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Abstract: Microbiological protection textile materials played an important role in the battle against
the epidemic. However, the traditional active antimicrobial treatment of textiles suffers from narrow
textile applicability, low chemical stability, and poor washability. Here, a high-strength adhesive
nanosilver glue was synthesized by introducing nontoxic water-soluble polyurethane glue as a protec-
tant. The as-prepared nanosilver glue could adhere firmly to the fiber surfaces by forming a flexible
polymer film and could encapsulate nanosilver inside the glue. The as-prepared nanosilver had a
torispherical structure with diameter of ~22 nm, zeta potential of −42.7 mV, and good dispersibility
in water, and it could be stored for one year. Further studies indicated that the nanosilver glue had
wide applicability to the main fabric species, such as cotton and polyester fabric, surgical mask, latex
paint, and wood paint. The antimicrobial cotton and polyester fabrics were prepared by a simple
impregnation–padding–baking process. The corresponding antimicrobial activity was positively
correlated with nanosilver content. The treated fabrics (500 mg/kg) exhibited ultrahigh washing
resistance (maintained over 99% antibacterial rates for 100 times of standard washing) and wear
resistance (99% antibacterial rates for 8000 times of standard wearing), equivalent breathability to
untreated fabric, improved mechanical properties, and good flexibility, demonstrating a potential in
cleanable and reusable microbiological protection textiles.

Keywords: nanosilver; fabric; antimicrobial; washable; reusable

1. Introduction

Public health and medical services have faced enormous challenges in recent years.
Bioprotective fibers and related textile materials played a key role in the battle against
the epidemic but also reflected their shortcomings [1]. Traditional disposable nonwoven
textiles cannot block all pathogens or kill them because pathogens can multiply on their
fiber surfaces. Used and discarded clothing may even become a vector of pathogen trans-
mission [2]. Therefore, cleanable and reusable textiles with active antimicrobial properties
are urgently needed [3]. The active antimicrobial properties of textiles are usually obtained
with the introduction of antimicrobial agents, which can be divided into organic, inorganic,
and natural agents [4–6]. The most used inorganic antimicrobial materials are metals,
especially nanosilver, due to their superiority to organic agents, including ultrahigh and
broad-spectrum antimicrobial activities, low bacterial resistance, and good biosafety [7–9].

However, the application of nanosilver in antimicrobial textiles should meet the fol-
lowing requirements, such as high water solubility to achieve functional finishing of textiles
by traditional dyeing equipment, wide applicability to mainstream textile fibers, no obvious
decrease in the functional treatment on the wearing comfortableness of the fabric, and good
oxidation and washing resistance to meet the cleanable and reusable needs. Such properties
depend on the physical and chemical properties of the nanosilver colloidal solution, which
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are mainly determined by their capping molecules [10]. Nanosilver allows for attachment
of molecules on its surface through specific physical and chemical sorption, which should
be attributed to their high surface chemical activity and high surface-to-volume ratio [11,12].
The functionalization of molecules is due to the following conditions. Core–shell struc-
tured nanosilver can be stabilized against agglomeration and chlorination/oxidation by
coating the outer layers of organic molecules. The molecules on the nanosilver surface
provide electrostatic, steric, and electrosteric repulsion for the nanosilver, imparting it
with good solution stability. The good water stability of nanosilver is extremely important
for the applications in biomedicine, water treatment, and functional textiles [13–16]. The
surface charges of nanosilver are tunable by surface modification with cationic or anionic
molecules [17,18]. The most important purpose for surface functionalization of nanosilver
with molecules is imparting new functions. Molecule-capped nanosilver can be used with
two opposite functional goals. The first goal is utilizing the nanoproperties of nanosilver,
where the capping molecules only serve as protection agents to prevent nanosilver from
agglomeration and chlorination/oxidation [19]. The second goal is that the nanosilver core
and organic shell contribute to the functions of nanosilver [20,21]. In this case, nanosilver
inherits the properties of nanosilver, the capping molecule, and even spawns new functions.

In the case of nanosilver functionalized fabrics, the capping molecules should possess
good protection ability of nanosilver against chemical reagents and high combining capacity
of fabrics to achieve good durability without damaging the wearability of the fabric. In our
previous studies, we designed hyperbranched polymer-modified silver nanoparticles that
can spontaneously adsorb and adhere to the fiber surface through electrostatic adsorption
and hydrogen bonding interactions [22]. However, this strategy still suffers from poor
washing fastness and wear resistance, evidencing that only van der Waals forces and hy-
drogen bonding forces between small molecules and fiber-forming polymers cannot resist
the invasion of detergents. Here, we further developed a high-strength adhesive nanosilver
glue by introducing nontoxic and environmentally friendly water-soluble polyurethane
glue as a capping agent. Polyurethane glue has serval advantages, including excellent
protection ability of nanosilver due to its amphiphilic properties, high complexation ability
of amido groups with silver, and strong adhesion to mainstream fibers, such as cotton,
silk, and polyester fibers [23]. The as-prepared nanosilver glue can adhere firmly to the
fiber surfaces by forming a flexible polymer interpenetrating network film and encapsulate
nanosilver in polyurethane-interpenetrating network, isolating it from oxygen and chemi-
cals, preventing it from physically exfoliating from the fiber surface, such as friction, and
avoiding direct contact with the human body. Our studies showed that nanosilver glue
is applicable to the main fabric species, such as cotton and polyester fabrics and surgical
masks, and can be mixed with latex paint and wood paint for antimicrobial finishing of
buildings and furniture. The as-prepared coated fabrics (500 mg/kg) exhibited ultrahigh
washing resistance (100 times of standard washing) and wear resistance (8000 times), with
improved mechanical and waterproof properties, indicating the potential application of
nanosilver glue in microbial protection materials.

2. Materials and Methods
2.1. Materials

Cotton and polyester fabrics were acquired from Zhangjiagang Nellnano Technology
Co., Ltd. (Suzhou, China). Silver nitrate (AgNO3) was purchased from Shanghai Institute of
Fine Chemical Materials (Shanghai, China). Water-soluble polyurethane (anionic aliphatic
polyether type, viscosity of more than 250 mPa·S at 25 ◦C, solid content of 38 ± 2%, PH of
6–7 at 25 ◦C) was obtained from Qiancheng Plastic Chemical Materials Co., Ltd. (Qingdao,
China). Artificial sweat was provided by Dongguan ChangFeng Automation Technology
Co., Ltd. (Dongguan, China). Sodium borohydride (NaBH4), nitric acid (HNO3), and
ammonia were purchased from Sinopharm (Beijing, China). Gram-negative Escherichia
coli (E. coli, ATCC 25922) and Gram-positive Staphylococcus aureus (S. aureus, CMCC26003)
were obtained from Shanghai Luwei Technology Co., Ltd. (Shanghai, China). Nutrient
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agar and nutrient broth were purchased from Shanghai Zhongke Insect Biotechnology
Development Co., Ltd. (Shanghai, China). Phosphorus-free ECE detergent was purchased
from Xiangda Instrument Co., Ltd. (Guangzhou, China).

2.2. Synthesis of Nanosilver Glue

Ammonia was gradually titrated into 10 mL of 7.87 g/L AgNO3 solution until the
mixture changed from earthy yellow to colorless to study the influence of polyurethane
concentration on the size and zeta potential of silver nanoparticles in glue. Then, 0.1–3 g of
300 g/L aqueous polyurethane solution was mixed with the AgNO3 ammonia complex
solution and stirred for 30 min. NaBH4 (1 g/L) was slowly added to the above mixture
through stirring until the color of the solution stopped changing. The resultant nanosilver
glue was further added with water to achieve 50 mL solution, stored in a brown colored
bottle, and kept in a dark place.

An aqueous polyurethane solution was mixed with 10–40 mL of 7.87 g/L AgNO3
ammonia complex solution and then reduced by NaBH4 as described above. The mass ratio
of polyurethane and silver was set as the optimal value determined by the above study. The
resultant nanosilver glue was further added with water to achieve the set volume (50 mL)
solution, stored in a brown colored bottle, and kept in a dark place.

2.3. Universal Preparation Process for Ultradurable Antimicrobial Fabrics

The as-prepared nanosilver glue was applicable to most fiber surfaces. In this study,
cotton and polyester fabrics were chosen as the typical models of natural fiber and chemical
fiber fabrics, respectively, and the typical coating process of nanosilver glue to ultradurable
antimicrobial fabrics was described as follows:

Cotton and polyester fabrics were washed with deionized water and ethanol several
times to remove the impurities and dried at 60 ◦C for 1 h. The test fabric was then
impregnated with nanosilver glue for 30 min with silver concentration ranging from
10 mg/L to 4000 mg/L and a bath ratio of 1:50. The test fabric was padded with a small
laboratory padder (Y571GC, Laizhou Yuanmore Instrument Co., Ltd., Laizhou, China) and
baked at 60 ◦C for 60 min and at 120 ◦C for 10 min to induce the cross-linking reaction.

2.4. Characterization

The morphological structure and distribution of the nanosilver glue were observed by
using a transmission electron microscope (TEM; JEOL 2100F, Tokyo, Japan) at an accelera-
tion voltage of 120 kV. The surface morphologies and chemical structure of samples were
observed by using a field emission scanning electron microscope (SEM; Gemini SEM 300,
Carl Zeiss, Jena, Germany) and a SEM (JSM-6510, JEOL, Tokyo, Japan) equipped with an
energy dispersive spectroscopy detector (EDS; X-act, Oxford Instruments, Oxford, UK).
UltraSTEM200X. The absorbance and concentration of the nanosilver glue were recorded by
using an ultraviolet (UV) spectrophotometer (UV-vis; TU-1901, Beijing Puxi General Instru-
ment Co., Ltd., Beijing, China). The zeta potential and size distribution of the nanosilver
glue were measured by using a Zetasizer (90 plus Zeta, Brookhaven Instruments Corpo-
ration, Holtsville, NY, USA). The chemical structure of samples was analyzed through
Fourier transform infrared (FTIR; Thermo Nicolet iS50, Waltham, MA, USA) spectroscopy
at the 4000–400 cm−1 range and resolution of 2 cm−1 and X-ray photoelectron spectroscopy
(XPS, Thermo Scientific K-Alpha+, Waltham, MA, USA). The X-ray diffraction (XRD) pat-
terns of samples were obtained by using an X-ray diffractometer (ARL XTRA, Thermo
Switzerland ARL Corp., Neuhofstrasse, Switzerland). The mechanical property test was
conducted on an electronic fabric tensile tester (YG065, Laizhou Electronic Instrument
Co., LTD, Laizhou, China), where the fabrics (rectangle shape, 350 mm × 50 mm) were
stretched at a constant rate of 10 cm/min, and an intelligent fabric crease elasticity meter
(YG(B)541E, Wenzhou Darong Textile instrument Co., Ltd., Wenzhou, China) in accordance
with the standard GB/T 3819 vertical method. The breathability of fabrics was tested by
using a digital fabric breathability tester (YG(B)416E, Yakai Instruments, Cangzhou, China).
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Bending rigidity was analyzed by using a fabric assurance by simple testing (FAST-2,
CSIRO, Canberra, Australia). The silver concentration in aqueous solution was detected
through inductively coupled plasma mass spectrometry (ICP-MS, PerkinElmer NexION
350, Waltham, MA, USA).

2.5. Antimicrobial Test

The antimicrobial activities of nanosilver glue were tested by using the Oxford cup
inhibition zone method [24]. The sterilized nutrient agar was poured into two Petri dishes
and allowed to solidify. The solution (1 mL) of E. coli (1–5 × 106 cfu/mL) and S. aureus
(1–5 × 106 cfu/mL) was evenly placed on the two agar dishes. Three Oxford cups were
placed on each culture dish, and 2 mL of deionized water, polyurethane solution, and
nanosilver glue solution were added dropwise. The plates were placed in a biochemical in-
cubator for 24 h at 37 ◦C. The diameter of the suppression ring was measured and recorded.
The absorbance of the bacteria at 546 nm was tested with a UV–vis spectrophotometer
to study the antimicrobial kinetics of nanosilver glue against E. coli and S. aureus after
0–24 h of culture. The effect of the silver concentration in glue on antimicrobial activity was
studied by testing the absorbance of the bacteria at 546 nm after 6 h of incubation.

The modified oscillation method (GB/T 20922.3-2008, China) was used to test the
antimicrobial properties of cotton and polyester fabrics, as described in our previous
paper [25]. The survival of bacteria adhered to fabric samples was also determined using
the previously reported incubation method [25]. Gram-negative E. coli (ATCC 25922) and
Gram-positive S. aureus (CMCC 26003) were selected as the test strains.

2.6. Release Kinetics of Silver Ions

The time-dependent release of silver ions was measured as follows. An amount of
1 g nanoglue-coated fabric was impregnated with 50 mL artificial sweat, and then, 2 mL
immersion liquid was collected at immersion times of 0.5, 1 h, 2 h, 4h, 6 h, 12 h, and 24 h.
The concentration of silver ion in the impregnation liquid was measured using inductively
coupled plasma mass spectrometry (ICP-MS).

2.7. Washability and Wear Resistance Test

The washing fastness of fabrics was measured in accordance with the GB/T 12490-2014
standard test method No.AS1 (China). The fabrics (10 cm × 10 cm) were washed with
150 mL of detergent (4 g of ECE detergent dissolved in 1000 mL deionized water) in a
programable washing fastness tester (SW-12J, Wenzhou Darong Textile instrument Co., Ltd.,
Wenzhou, China) at 40 ◦C for 30 min, then rinsed with deionized water, and dried at 60 ◦C.
Laundering durability was evaluated by measuring the difference in the antimicrobial
efficiencies of the fabric samples after repeated 50 and 100 times of washing cycles.

The wear resistance test of antimicrobial fabrics was conducted by using a Martin-
dale friction testing machine in accordance with the GB/T 21196.2 standard test method
(China), and the antimicrobial test of fabric samples was evaluated after 8000 times of
standard wearing.

3. Results and Discussion

Water-soluble polyurethane macromolecules were chosen as a glue molecule due to
their good water solubility, high bonding strength to biomass and chemical fibers, excellent
size limitation, and protection ability of nanosilver owing to the strong binding ability of
electron-donating amide groups on the main chain to electrophilic nanosilver and good
molecular flexibility. They were used to prepare a nanosilver glue suitable for textiles.
Nanosilver glue was prepared through the reaction of AgNO3 and sodium borohydride
in water with polyurethane glue as a protective agent (Scheme 1). Nanosilver glue has
strong adhesion to various textile fibers, including hydrophilic and hydrophobic fibers,
and can form an adhesive flexible polymer protection film on fiber surfaces because of the
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amphiphilic nature and strong intermolecular forces, thereby protecting nanosilver from
oxidation and achieving excellent washability and wear resistance of textiles.
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The amount of polyurethane has an important effect on the size and surface charge of
silver nanoparticles. As shown in Figure 1d,e, the average particle size of nanosilver glue
solution (1 mg/mL) decreased from 78.7 nm to around 35 nm and then slightly increased
to 48.2 nm when the polyurethane concentration increased from 2.4 g/L to 12 g/L and then
to 24 g/L. The increased size of nanosilver at high concentration was due to the increased
viscosity of the solution system impeding the diffusion of the reducing agent. Therefore,
the optimal mass ratio of polyurethane to nanosilver was set at 1:9. At this mass ratio,
increased silver concentration from 1 g/L to 4 g/L showed a decrease in particle size from
36 nm to around 22.5 nm and a slight decrease in the zeta potential from −42.2 mV to
around −41 mV and slight increase to 25.6 nm when the concentration reached 5 g/L.
In summary, the optimum synthesis process was achieved with silver concentration of
2–4 g/L and mass ratio of polyurethane of 1:9.

Figure 1a,b show the typical morphology structure of the nanosilver glue (4 g/L)
solution. Nanosilver showed a spherical morphology with average particle sizes around
22 nm. The particle size distribution of nanosilver consisted of two parts. One was silver
nanoparticles with smaller particle size (10–30 nm), accounting for 88.3% of the total
volume, and the other was larger silver nanoparticles (60–200 nm), accounting for 11.7%
of the total volume (Figure 1h). Such particle size differences were also found by TEM.
As shown in Figure 1a, a large number of nanoparticles with small particle size and a
few much larger nanoparticles were observed in the nanosilver glue solution, consistent
with the DLS result. The typical morphology and structure of the nanosilver glue solution
(4 g/L of mother solution, diluted to 10 mg/L) are shown in Figure 1e. The surface
potential and chemical stability of nanosilver were mainly determined in terms of the
anionic polyurethane. As shown in Figure 1e, the typical surface potential of nanosilver
was around −42.7 mV, indicating its good stability. As shown in Figure 1d, nanosilver
had a typical characteristic absorption peak at 421 nm in the UV–vis range (325–575 nm),
suggesting its nanometallic state [26]. The intensity of the absorption peak at 421 nm was
linearly and positively correlated with the silver concentration in the range of 10–20 mg/L
(Figure 1f). This law can be used to calculate the silver concentration. The as-synthesized
nanosilver glue can be stored for one year without changing color, demonstrating the
stability of the solution (Figure 1j).
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left) polyurethane, (lower middle) Tollens’ reagent, (lower right) freshly synthesized nanosilver glue
(4 g/L of mother solution, diluted to 10 mg/L), and (top) that stored for one year (4 g/L of mother
solution, diluted to 10 mg/ L).

The polyurethane on the nanosilver surface gave other advantages to nanosilver, such
as good film formation and toughness, which improved the durability of nanosilver coating.
As shown in Figure 2c,d, a black and flexible film of nanosilver glue with silver content
of 0.1 g/g was prepared by drying the nanosilver glue solution, which could be tailored
to the desired shape. Nanosilver glue can be applied to a wide range of materials, such
as emulsion paint, waterborne wood paint, and commercial mask, thereby suggesting its
wide applicability.

The SEM images of nanosilver glue film are illustrated in Figure 3a,b. The film showed
a smooth and even structure. Most silver nanoparticles in the nanosilver glue film were
encapsulated inside the membrane, and only a few in the defect area were exposed outside
(Figure 3b). The chemical structure was investigated on the basis of the FTIR spectra
of polyurethane and nanosilver glue in Figure 3c. Water-soluble polyurethane can be
regarded as a kind of block copolymer containing soft segment and hard segment. The
soft segment consisted of oligomer polyethers, whose FTIR characteristic peaks were C–H
stretching vibration at 2931 and 2866 cm−1 and C–O–C stretching vibration at 1101 cm−1

(Figure 3c). The hard segment mainly consisted of polyisocyanates, which were relatively
rigid and stretched into rods at room temperature. The characteristic peaks were the
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stretching vibration of N–H at 3370 cm−1, deformation vibration of N–H at 1541 cm−1,
and C=O stretching vibration at 1643 cm−1 of the carbonate bond [27]. For nanosilver
glue, no major change was observed in the FTIR characteristic absorption peak compared
with polyurethane, except for one imperceptible change. This change was the relatively
decreased signal of N–H bending vibration in the nanosilver glue at around 1540 cm−1 due
to the chemical interactions between electron acceptor metallic Ag and electron-donating
amide groups [28]. This finding indicates the good protection performance of polyurethane.
The wide-scan XPS spectra suggested that polyurethane and nanosilver glue contained
C1s, N1s, and O1s signals, which were located at approximately 284, 398, and 532 eV,
respectively (Figure 3e). The difference was that the nanosilver glue exhibited additional
Ag3d signals at around 368 eV. The difference between the fitted 3d5/2 and 3d3/2 peaks of
the Ag3d signal (approximately 6.0 eV) was equal to the standard value of Ag0 (6.0 eV)
(Figure 3e), further indicating the metallic state of nanosilver in films [29].
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(c) flexible film and tailored to (d) desired shape. (e) shows a nanosilver-glue-treated surgical mask,
which consists of three layers, and nanosilver-glue-coated viscose nonwoven fabric is located in
the interlayer.

E. coli and S. aureus were chosen as typical model strains to evaluate the antimicrobial
activities of nanosilver glue in this experiment. Deionized water and polyurethane were
used as controls. Figure 4a,b show the images of the inhibition zones of deionized water,
polyurethane, and nanosilver glue on the E. coli- and S. aureus-inoculated nutrient agar
surfaces. No inhibition zone was found around the Oxford cups of deionized water and
polyurethane, indicating the nonantimicrobial effects of polyurethane. By contrast, an
E. coli and S. aureus inhibition zone with diameters of around 3 and 5 mm was measured
around the Oxford cup of nanosilver glue. This finding proved the good antibacterial
activity of nanosilver against E. coli and S. aureus. The antibacterial activity was proven to
depend on the nanosilver concentration. As shown in Figure 4c, the absorbance of E. coli
and S. aureus at 546 nm after 6 h of incubation decreased significantly from 1.008 to 0.013
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and from 0.877 to 0.027 when the concentration of nanosilver increased from 0.5 mg/L to
6 mg/L. No significant increase was observed in the antibacterial activity above 4 mg/L,
implying the minimum inhibitory concentration. Figure 4d shows the inhibition growth
kinetics of nanosilver glue against E. coli and S. aureus within the measurement time of 24 h.
The absorbance of pure E. coli and S. aureus suspensions (controls) increased significantly
at 1–3 h contact time and reached a peak at the 20 h contact time. However, the bacterial
concentration of E. coli and S. aureus in the nutrient solution containing nanosilver glue
(4 mg/L) remained mostly unchanged and even showed a slight decrease, suggesting
certain bactericidal activities of nanosilver at an ultralow concentration.
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Figure 3. (a,b) SEM images of nanosilver film, (c) FTIR spectra, (d) wide scan, and (e) Ag3d XPS
spectra of polyurethane and nanosilver glue films.

Figure 5a shows typical photos of cotton, nanosilver-coated cotton, polyester, and
nanosilver-coated polyester fabrics. After treatment, the fabrics changed from white to
yellow and showed an even color distribution, suggesting the uniform distribution of
nanosilver. Note that the color of nanosilver glue could be covered by co-treatment of fabrics
with a mixture of nanosilver glue and dyes (Figure S1). The surface morphology of fabrics
was investigated through FESEM (Figure 5). Figure 5e–h show the low-magnification (×60)
SEM images of the surfaces of cotton and polyester fabrics. For coated cotton and polyester
fabrics, no polymer film was found to block the micron gaps formed by the warp and weft
yarns, thereby ensuring the air and moisture permeability (Figure 5f,h). The fibers in the
yarn were bound together by a polymer film in large quantities, as shown in Figure 5i–l.
This condition may improve the resilience of the fabric to some extent. The surfaces of
the nanosilver-coated cotton and polyester fibers were tightly covered by a polymer film,
and no nanoparticles were observed. The polyurethane coating on the polyester fabric
was smoother and had better structural integrity mainly due to the homogeneous smooth
surface of the polyester fibers (Figure 5m–p).
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Figure 4. (a,b) Inhibition zones of (i) deionized water, (ii) polyurethane, and (iii) nanosilver glue
against E. coli and S. aureus (the concentration of nanosilver: 10 mg/L), (c) UV–vis absorbance of
E. coli and S. aureus suspensions at 546 nm for 6 h incubation as a function of the nanosilver glue
concentration, and (d) growth kinetics of E. coli and S. aureus in the presence and absence of nanosilver
glue (4 mg/L).

Nanosilver was believed to hide in two places. One was encapsulated inside the
polyurethane film, and the other was embedded in the interface of fibers and polymer film
due to the early physical adsorption. As shown in Figure 5q,r, numerous nanosilver was
found to adhere to the fiber surfaces at the defects of the polyurethane coating. In addition,
the DES maps of silver element in fabrics showed that the nanosilver was uniformly dis-
tributed in the fiber, indicating good protection of water-soluble polyurethane (Figure S2).

Figure 6a,b show the FTIR spectra of cotton and polyester fabric samples. The C=O
peak and N–H peak at 1707 and 1557 cm−1 for the coated cotton fabric can be attributed
to the carboxyl and the amide groups of polyurethane (Figure 6a). The FTIR absorption
characteristic of CH2 groups at 2856 cm−1 for the coated cotton fabric was stronger than
that at 2920 cm−1, whereas the cotton fabric showed the opposite law [30]. The differences
were due to the superposition effect of FTIR adsorption of the alkyl chain groups in
polyurethane and cellulose. Similarly, the FTIR absorption intensity of C–H at 2845 cm−1

greatly increased in the coated polyester fabric compared with the pure polyester fabric,
evidencing the adhesion of nanosilver glue.
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Figure 5. Optical images (a–d), SEM images (e–p) of untreated cotton (a,e,i,m), treated cotton
(b,f,j,n,q), untreated polyester (c,g,k,o), and treated polyester fabrics (d,h,l,p,r).

The chemical composition transformation of nanosilver-glue-coated cotton and polyester
fabrics was further assessed through XPS. The typical wide-scan spectra of pure cotton
and polyester fabrics and coated cotton and polyester fabrics are shown in Figure 6c. The
characteristic peaks of C1s and O1s at approximately 284 and 532 eV were detected for all
samples. By contrast, coated cotton and polyester fabrics had additional N 1s and Ag3d
signals, suggesting the adhesion of nanosilver glue. In the Ag3d XPS spectra (Figure 6b,c),
split Ag3d signals can be fitted to Ag3d3/2 at 373.8 eV and Ag3d5/2 at 367.8 eV in coated
cotton and Ag3d3/2 at 373.23 eV and Ag3d5/2 at 367.17 eV in polyester fabrics, where the
difference was around 6.0 eV, in line with bulk metallic Ag [29]. The good chemical stability
was due to most nanosilver being encapsulated in the polyurethane coating, protecting
it from oxidizing substances, such as oxygen. N1s XPS signals can directly reflect the
existence of polyurethane because cotton and polyester are N-free polymers. As shown in
Figure 5e,h, the deconvolution analysis of N1s peak indicated that the fabrics contained
N–C=O and C–N bonds, which were derived from the amido linkage of polyurethane [31].
The C1s high-resolution XPS spectra indicated that the signals for pure cotton fabric can be
decomposed to three peaks with binding energy of 284.8 eV (C–C/C–H), 286.2 eV (C–O),
and 287.7 eV (C–O–C) [32]. After coating with amido-containing polyurethane, the relative
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intensity of C–O/C–N and C=O/C–O–C signals increased significantly. Similarly, the
slightly increased relative intensity of C–O/C–N and decreased O=C–O signals for coated
polyester fabric indicated the attachment of nanosilver glue.
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Figure 6. (a,b) FTIR spectra and (c) Wide-scan, (d,g) C1s, (e,h) N1s, and (f,i) Ag3d XPS spectra of
cotton and polyester fabrics.

Bacteria tend to adhere to traditional textiles, make clothes smell, and pose a health
risk. The advantages of antibacterial nanosilver glue depend on low antibacterial concen-
tration, broad spectrum, good chemical stability, and long-lasting properties and good
biocompatibility because nanosilver was encapsulated and protected in polyurethane coat-
ing [33]. The principle of sterilization mainly depends on silver ion being released from the
coating, which can contact and react with the bacterial cell, resulting in the destruction of
the inherent components of bacteria or functional disorders and the death of bacteria [34].

The release of the silver element was divided into two stages. In the first stage,
nanosilver was firstly oxidized and then released silver ions into the amorphous region
of polyurethane coating. In the second stage, silver ions gradually penetrated into the
external environment by osmotic pressure (Figure 7a). The release amount of silver ions
initially increased rapidly, then entered the plateau region, and decreased slowly after 12 h
incubation (Figure 7b). The peak concentrations of released silver were 0.128 mg/L for the
nanosilver-glue-coated cotton fabric and 0.141 mg/L for the coated polyester fabric.
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Figure 7. (a) Schematic representation of silver release process from nanosilver-glue-coated fibers and
(b) silver release kinetics of 500 mg/kg antibacterial cotton and polyester fabrics in artificial sweat.

Contact sterilization experiments were performed by immersing the fabrics into E. coli
and S. aureus culture solutions to assess the antibacterial property. As shown in Figure 8a–f,
nanosilver-glue-coated cotton and polyester fabrics exhibited excellent antibacterial activi-
ties. The CFU of all cotton and polyester fabric samples declined by more than six orders of
magnitude for E. coli and S. aureus, with corresponding bactericidal rates of up to 99.99%
and inhibition rates of 99.999% when the content of nanosilver ranged from 300 mg/kg
to 6000 mg/kg (Figure 8e,f). To determine the survival of bacteria on textile surfaces,
the bacteria adsorbed on fabric surfaces were retrieved, and the survival of bacteria was
determined by the classical phenotype colony counting method through growth on AGAR
medium. Figure 9 displays that CFUs in the culture dishes of the bacterial eluent were zero
for both polyester and cotton fabrics, indicating no viable bacteria on the fiber surfaces.
Because the antibacterial activities of nanoglue-coated fabrics mainly came from their slow
release of silver ions, the bacteria that came into contact with the antimicrobial coating
were killed first.
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aureus, which were collected from fabric surfaces. The silver contents of cotton and polyester fabrics 
in the experiments were ~500 mg/kg. 

Figure 8. Antibacterial activities of nanosilver-glue-coated cotton and polyester fabrics against E. coli
and S. aureus. (a,c) CFU counts of cotton and polyester fabrics after incubation. (b,d) Corresponding
photos of E. coli and S. aureus colonies in culture dishes. (e,f) Antibacterial rates of coated cotton and
polyester fabrics against E. coli and S. aureus.
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Figure 9. Plate bacterial colony count images of the bacteria eluent co-cultured with E. coli and
S. aureus, which were collected from fabric surfaces. The silver contents of cotton and polyester
fabrics in the experiments were ~500 mg/kg.

The outstanding washing durability is another important advantage of nanosilver-
glue-coated fabrics. As shown in Figure 10a–f, the inhibition rate remained at 98.18 % for
E. coli and 99.66% for S. aureus for 300 mg/kg of cotton fabric and 99.39% for E. coli and
99.89% for S. aureus for 300 mg/kg of polyester fabric under 50 times of standard washing
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(Figure 10e,f). The coated fabrics still maintained good antibacterial activities with the
inhibition rate up to 97.5% for E. coli and 99.62% for S. aureus for 300 mg/kg of cotton fabric
and 98.93% for E. coli and 99.76% for S. aureus for 300 mg/kg of polyester fabric even after
100 times of standard washing (Figure 11a–f). In addition, the inhibition rate of coated
cotton fabrics for 100 times of washing increased from 99.64% to 99.999% for E. coli and from
99.9% to 99.999% for S. aureus, and that of coated polyester fabric increased from 99.86% to
99.999% for E. coli and from 99.95% to 99.999% for S. aureus when the nanosilver content
increased from 500 mg/kg to 6000 mg/kg, indicating that the antibacterial activities of
coated fabrics were still silver content dependent. These findings indicated that nanosilver
glue has good adhesion to the cotton fabric with nanosilver content over 300 mg/kg.
The nanosilver-glue-coated polyester fabric showed better antibacterial properties than
cotton with the same silver content after washing. This condition was probably due to
polyurethane exhibiting stronger bonding strength to polyester than to cotton and smoother
and more homogeneous surfaces of polyester fibers than cotton fibers. The coated cotton
and polyester fabrics (500 mg/kg) maintained over 99% antimicrobial activities for E. coli
and S. aureus after 0, 50, and 100 times of washing, demonstrating the strong adhesion and
stability of nanosilver coating. The coated cotton and polyester fabrics (500 mg/kg) worn
up to 8000 times showed 99.999% antimicrobial activities for E. coli and S. aureus equal
to those of untreated fabrics, suggesting the good wear resistance of nanosilver coating.
The strong bonding interaction between nanosilver-embedded polyurethane coating and
fabrics was responsible for the good washing resistance and wear resistance. TG test results
showed that the thermal stability of both treated fabrics was slightly improved compared
with untreated samples (Figure S3).
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Figure 10. Antibacterial activities of nanosilver-glue-coated cotton and polyester fabrics against
E. coli and S. aureus for 50 cycles of standard washing. (a,b) Corresponding photos of E. coli and
S. aureus colonies in culture dishes. (c,d) CFU counts of cotton and polyester fabrics after incubation.
(e,f) Antibacterial rates of coated cotton and polyester fabrics against E. coli and S. aureus.
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Figure 11. Antibacterial activities of nanosilver-glue-coated cotton and polyester fabrics against E. coli
and S. aureus for 100 cycles of standard washing and 8000 times of abrasion. (b,d) Corresponding
photos of E. coli and S. aureus colonies in culture dishes. (a,c) CFU counts of cotton and polyester
fabrics for 100 times of washing after incubation, and (e,f) corresponding antibacterial rates against
E. coli and S. aureus. (g) Antibacterial rates of coated cotton and polyester fabrics (500 mg/kg) worn
8000 times against E. coli and S. aureus.

The mechanical properties of nanosilver-glue-coated fabrics were evaluated. As shown
in Figure 12a,b, no decline in the air permeability of 500 mg/kg coated cotton and polyester
fabrics and slight decrease were observed when the silver content increased from 500 mg/kg
to 6000 mg/kg for the two coated fabrics. This condition was due to the nanosilver coating
having no influence on the void ratio of interyarns, as evidenced by FESEM (Figure 5).
By contrast, the tensile strength, acute elastic response angle, and bending rigidity of
the coated cotton fabric had a positive correlation with the nanosilver content, which
increased from 251.94 N, 73.11◦, 0.0485 cN·cm to 301.68 N, 82.98◦, 0.1608 cN·cm in the warp
direction, and 295.18 N, 62.64◦, 0.0668 cN·cm increased to 348.18 N, 73.84◦, 0.1765 cN·cm
in the weft direction, respectively (Figure 12c,g,k). The coated polyester fabric showed
similar laws for the tensile strength, acute elastic response angle, and bending rigidity
(Figure 12d,h,l). The water contact angle of the two coated fabrics was found to increase
significantly by increasing the silver content (Figure 12i,j). The water contact angle of the
coated cotton fabric increased from 109◦ to 137◦ and that of the coated polyester fabric
increased from 114◦ to 135◦ when the silver content increased from 0 mg/kg to 6000 mg/kg.
The tearing strength tests of cotton and polyester fabrics reached the maximum with
nanosilver contents of 1000 and 500 mg/kg, respectively (Figure 12e,f). The changes in the
physical and mechanical properties of the fabrics were due to the fibers within the yarn
being bonded together by polyurethane, as shown in Figure 5j,l. This condition effectively
improved the tensile, antiwrinkle, antibending, and hydrophobic properties of the cotton
and polyester fabrics. The bending rigidity of cotton showed a slight increase for the
cotton and an obvious increase for the polyester fabric (Figure 12k,l). However, the coated
polyester fabric still maintained good flexibility (Figure S4).
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contact angle (CA), and (k,l) bending rigidity of pure and coated cotton and polyester fabrics.

4. Conclusions

In this study, we successfully fabricated a type of nanosilver glue with high adhesion
to various materials, such as fabrics and surgical masks, good compatibility with latex
paint and varnish that can be used for coating walls and wood, and excellent antimicrobial
properties for E. coli and S. aureus. The optimal mass ratio of polyurethane to silver for
synthesizing nanosilver glue was 1:9, and the nanosilver concentration (2–5 g/L) had
no obvious influence on the particle size and zeta potential. The as-prepared nanosilver
glue showed a UV–vis adsorption peak at 421 nm, a spherical morphology with average
particle sizes around 22 nm, a negative surface charge of around −42.7 mV, and a minimum
inhibitory concentration of 4 mg/L. The nanosilver glue could form a tough and flexible film
with nanosilver content up to 10% by using a simple drying process. The nanosilver in the
formed film remained metallic and was endowed with good stretchability, toughness, and
adhesion, which could be tailored to various shapes and stretched to ~50% of its original
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length. FESEM, FTIR, XPS, and TG tests showed that the nanosilver glue successfully
adhered to cotton and polyester fiber surfaces without blocking the space between the yarns.
Antibacterial tests suggested that 500 mg/kg of nanosilver-glue-coated cotton and polyester
fabrics showed 99.999% antibacterial activities against E. coli and S. aureus and maintained
over 99% even after 100 times of standard washing. Further studies exhibited that the air
permeability remained unchanged for 500 mg/kg of cotton and polyester fabrics, and the
tensile strength, tear strength, CRA, and hydrophobicity were improved by increasing the
silver content. The bending rigidity of cotton showed a slight increase for cotton and an
obvious increase for polyester fabric. However, the coated polyester fabric still maintained
good flexibility. Our nanosilver glue showed high adhesion, wide applicability to various
materials, and high washing resistance and wear resistance, showing its high potential in
microorganism protection textiles.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano12142429/s1, Figure S1. Photos of cotton fabric dyed
with the (a) pure nanosilver glue and (b) mixture of nanosilver glue and reactive black KN-B and
polyester fabric dyed with the (c) pure nanosilver glue and (d) mixture of nanosilver glue and reactive
black KN-B; Figure S2. EDS maps of (a-d) treated cotton and (e-h) polyester fabrics; Figure S3. Ther-
mogravimetric (TG) curves of (a) cotton and (b) polyester fabric samples; Figure S4. The flexibility of
(left) untreated and (right) treated cotton and polyester fabrics in the warp and weft directions.
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