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Abstract

This study, a tribute to Aristotle’s 2400 years, used a juxtaposition of valid Aristotelian argu-

ments to the paradoxes formulated by Zeno the Eleatic, in order to investigate the

electrophysiological correlates of attentional and /or memory processing effects in the

course of deductive reasoning. Participants undertook reasoning tasks based on visually

presented arguments which were either (a) valid (Aristotelian) statements or (b) paradoxes.

We compared brain activation patterns while participants maintained the premises / conclu-

sions of either the valid statements or the paradoxes in working memory (WM). Event-

related brain potentials (ERPs), specifically the P300 component of ERPs, were recorded

during the WM phase, during which participants were required to draw a logical conclusion

regarding the correctness of the valid syllogisms or the paradoxes. During the processing of

paradoxes, results demonstrated a more positive event-related potential deflection (P300)

across frontal regions, whereas processing of valid statements was associated with notice-

able P300 amplitudes across parieto-occipital regions. These findings suggest that para-

doxes mobilize frontal attention mechanisms, while valid deduction promotes parieto-

occipital activity associated with attention and/or subsequent memory processing.

Introduction

Reasoning ability is the vehicle of extrapolation based on the available information, even when

is incomplete. Deductive reasoning allows the formulation of relationships between premises

and potential conclusions and is therefore a hallmark of higher cognition. Nevertheless, the

brain mechanisms underlying it remain obscure [1,2].

Logical reasoning is usually assessed by tasks in which participants are instructed to judge

as quickly as possible the logical validity of syllogisms consisting of two statements (the prem-

ises) and a conclusion. An example of the two premises of a syllogism would be: “All men are

mortal”; “All Athenians are men”. Aristotle concluded that these premises imply with absolute

certainty that “All Athenians are mortal” [3].
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In juxtaposition to this, about 2500 years ago, Zeno of Elea, student of Parmenides, intro-

duced the paradoxes in which he defends the value of the Eleatic philosophy by attempting to

prove that change (motion) and plurality are impossible (Plato Parmenides 128 d) [4]. In the

paradoxes Zeno utilized the method of indirect proof or reductio ad absurdum, which involves

temporarily assuming some thesis which the orator is in fact opposed to, and then attempting

to deduce an absurd conclusion or a contradiction, thereby undermining the original

assumption.

In the Parallel Lives [5] Plutarch remarks: ‘Pericles was also a pupil of Zeno the Eleatic, who

discoursed on the natural world, like Parmenides, and perfected a species of refutative catch

which was sure to bring an opponent to grief; as Timon of Phlius expressed it: "His was a ton-

gue that could argue both ways with a fury resistless, Zeno’s; assailer of all things". Indeed,

Zeno’s paradoxes have ever since intrigued philosophers and mathematicians stimulating sub-

sequent research [6,7], as this reasoning can be viewed as a form of cognitive illusion. It has

been commented that it is fortunate that such cognitive illusions violate the norms of rational

thought only in the context of philosophical speculation [7,8].

Current approaches to the study of reasoning have introduced specific models of encoding

and reasoning mechanisms [9–11]. The proponents of formal rules claim that reasoning prob-

lems are solved on the basis of a set of inference rules, which implies that reasoning is mainly a

linguistic process [12,13]. In contrast, mental model theorists propose that reasoning stems

from mental sets of the situation presented by the premises: those sets are considered to be spa-

tial in nature [10,14]. It follows that reasoning functions should be subserved by regions spe-

cializing in visualization, such as the right hemisphere parieto-occipital areas which are

involved in visuospatial processing. Evans [9,15] and Goel [16] attempted to reconcile the two

views presented above by coining the theory of dual-process reasoning, which postulates two

distinct reasoning systems subserved by separate neurobiological substrates [9,15,16]. System

1 is described as a rapid, parallel and automatic process mainly located in the fronto-temporal

area, while System 2 is a slow, serial process involving working memory and parieto-occipital

areas.

Increasing effort has recently been invested towards the elucidation of the neural substrate

of reasoning. This has been facilitated by technological advances, including brain imaging

techniques and event related potentials.

Brain imaging studies of reasoning have produced a large body of evidence which, however,

is characterised by great cross-study variability in brain responses. The observed variance has

been attributed to a variety of sources ranging from the modes of reasoning adopted by various

studies to differences in their experimental design [17–19]. The basic traits emerging from the

results of the imaging studies suggest that familiar, conceptually coherent material engages a

left lateralized fronto-temporal system associated with conceptual and linguistic operations. It

has been proposed that this corresponds to a heuristic system [20]. In contrast, novel, incoher-

ent material appears to engage a bilateral parietal visuospatial system [9,21]. A recent meta-

analysis based on 28 imaging studies published between 1997 and 2010 and studying a total of

382 participants concluded that, during reasoning, there is a consistent tendency of mainly left

lateralized activations, with other subsystems being recruited depending on the nature of the

task (propositional, categorical, or relational reasoning) [22]. Recently Oaksford [23] chal-

lenged these conclusions, commenting that ‘First, the main function of the core brain region

identified is most likely elaborative, defeasible reasoning not deductive reasoning. Second, the

subtraction methodology and the meta-analytic approach may remove all traces of content

specific System 1 processes thought to underpin much human reasoning. Third, interpreting

the function of the brain regions activated by a task depends on theories of the function that a

task engages’.
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In addition to the brain imaging studies, the neural substrate of deductive reasoning has

also been investigated by event related potential (ERPs) studies [24–26]. The high resolution

properties of ERPs and the fact that several evoked waveforms have a well documented associa-

tion with specific information processing functions renders this technique particularly useful

in the study of brain activity during reasoning [27,28].

In a syllogistic reasoning study investigating 14 healthy adult subjects Qiu et al. [29]

reported that a valid syllogistic reasoning task elicited a greater positive ERP deflection corre-

sponding to the P3b component than an invalid task and a baseline task after the onset of the

minor premise. Dipole source analysis indicated that this component was localized in the occi-

pito-temporal area, which is possibly related to visual premise processing.

Valid and invalid reasoning tasks compared to a baseline task elicited both a significantly

higher negative waveform between 600 and 700 ms, and a positive waveform between 2500

and 3000 ms. Dipole source analysis revealed a medial frontal cortex/anterior cingulate cortex

localization for the negative waveform difference, and a strong activity in the right frontal

scalp regions for the positive one. The authors adhered to the views of Knauff et al. [30] and

Ruff et al. [31] who reported that reasoners utilise spatially organized mental models to solve

deductive problems.

Bonnefond et al. [32] examined ERPs evoked by conclusions of the most commonly used

concepts in logic, Modus Ponens (if P implies Q and P is true, therefore Q must be true).

They found that valid experimental conditions, in contrast to invalid ones, were associated

with pronounced P3b. Based on the assumption that the P3b component reflects informa-

tion processing satisfying expectations, they interpreted their results to mean that partici-

pants had already drawn the Modus Ponens inference based on the major premise

presented. They therefore argued that conditional inferences, particularly Modus Ponens
ones, are drawn spontaneously. In a more recent study Bonnefond et al. [33] recorded ERPs

obtained during a conditional inference task with either many or few disabler conditionals.

They found that many disabler conditionals produced a more pronounced N200 waveform

and a decreased P3b. They concluded that thematic content does not necessarily alter sub-

jects’ inferences.

Taking into consideration the findings presented above, we elected to focus on the auditory

P300 component while participants were required to draw a logical conclusion regarding the

correctness of valid syllogisms or paradoxes. The P300 is produced by a distributed network of

brain processes associated with attention and memory operations. The functional and neuro-

psychological data regarding the P300 potentials suggest two distinct components reflecting

two different processes within the human brain. Specifically, the P3a, with frontal location, has

been linked to the initial allocation of attention, while the P3b component has been related to

activation of a posterior network when the neuronal model of perceived stimulation is com-

pared with the attentional and /or working memory operation [34,35].

In the light of the above we hypothesized that electrophysiological brain activity, as reflected

by the P300 component, would be useful in identifying differences between valid deductive

reasoning and paradoxical reasoning, presented in a way designed to engage working memory

(WM) operation. WM refers to the ability to retain information ‘on line’ in order to facilitate

an ongoing task [36,37]. It forms a substrate for complex cognitive functions including plan-

ning, problem solving, decision making and reasoning [38–40].

In brief, using a relatively homogenous sample of adults and task forms designed to engage

WM operation, the present study was designed to determine whether valid deductive reason-

ing on the one hand and paradoxical reasoning on the other, will elicit different patterns of

electrophysiological activity, as reflected by P300.
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Methods

Participants

This study was approved by the Ethics committee of University Mental Health Research Insti-

tute (UMHRI). A number of fifty-one healthy subjects (aged 33.9 years in average, standard

deviation: 9.2; 28 males) participated in the experiment. All participants gave written consent,

after being extensively informed about the procedure. They all had normal vision and no one

had neurological or psychiatric history.

Stimuli and procedures

Stimuli. The experiment was designed to juxtapose two mental functions: processing of

syllogisms characterized as “valid” vs processing of “paradoxical” reasoning. This was done by

exposure of the participants to two arrays of statements, one containing 39 valid syllogisms,

the other 39 paradoxes (S1 File). The order of presenting the valid and paradoxical sections

was counterbalanced across participants. The full arrays of valid and paradoxical statements

used are available in a supplemental file submitted to the journal. Two indicative examples fol-

low: the valid array included statements of the following type: “All men are animals. All animals
are mortal. Hence, all men are mortal.” [41]. The paradox array consisted of statements of the

following type: “Amoving arrow occupies a certain space at each instant. But, when an object
occupies a specific space, it is motionless. Therefore, the arrow cannot simultaneously move and
be motionless.” (Aristotle, Physics VI: 9, 239b5) [3].

Behavioural procedure. Each participant was seated comfortably 1 m away from a com-

puter monitor in an electromagnetically shielded room. He / she was verbally instructed

through the intercom to read carefully each statement which would appear in the monitor, fol-

lowed by the question “Right OR Wrong?” and state verbally, after two presentations of a

warning sound (a) whether the statement was right or wrong and (b) how certain, on a scale of

0 (not at all certain) to 100 (absolutely certain) he/she was of the answer. This verbal instruc-

tion was followed by two examples of valid and two of paradoxical statements as a training

exercise ensuring that the participant had fully comprehended the task. After 2 min. of rest he/

she was instructed to initiate the formal experimental session by pressing the SPACE bar.

Once the participant initiated the procedure, the sequence of statements forming a valid or

paradoxical reasoning proposition was presented on the screen. Each statement remained on

the screen for a duration determined by the number of digits included in the sentence (see

Table 1) and then was replaced by a blank screen for a period of 1000 ms. This was followed by

a 500 Hz auditory warning stimulus of 65 dB and 100 ms duration, which was repeated after

Table 1. Precise sequence of phases of the performed experiments.

Sequence of actions Duration of actions

Valid or paradox sentence (visual presentation) Duration according to the numbers of the letters in the

sentences e.g. a sentence involving 92 letters presented

11,04sec

EEG recording 1000ms

Warning stimulus 100ms

ERP recording 1sec

Warning stimulus repetition 100ms

Response onset Within 5sec

Period between response completion and

onset of next sentence presentation

4–9sec

doi:10.1371/journal.pone.0168067.t001
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900ms. The participant’s verbal response and degree of confidence in the answer to each state-

ment was recorded by an observer seated outside the experimental chamber.

The onset of the next statement followed completion of the previous verbal responses after

a variable interval of 4 to 9 sec in order to avoid habituation with temporal test sequences.

Electrophysiological procedure. Before entering the electromagnetically shielded test

room the participant was fitted with a cap equipped with 30 scalp electrodes and 2 reference

potential electrodes, each attached to an ear lobe (see details of electrode placements in the sec-

tion on Experimental setup and Recordings and Fig 1). Through these electrodes EEG was

recorded for 1000msec before the first warning stimulus (EEG) and for 1000msec after that

(ERP).

Fig 1. Map showing the position of the ERPs’ electrodes.

doi:10.1371/journal.pone.0168067.g001
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A summary of the behavioural and electrophysiological events sequence of the procedure is

presented in Table 1.

Experimental setup and recordings

A Faraday cage was used in order to eliminate any electromagnetic interference that could

affect the measurements; the attenuation of the mean field was more than 30dB. 30 scalp Ag/

AgCl electrodes were employed to record the electroencephalographic (EEG) activity in accor-

dance with the International 10–20 system of electroencephalography [42]. A map of the elec-

trode constellation is shown in in Fig 1. Two electrodes, each attached to an ear lobe, served

for obtaining the reference potential.

Recordings with EEG higher than 75μV were excluded. Electrode resistance was kept con-

stantly below 5kO. The bandwidth of the amplifiers was 0.05–35Hz, in order to avoid interfer-

ence due to the power supply network’s signal, which is at 50Hz. Eye movements were

recorded by means of an electro-oculogram (EOG). The brain signals are amplified by a Brain-

tronics DIFF/ISO-1032 amplifier before entering a 32-bit analogue to digital converter (NI

SCB-68) which has a GPIB output. The digitized signal comprised an input for a Data Acquisi-

tion Card. The PC with the DAQ Card runs a LabView program for the recording of the sig-

nals, which can be monitored by an on-screen graphical representation. The evoked bio-

potential signal was digitalized at a sampling rate of 1Khz. The signals were recorded for a

2000msec interval, namely 1000msec before the first warning stimulus (EEG) and 1000msec

after that (ERP).

For each question and for each electrode separately, 2000 samples (expressed in μV) have

been recorded in 2sec; evidently, the employed sample period was 1ms. For each question sep-

arately, we averaged the values of the EEG, namely the data acquired in the 100ms before the

first sound stimulus.

We subtracted the obtained average from the initial signal, thus obtaining a translated ver-

sion of the specific ERP recording. Thereafter, for the ERP detection, a Continuous Wavelet

Transform (CWT) algorithm was developed, using EEGlab (Delorme & Makeig, 2004), run-

ning under Matlab1 2013 (MathWorks, USA), along with the Wavelet Toolbox™ [43]. A

detailed description of the procedure is provided in the Appendix. We considered the wavelet

coefficients obtained by analyzing and reconstructing the evoked potential calculated via con-

ventional averaging in each participant. A demonstration of the wavelet transform is visualized

in the scalograms of Fig 2, where each coefficient represents a degree of correlation between

the transformed wavelet and the analyzed signal.

Based on these coefficients, an appropriately scaled wavelet was chosen to match the P300

component. The wavelet was convolved with the EEG signals, only in the corresponding part

of the signal where P300 component could be situated (240–500ms after the trigger onset),

thus avoiding a false ERP detection. ERP peak values and corresponding latencies were

extracted for each EEG channel of each participant, for each condition.

Statistical analysis

Electrophysiological data. The amplitudes and latencies of the component P300 taken

over the range of 220–500 ms, were subjected to pair t-test analysis. The P300 dataset is pro-

vided as S2 File.

The STATISTICA 10.0 for Windows (Statsoft Inc. Tulsa, OK, USA) software was used to

assess the statistical significance of the observed differences between the Valid and Paradoxes

measurements by means of a standard t-test for related samples (repeated measures). Due to

the multiple comparisons the Bonferoni correction was applied to all p-levels.
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Behavioural data. Behavioural responses were coded as follows: for the 39 valid statements

“Right” was considered the correct answer whereas for the 39 paradoxes “wrong” was consid-

ered correct (responses coded as 0 and 1 for incorrect and correct responses respectively, and

the total of correct responses is presented for each condition. Total accuracy per condition was

expressed as the proportion of correct answers per 39 opportunities. The average confidence of

each subject about their judgements is also presented in the form of a percentage.

Results

Electrophysiological results: Comparison of P300 amplitudes of the two

conditions

Comparison of P300 amplitudes and latencies of the two groups. In Fig 3 the grand

average ERP waveforms for the two groups under investigation are shown, at lead P4.

Mean amplitudes, in microvolts, of P300 amplitude waveform for the two groups, at each

lead are displayed in Table 2.

The Bonferroni post hoc procedure revealed that mean amplitude values at leads Fp1, Fpz,

Fp2, AFz, F8, FC6 for valid deduction were significantly lower than mean amplitude values for

paradoxes, while the opposite picture was obtained regarding the leads P4, O1 and O2. The

latency waveforms for the two groups did not show any significant dissimilarity.

Fig 2. Mean ERP signal of lead P4, in the positive condition, is analyzed. Time frame displayed in figures is oriented to the time point of

trigger onset to 600 ms after. Each coefficient in the scalograms represents a degree of correlation between the transformed wavelet and the

analyzed signal. Warmer coloured regions indicate a stronger degree of correlation. (A) Analyzed and reconstructed ERP signals. (B)

Depiction of analyzed ERP waveform. (C) Modulus of complex Morlet wavelet. (D) Real part of complex Morlet wavelet. P300 component

can be identified in the scalogram. (E) and (F) visualize the angle and the imaginary part of the complex Morlet wavelet used in CWT.

doi:10.1371/journal.pone.0168067.g002
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Behavioural results: comparison of response accuracy and confidence

between the two conditions

As seen in Table 3, mean correct responses in the valid condition (judgement = “right”) were

higher than those noted in the paradoxes (judgement = “wrong”; 29.25 and 19.49 respectively).

The difference was statistically significant (paired t-test t = 10.67, p = 0.00). Similarly, the self-

reported confidence observed with respect to the valid condition as opposed to the paradoxes

was significantly higher (means 82.14 and 77.43 respectively, paired t-test: t = 4.08, p = 0.00).

Correlations between electrophysiological and behavioural data

When correct responses were examined separately in the valid syllogism condition, moderate

but statistically significant positive correlations were noted between the correct responses and

P300 in electrodes O1, O2, CP6, FZ, and OZ. Also, moderate but statistically significant nega-

tive correlations were observed in electrodes FC6 and F4. On the measure of self-reported con-

fidence, there were two positive correlations found in electrodes FC5 and F3 and a negative

correlation in electrode T4. In contrast, when correct responses were examined in the paradox

Fig 3. Grand average ERP waveforms at lead P4. A) Grand average ERP waveform in microvolts, for the Paradoxes group at lead P4. B)

Grand average ERP waveform in microvolts, for the Valid group at lead P4.

doi:10.1371/journal.pone.0168067.g003

Aristotle Meets Zeno

PLOS ONE | DOI:10.1371/journal.pone.0168067 December 29, 2016 8 / 17



condition, no correlations were noted between P300 and the corresponding correct responses

or self-reported confidence. (Table 4).

Discussion

During paradox deduction, our results demonstrated a more positive event-related potential

deflection (P300) across frontal regions, specifically at leads Fp1, Fpz, Fp2, AFz, F8, FC6. In

contrast, valid deduction was associated with noticeable P300 amplitudes across parieto-occip-

ital regions, in particular at leads P4, O1 and O2. The significance of the observed differences

concerning P300 amplitudes can be better understood if both psychophysiological and neuro-

biological aspects of this ERP component are taken into consideration. The P3 component of

the event-related potentials is consistently related to attention, decision making and memory

updating and therefore provides a valuable tool for the investigation of these processes in the

Table 2. Mean amplitudes, in microvolts, of P300 amplitude waveform for the two groups, at each

lead.

Valid Paradoxes p

Mean±Std Mean±Std

1 F7 0,9745±2,28764 1,5715±1,75737 0,048

2 FC5 0,6606±1,27547 1,0264±1,35858 0,070

3 C3 0,7459±,87856 ,9014±1,01409 0,207

4 CP1 1,7696±1,40759 1,6680±1,85782 0,690

5 P3 2,3184±1,56435 2,0566±1,56109 0,197

6 FPZ 1,1246±2,68769 2,3532±2,36961 0,001*

7 AFZ 0,8429±2,50338 1,9151±1,95241 0,000*

8 CZ 1,1239±1,23852 1,1260±1,00673 0,991

9 O1 3,7194±2,28322 3,1699±2,16089 0,011*

10 O2 3,7103±2,44903 2,8750±2,05637 0,001*

11 F8 0,9719±2,45147 2,1806±2,11570 0,000*

12 FC6 0,9914±1,39716 1,5628±1,27516 0,009*

13 T4 2,0694±1,37379 2,0001±1,34584 0,608

14 CP2 1,9742±1,44218 1,6357±1,36975 0,046

15 P4 2,4693±1,70568 1,9107±1,35425 0,004*

16 CP6 8,5886±5,79086 7,9981±5,66981 0,410

17 T6 2,9253±2,32218 2,3502±1,53026 0,034

18 F3 ,7923±1,68613 1,2165±1,39349 0,080

19 FC1 ,6617±1,34783 1,0199±1,17109 0,033

20 T3 1,7026±1,35377 1,5430±1,43469 0,463

21 CP5 1,6998±1,31621 1,5115±1,17666 0,284

22 T5 3,1095±1,95552 2,9423±2,07264 0,552

23 FP1 1,1952±2,57481 2,7082±2,39992 0,000*

24 FP2 1,1755±2,70988 2,7339±2,44529 0,000*

25 FZ 5,1805±2,91143 4,6739±2,92500 0,155

26 PZ 2,4464±1,75907 1,9989±1,42685 0,019

27 OZ 3,6355±2,42617 2,8700±2,03747 0,002

28 F4 ,6716±1,69894 1,5514±1,48180 0,001

29 FC2 ,8150±1,33921 1,3044±1,30180 0,021

30 C4 1,2406±1,41767 1,4213±1,60468 0,213

*p value statistically significant at 0.05 level by post hoc Bonferroni correction.

doi:10.1371/journal.pone.0168067.t002
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human brain. It represents two distinct though strongly interrelated subcomponents P3a and

P3b [35,44].

The suggested source of the P3a is the frontal lobe. Patients with frontal lesions demonstrate

attenuated P3 amplitude at frontal sites, while their parietal response appears less affected [45–

47]. These results are in line with recent neuroimaging and ERP studies demonstrating that

activity of the frontal cortex can be related to detection of infrequent or alerting stimuli [48–

51]. P3a has been associated with the initial reallocation of attention resulting from detection

Table 3. Response accuracy and confidence for the Valid and Paradoxical conditions.

Mean Std.Dv. N Diff. t df p -95% +95%

Score Valid 29,26 5,65

Score Paradox 19,49 5,45 51 9,77 10,67 50 0,000 7,93 11,60

Mean Std.Dv. N Diff. t df p -95% +95%

Confidence Valid 82,14 11,16

Confidence Paradoxes 77,43 13,55 51 4,71 4,08 50 0,000 2,39 7,03

doi:10.1371/journal.pone.0168067.t003

Table 4. Correlations P300 Valid and Paradoxes with Score and Confidence.

Score Valid Confidence Valid Score Paradoxes Confidence Paradoxes

P300 FC5 -0,2252 0,2951 -0,0359 0,0288

N = 51 N = 51 N = 51 N = 51

p = 0,112 p = 0,036 p = 0,802 p = 0,841

P300 O1 0,2926 -0,2193 0,1435 0,0814

N = 51 N = 51 N = 51 N = 51

p = 0,037 p = 0,122 p = 0,315 p = 0,570

P300 O2 0,3143 -0,1753 0,0731 0,1232

N = 51 N = 51 N = 51 N = 51

p = 0,025 p = 0,218 p = 0,610 p = 0,389

P300 FC6 -0,3038 0,0834 -0,0551 -0,1153

N = 51 N = 51 N = 51 N = 51

p = 0,030 p = 0,561 p = 0,701 p = 0,420

P300 T4 0,1248 -0,3609 0,1006 -0,2079

N = 51 N = 51 N = 51 N = 51

p = 0,383 p = 0,009 p = 0,483 p = 0,143

P300 CP6 0,3328 -0,2327 0,2283 -0,2644

N = 51 N = 51 N = 51 N = 51

p = 0,017 p = 0,100 p = 0,107 p = 0,061

P300 F3 -0,1716 0,3135 0,1252 0,1394

N = 51 N = 51 N = 51 N = 51

p = 0,229 p = 0,025 p = 0,381 p = 0,329

P300 FZ 0,3891 -0,1676 0,1164 -0,1498

N = 51 N = 51 N = 51 N = 51

p = 0,005 p = 0,240 p = 0,416 p = 0,294

P300 OZ 0,2835 -0,1209 0,0594 0,0529

N = 51 N = 51 N = 51 N = 51

p = 0,044 p = 0,398 p = 0,679 p = 0,712

P300 F4 -0,3123 0,1232 0,0750 0,0364

N = 51 N = 51 N = 51 N = 51

p = 0,026 p = 0,389 p = 0,601 p = 0,800

doi:10.1371/journal.pone.0168067.t004
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of stimulus attribute changes. This process follows original sensory processing and stimulus

feature mismatch detection. The prefrontal cortex is required for cognitive organization in

decision making under ambiguity [52,53] and also appears to play a key role in the cognitive

control of conflict [54]. In this context it is worth noting a study by Goel et al. [55] who investi-

gated 17 normal volunteers with fMRI while they engaged in a transitive inference task involv-

ing determinate and indeterminate relations. The results showed that the right ventrolateral

prefrontal cortex (BA 47) is activated by the processing of indeterminate trials with no belief-

bias cues, while left lateral prefrontal cortex (BA 45) is activated by the processing of indeter-

minate trials with belief-bias cues. The authors suggested that these results reflect an interplay

between the tendency of the left PFC to overinterpret information [56] and the ability of the

right PFC to moderate this overinterpretation by maintaining ambiguous or indeterminate

mental representations of the situation at hand [57]. Essentially Goel et al. [55] claimed that

right hemisphere contribution is twofold. On the one hand, it prevents the left hemisphere

from premature pattern completion, hence inhibiting premature conclusions. On the other

hand it maintains the incomplete pattern on line for further evaluation. Our results, which

indicate increased P300 activity involving the frontal cortical regions during exposure to para-

doxes, would appear to be in line with the above.

In contrast with the P3a, the P3b has a more posterior-parietal scalp distribution. There is

ample evidence that the P3b component can be viewed as indexing voluntary attention, its

amplitude reflecting the allocation of attentional resources [57,58]. This process should engage

working memory operation, while the neuronal model of the stimulation is compared with the

attentional trace of relevant information. Our results show an association of the P3b with valid

arguments. This is in accordance with brain imaging observations situating reasoning-related

activities in parietal and/or occipital regions of the brain, which are known to be engaged in

tasks with visuospatial components [59]. Furthermore, our results are compatible with previ-

ous ERP studies, as long as they have focused on P3- like waveforms [29,32,33].

At this point the relationship between electrophysiological data and behavioural perfor-

mance consisting of response accuracy and confidence in responses made must be discussed.

In the valid statements condition, accuracy was positively correlated with P300 amplitudes

located at occipital and parietal areas (O1, O2, Oz leads and CP6 lead respectively) which

mediate bottom-up processing, as well as with prefrontal areas (Fz lead) mediating top down

processing. Additionally, it was found that accuracy exhibited negative associations with P300

amplitudes located at the right frontal areas (FC6, F4 leads) which mediate inhibitory control

in monitoring mechanisms [60]. Taken together these findings suggest that deductive reason-

ing can be cautiously described as a cascade of cognitive processes requiring concerted action

of posterior areas mediating visuospatial representation and the anterior regions involved in

feature integration and rule verification [61,62].

The measure of confidence was positively correlated with P300 amplitudes in the left pre-

frontal areas (F3 and FC5 leads) and negatively correlated in the right temporal area (T4 lead).

This functional mapping seems to be in line with recent views suggesting that the remarkable

ability of the human brain to adapt its information processing relies on transitory changes in

patterns of cooperation and competition between neural systems encompassing specialized

large-scale brain systems [61]. Additionally, given that confidence in one’s responses is a self-

referential process, the Default Mode Network (DMN) may also be involved: DMN function

has been linked to self-relevant, internally directed information processing [63].

Participants demonstrated decreased response accuracy as well as decreased confidence in

their responses under the condition of paradoxes. Given that paradoxes involve ambiguity, the

observed decrease in accuracy under that condition is compatible with reports attributing the

poor outcome under ambiguous conditions to the ‘incompetence or thoughtlessness’ induced
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by ambiguity [63,64]. The decreased sense of confidence may also be ascribed to the ambiguity

of the condition, in line with evidence suggesting that subjects feel less confident when faced

with issues which they do not understand [65].

It is noteworthy that there were no correlations between behavioral performance and P300

amplitudes elicited during the condition of paradoxes. A tentative explanation of this absence

of correlations under paradox processing may be the ambiguity involved in this condition,

which can be reasonably expected to increase working memory load. This in turn is inversely

related with P300 amplitude manifestation [58,66].

Taken together, our results suggest that deductive reasoning is subserved by several systems

located both in frontal and in parietal—occipital cortices. Furthermore, it denotes that these

systems are responsive to the type of deductive argument processed. Future behavioural and

psychopsysiological studies might focus on understanding how the brain networks involved in

reasoning are mobilised and how this mobilisation may be influenced by inter- and intra-indi-

vidual factors.

Limitations: The main drawback of the sentence-based research practice we used in this

study is the interactions between reasoning-related brain activity and higher-level linguistic

processing, which constitutes a confounding factor. A second shortcoming of this experimen-

tal approach is that it neglects the fact that reasoning is often exercised on the basis of non-lin-

guistic inputs, with information received directly from the senses. It is clearly necessary to

extend the present approach to a variety of reasoning tasks, involving various administration

modalities in order to ensure the generalisability of our findings.

Conclusion

Deduction is the ability to draw necessary conclusions from previous items of knowledge. In

our study the two different types of argument, paradoxical and valid, engaged different infor-

mation processing operations as reflected by the involvement of frontal / orbitofrontal brain

regions in dealing with paradoxical arguments, and parietal-occipital brain regions in process-

ing valid Aristotelian arguments. The obtained results suggest that the dissociations between

these two forms of brain activation in the course of reasoning are attributable to the nature of

the deductive argument at hand. Paradoxical arguments implicate P3a, which originates from

stimulus-driven frontal attention mechanisms during task processing. Valid arguments are

associated with the P3b waveform, which originates from parietal and occipital activity and is

related to attention. These comparisons elucidate similarities and differences between the neu-

ral correlates of deductive syllogistic and paradoxical reasoning. Our aim was to put forward

these specific points and, in so doing, to stimulate further research into the psychophysiologi-

cal basis of reasoning in general.

Appendix

ERP Detection with Continuous Wavelet Transform (CWT)

The CWT decomposes a signal time series, x(t), into a set of basis functions Cτ,s(t), called

wavelets. Wavelets are “small waves” that grow and decay in a limited time period and have

their energy concentrated in time, constituting an ideal tool for the analysis of transient, non-

stationary or time-varying phenomena. As the contemporary publications indicate, CWT has

a good time and frequency localization, which is ideal for ERP detection [67,68].

Wavelets are defined as [69]

ct;sðtÞ ¼
1
ffiffi
s
p cð

t � t

s
Þ ð1Þ
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Where 1ffi
s
p is a normalization parameter ensuring unit variance of the wavelet kct;sðtÞk, τ is the

translation parameter expressing the shifting of the wavelet over the signal and s is the wavelet

scaling parameter, which is related to the frequency. The basic functions of the wavelet trans-

form are shifted and scaled versions of the time-localized mother wavelet, C(t). For the ERP

detection, the complex Morlet wavelet was chosen as a mother Wavelet.

The complex Morlet wavelet is defined as:

cð
t � t

s
Þ ¼

1

p1=4
eio0 ½ðt� tÞ=s�e� 1

2
½ðt� tÞ=s�2 ð2Þ

The continuous wavelet transform is the coefficient of the basis Cτ,s(t). The Morlet-Gross-

mann definition of the continuous wavelet transform of signal x(t) is given as [70]

Wxðt; sÞ ¼ hxðtÞ;ct;si ¼

Z þ1

� 1

xðtÞc�
t;sðtÞ dt ¼

Z þ1

� 1

xðtÞ
1
ffiffi
s
p c

�
ð
t � t

s
Þ dt ð3Þ

Using this transformation, it is possible to map a one-dimensional signal, x(t), to two-

dimensional coefficients Wx(τ,s). The two variables can perform the time-frequency analysis,

that is, the determination of a particular frequency (parameter s) at a certain time instant

(parameter τ).

In our study, ERP detection was implemented by applying the following algorithm of

CWT:

1. A starting and ending value of scaling (s) for the complex Morlet wavelet was chosen, while

the translation step (τ) was set to an initial value of 1.

2. The correlation for the current value of scaling and for every translation was computed,

covering the whole signal

3. Scaling was changed according to an appropriate step, following step 2 of the algorithm,

until the maximum value of scaling had been reached

We considered the wavelet coefficients obtained by analyzing and reconstructing the

evoked potential calculated via conventional averaging in each subject. A demonstration of the

wavelet transform is visualized in the scalograms of Fig 2, where each coefficient represents a

degree of correlation between the transformed wavelet and the analyzed signal. Based on these

coefficients, an appropriate scaled wavelet was chosen to match the P300 component. The

wavelet was convolved with the EEG signals, only in the corresponding part of the signal

where P300 component could be situated (240–500ms after the stimulus onset), thus avoiding

a false ERP detection. ERP peak values and corresponding latencies were extracted for each

EEG channel of each subject, for the averaged epoched data.

Supporting Information
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