importance

Name

cg01201512 NINJ2 Chr 12 Hypermethylation 1.442312 Nerve Injury-Induced Protein 2, Ninjurin-2
cg12219587 Hypermethylation 1.295918
cg19577958 SERPINB9 Chr 6 Hypermethylation 1.265306 Serpin Family B Member 9, Serpin B9, Granzyme B inhibitor
cg00980980 Hypomethylation 0.858523
cg26371957 NINJ2 Chr 12 Hypermethylation 0.639473 Nerve Injury-Induced Protein 2, Ninjurin-2
cg27224751 DNAJC17 Chr 15 Hypermethylation 0.632653 DnaJ Heat Shock Protein Family (Hsp40) Member C17
cg19079513 Hypermethylation 0.612245
cg14911689 NINJ2 Chr 12 Hypermethylation 0.583521 Nerve Injury-Induced Protein 2, Ninjurin-2
cg13556794 OR51A7 Chr 11 Hypermethylation 0.520408 Olfactory Receptor Family 51 Subfamily A Member 7, Odorant receptor
cg00257789 TRAPPC12/TTC15 Chr 2 Hypomethylation 0.448323 Trafficking Protein Particle Complex 12
cg26846609 THUMPD1 Chr 16 Hypomethylation 0.397421 THUMP domain-containing protein 1
cg17018422 TRAPPC12/TTC15 Chr 2 Hypomethylation 0.355172 Trafficking Protein Particle Complex 12
cg05696779 CYP4F22 Chr 19 Hypomethylation 0.306122 Cytochrome P450 family 4 subfamily F member 22
cg12313868 Hypermethylation 0.244898
cg00853216 SOX6 Chr 11 Hypermethylation 0.204082 Transcription factor SOX-6
cg26654770 NINJ2 Chr 12 Hypermethylation 0.196723 Nerve Injury-Induced Protein 2, Ninjurin-2
cg06377160 SNX19 Chr 11 Hypomethylated 0.173469 Sorting nexin-19
cg16402757 CUL2 Chr 10 Hypermethylated 0.134404 Cullin-2
The 18 CpG loci returned by gradient boosting that were capable of distinguishing PSC-UC from UC.
A B

FIGURE 2 | Gradient boosting analysis distinguishes PSC-UC from UC. (A) Heatmap of 18 differentially methylated positions contributing to the predictive model
distinguishing PSC-UC from UC. (B) Radar plot depicting the 15 most predictive CpG loci that are capable of distinguishing patients with PSC-UC from UC. The
axes represent the mean scaled changes for the top 15 most discriminative CpG sites.
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differences in the cellular composition of peripheral blood
between PSC-UC and UC patients (52, 53). We therefore
estimated the cellular composition using the algorithm
described in Houseman et al. (Figure 4A) (54). We found no
evidence that any of the estimated lineages (CD4+ T-cells, CD8+

T-cells, B-cells, natural killer (NK)-cells, monocytes and
neutrophils) were different when comparing PSC-UC with UC.
By contrast, we observed a significantly lower abundance of NK
cells in the PSC-UC and UC samples as compared to HC (p-
value = 5.33E-04).

As cellular estimates based on DNAmethylation are currently
limited in their resolution, we explored the peripheral blood
Frontiers in Immunology | www.frontiersin.org 8
mononuclear cellular distribution in more detail using mass
cytometry. Blood samples were collected from a new cohort of
PSC-UC (n = 10), UC (n = 10) and HC (n = 9). The median age
at inclusion was 40, 58 and 30 years (p=0.022) (Table 1, cohort
2), for PSC-UC, UC and HC respectively. UC duration was
significantly longer in patients with UC without PSC (median 22
years (IQR 14-34) compared to 9 years (IQR 5-19) in patients
with PSC-UC (p=0.019). The majority of PSC-UC and UC
patients used Mesalazine (90% in both groups) with only one
patient with UC (without PSC) using a thiopurine. Different
lineages were identified based on cellular phenotype and
visualized in tSNE plots (Figure 5, Figure 4B). Akin to our
A
B

D E

C

FIGURE 3 | Predictive CpGs annotated to NINJ2 were all hypermethylated in PSC-UC compared to UC patients. (A) Visualization of NINJ2 by plotting the actual
percentage methylation for PSC-UC, UC and HC (“Methylation”) as well as the difference between PSC-UC and UC in percentage methylation (“Methylation
difference”) relative to the position on the genome. (B) Visual correlation of the percentage methylation observed for cg26654770 and cg14911689 as calculated
using the 850k DNA methylation array and through MiSeq sequencing for 5 PSC-UC, 2 UC and 2 HC patients. (C) Differences in percentage methylation (beta value)
in patients with UC (n = 17) and PSC-UC (n = 17). (D) Representative images of Sanger sequencing traces surrounding the CpG loci of interest (marked in grey) that
are annotated to NINJ2 in PSC-UC (n = 14), UC (n = 13) and HCs (n = 12). (E) Relative mRNA expression of NINJ2 normalized to the household genes GAPDH and
HPRT in peripheral blood mononuclear cells of PSC-UC (n = 10), UC (n = 10) and HCs (n = 9).
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observations made at the level of DNA methylation, the
abundance of CD4+ T-cells, CD8+ T-cells and B-cells was not
statistically different between PSC-UC, UC and HCs (Figure 4C and
Supplementary Figure 4). Notably, we observed a similar trend in
NK cell distribution as seen in the Houseman algorithm estimation.
The myeloid lineage was significantly more abundant in patients
with UC compared to patients with PSC-UC (p-value = 0.013,
Frontiers in Immunology | www.frontiersin.org 9
Figure 4C). Disentangling the myeloid lineage into the constituent
monocyte subtypes revealed that this difference was predominantly
observable in the classical monocyte (CD14++CD16-) population
(Figure 4D). Within the classical monocyte populations, we
particularly saw a decrease in CD45RA+CCR7+ classical
monocytes and CD45RO+ CD2DIM CD69DIM classical monocytes
among PSC patients compared to UC patients. Although the overall
A

B

D

C

FIGURE 4 | High-dimensional mass cytometry (cyTOF) analysis reveals that peripheral blood cell distribution is comparable between patients with PSC-UC, UC and
HC. (A) Estimated cell proportions as derived from Houseman algorithm cell mixture deconvolution from DNA methylation data of PSC-UC (blue), UC (green) and HC
(red). (B) The lineages CD4+T-cells, CD8+T-cells, B-cells, myeloid cells and NK-cells were clustered for PSC-UC, UC and HC and color-coded visualized using
vISNE. (C) Differences in frequencies of CD4+T-cells, CD8+T-cells, B-cells, Myeloid lineage and NK-cells as percentage of total CD45+cells in HC (n = 9), UC (n = 10)
and PSC-UC (n = 10). (D) Differences in frequencies of classical monocytes, intermediate monocytes and non-classical monocytes percentage of total CD45+cells in
HC (n = 9), UC (n = 10) and PSC-UC (n = 10). Statistical testing was performed using Kruskal Wallis with Dunn’s correction for multiple testing. A p-value < 0.05 was
considered statistically significant (*p < 0.05).
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T-cell population did not differ between PSC-UC and UC, we
observed distinct proportions of memory T-cells expressing
CD161, a c-type lectin like-receptor expressed by NK cells, T
helper 17 cells and mucosal invariant T (MAIT) cells (55) between
patients with PSC-UC and UC (Supplementary Figure 4).
DISCUSSION

Distinguishing patients with UC and concomitant PSC from
patients with UC could give more insights in disease
pathophysiology of PSC and would be of clinical value for
early diagnosis. In this explorative study, we performed
genome-wide DNA methylation and mass cytometry analysis
Frontiers in Immunology | www.frontiersin.org 10
on whole peripheral blood from patients with PSC-UC, UC and
HCs. We show that minor differences exist in the peripheral
blood methylome when comparing male patients with PSC-UC
to male patients with solely UC. Notwithstanding, classification
analysis yielded a predictive model capable of distinguishing
patients with PSC-UC and UC.

The overall lack of large-scale differences in methylation
between the various groups corroborates the observations
made by Moore et al., where the authors did not observe large
global methylation changes in the peripheral blood of patients
with PSC compared to healthy controls and between patients
with PSC with and without IBD (15). While peripheral blood is a
practical tissue for biomarker use due to its ease of access, it
contains a heterogeneous population of cells, which might be less
FIGURE 5 | High dimensional mass cytometry (cyTOF) analysIs reveals that peripheral blood cell distribution is comparable between patients with PSC-UC, UC and
HC. The lineages CD4+ T-cells, CD8+ T-cells, B-cells, myeloid cells and NK cells were clustered for PSC-UC, UC and HC and color coded visualized using vISNE, a
visualization tool for high dimensional single cell data based on the t Distributed Stochastic Neighbor Embedding (t-SNE) algorithm.
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representative for disease features, such as the PSC-UC-
associated phenotypes that manifest primarily in the liver and
gut tissue. Subtle differences between PSC-UC, UC and HC may
therefore remain hidden in the analysis performed.

Indeed mass cytometry analyses revealed subtle differences in
blood cell composition across patient groups. While we
demonstrated that the peripheral blood cell distribution was
largely comparable between patients with PSC-UC and UC, the
myeloid lineage, the monocyte CD14/CD16 subsets in particular,
were more abundant in patients with UC compared to PSC-UC
and HCs (56). As DNA methylation signal can vary between
different cell types, observed differences might be reflective of
changes in the underlying population (53).

Importantly, we could not confirm an increased DNA
methylation age in PSC patients as was reported by Trauner
et al. (16). The discrepancy between our observations might be
related to their phenotype of interest, namely progression of
fibrosis, for which we have no information of at the time of
sampling. The fact that the median PSC duration was low in our
cohort (5 years), might have influenced our accelerated age
differences. Notwithstanding, we believe that the observed
differences were likely influenced by the choice of
normalization as Trauner et al. utilized quantile normalization,
a method that presented one of the largest offset as compared to
other normalization methods (57).

Classification analysis yielded a predictive model, which
enables a distinction between peripheral blood of patients with
PSC-UC and UC with an AUROC of 0.80, indicating that these
two disease entities do have a distinct epigenetic architecture.
The discrepancy between our DMP analysis and the
classification analysis may be due to the non-linear
relationships identified through gradient boosting. Whereas
none of the predictive CpG-associated genes had been
described within the context of PSC previously, two genes are
associated to hepatocellular carcinoma, namely CUL2 and SOX6
(58–60). Moreover, both CUL2 and SOX6 are associated with
colitis as well, while SERPINB9 and NINJ2 have been associated
with colorectal cancer (61–64).

The four predictive CpG associated toNINJ2 were found to be
hypermethylated in PSC-UC compared to UC patients, which we
validated through bisulfite sequencing. While the four CpGs
presented a methylation pattern reminiscent of an underlying
genetic variant (65), we did not identify any genetic variants
through Sanger sequencing at the sites of interest. This does not
eliminate the possibility that other genetic variants might have
conferred the observed methylation signal, such as copy number
variations (CNV), indels and more distal SNPs associated with
differences in DNA methylation (51, 66, 67), which we were not
able to pick up with the techniques utilized in the current study.
With over a thousand catalogued mQTLs associated to the four
NINJ2-associated predictive CpGs, the possibility is present that
distal genetic variants may influence the methylation status of
NINJ2 (51).

The biological consequence of the observed difference in
methylation of NINJ2 remains to be established. The encoded
Ninjurin 2 or nerve injury induced protein 2 (NINJ2) is an
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adhesion molecule expressed in neurons and glial cells and is
involved in nerve regeneration (68). Notably, Ninjurin 1, a
homologue of Ninjurin 2, as well as NINJ2 are highly
expressed in myeloid cells and peripheral leukocytes,
suggesting a role in immune-mediated diseases as well (44, 69,
70). In vascular endothelial cells it was found that NINJ2
regulates monocyte-adhesion as well as endothelial
inflammation through the expression of pro-inflammatory
cytokines such as IL-1b, TNF-a, IL-8, IL-6, ICAM-1 and E-
selectin (70). Through mass cytometry we observed a diminished
abundance of the myeloid population among the PSC-UC
patients relative to the UC patients. The observed differences
in myeloid cell population abundance may therefore be related to
the observed difference in NINJ2 methylation. However, while
NINJ2 expression was reportedly associated with DNA
methylation in CD4+ T-cells (71), we observed no difference in
NINJ2 gene expression in the current cohort. This might be
attributable to the differences in methylation being observed in
the first intron rather than the promotor region. In summary, the
role of NINJ2 in relation to PSC-UC remains unclear.

Our study is not without its limitations: we only included
male subjects to reduce variables and limit confounding in
DNA methylation analysis. While having a same-sex cohort
decreases variance, it makes the observations less translatable to
the general PSC-IBD population. While previous EWAS have
indicated that DNA methylation profiles differ between males
and females (72), limited to no sex-associated difference were
reported in PSC-associated EWAS (15, 16). One study did show
an enrichment of differentially methylated CpG sites located on
chromosome X in patients with PSC-IBD and PSC without IBD
compared to controls but did not make a comparison with the
methylomes of patients with PSC alone (15). While the
majority of the patients with PSC are male, we acknowledge
that further validation experiments in a larger and more
heterogeneous population with both male and female subjects
are necessary to properly ascertain the robustness of the
predictive CpGs and the potential utility in the clinic in
defining PSC-UC.
CONCLUSIONS

Our study provides a novel approach of exploring DNA
methylation analysis to differentiate patients with PSC-UC
from patients with UC. Further validation in a different cohort
has to confirm the biomarker potential of these methylation
differences for early detection of PSC.
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