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Abstract
Background. Although microscopic assessment is still the diagnostic gold standard in pathology, non-light micro-
scopic methods such as new imaging methods and molecular pathology have considerably contributed to more 
precise diagnostics. As an upcoming method, Raman spectroscopy (RS) offers a “molecular fingerprint” that could 
be used to differentiate tissue heterogeneity or diagnostic entities. RS has been successfully applied on fresh and 
frozen tissue, however more aggressively, chemically treated tissue such as formalin-fixed, paraffin-embedded 
(FFPE) samples are challenging for RS.
Methods. To address this issue, we examined FFPE samples of morphologically highly heterogeneous glioblas-
toma (GBM) using RS in order to classify histologically defined GBM areas according to RS spectral properties. We 
have set up an SVM (support vector machine)-based classifier in a training cohort and corroborated our findings 
in a validation cohort.
Results. Our trained classifier identified distinct histological areas such as tumor core and necroses in GBM with 
an overall accuracy of 70.5% based on the spectral properties of RS. With an absolute misclassification of 21 out of 
471 Raman measurements, our classifier has the property of precisely distinguishing between normal-appearing 
brain tissue and necrosis. When verifying the suitability of our classifier system in a second independent dataset, 
very little overlap between necrosis and normal-appearing brain tissue can be detected.
Conclusion. These findings show that histologically highly variable samples such as GBM can be reliably recog-
nized by their spectral properties using RS. As conclusion, we propose that RS may serve useful as a future method 
in the pathological toolbox.

Key Points

• Establishment of a SVM (support vector machine)-based classifier to distinguish distinct 
histological areas in a heterogenous tumor.

• Applicable use of Raman spectroscopy on chemically treated FFPE tissue during the 
routine pathological workflow.

Application of Raman spectroscopy for detection of 
histologically distinct areas in formalin-fixed paraffin-
embedded glioblastoma
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Spectroscopic techniques such as Raman spectroscopy 
recently gained more attention in tumor research.1–3 The 
Raman effect is the process of inelastic scattering of photons, 
first described in 1928 by the Indian physicist, C.V. Raman.4 
The resulting possible differentiation of tissue types opens 
up opportunities for its diagnostic use in surgery and pa-
thology.1,5,6 Therefore, Raman spectroscopy is investigated 
as both an intraoperative tool due to its non-invasiveness 
and short integration time,6 and for its use on processed 
tissue. The formalin fixation process causes, however, se-
vere changes of the spectral properties that need to be taken 
into account when comparing fresh and processed tissue.7,8

We went one step further and performed RS on formalin-
fixed, paraffin-embedded samples additionally offering 
precise histological information on adjacent stained se-
rial sections. The general suitability of FFPE tissue for RS 
was demonstrated already on the small intestine of rats9 
as well as for the distinction of different tumor entities,10 
albeit without a focus on tissue heterogeneity. Changes in 
the Raman Spectra due to the influence of bound paraffin 
wax (certain points at 1063, 1133, 1296, and 1441 cm–1 in the 
Raman spectra can be assigned to contributing paraffin11) 
make the analysis of the data more complex, even after an 
efficient dewaxing agent was applied.11,12 Furthermore, the 
choice of slide substrate is crucial due to the small thick-
ness of the sections; while silicon-based glass has a strong 
Raman signal, CaF2 slides (Supplementary Figure 1) with 
only one single peak at 321cm–1, are suitable for Raman 
Spectroscopy on thin sections.13 While these obstacles 
make the conditions for spectroscopic examinations diffi-
cult, the possibility to obtain the precise orientation of the 
sample as well as the identification of certain areas, and 
therefore the possible option of accessing even a heter-
ogenous tissue fragment (eg, heterogenous tumor entity) 
precisely, make this effort worthwhile.

Due to its high heterogeneity, which also reflects its pre-
viously used name “glioblastoma multiforme,” we chose 
glioblastoma (GBM) tumor tissue to analyze the suitability 
of classifying histological tumor areas using RS on FFPE 
tissue. GBMs are traditionally characterized and diagnosed 
according to histopathological features and more recently 
also genetic alterations.14 Amongst multiple highly variable 
histological features, GBM usually show a vital, a necrotic, 
and an infiltrative peritumoral zone.14–17 Apart from a tradi-
tional assessment of the histology in the light microscopic 
examination, new techniques and artificial intelligence can 

in the meanwhile diagnose GBM with a similar or even 
higher precision than experienced neuropathologists.18–21

For this reason, data usually needs to be processed 
and classified by machine learning22,23 algorithms, which 
have strongly influenced the pathology workflow in re-
cent years.24–26 Machine learning tools, as employed 
in this study, are additionally used for prediction of 
large vessel occlusion (LVO) stroke27 and categorization 
of traumatological patients and prediction of bladder 
rupture.28

This present study was designed to examine Raman 
spectra of different histopathological areas of GBM and to 
differentiate them with a MATLAB based classifier that we 
developed in order to test general suitability of RS as a fur-
ther diagnostic tool in neuropathology.

Materials and Methods

Patient Data

One hundred and seventeen FFPE tissue blocks from 59 
tumors of 53 GBM patients were included in the study. 
For a more detailed description of the glioblastomas, see 
Supplementary Table 1. The patients underwent routine 
diagnostics at the National Center of Pathology (NCP) at 
the Laboratoire national de santé (LNS, Luxembourg) 
in the years 2018–2020 and were all part of the INSITU® 
study. The pathological diagnosis for each tumor was car-
ried out by a board-certified neuropathologist (MM) based 
on histology, immunohistochemistry as well as on epige-
netic and genetic results. Histological tumor areas that 
were analyzed in the present study were defined by means 
of light microscopic examination. The present INSITU® 
study, Nr. 201804/08, has been approved by the “Comité 
National d”Ethique de Recherche’ (CNER). It is handled 
according to the “EU General Data Protection Regulation 
GDPR,29 as well as the world medical declaration (WMA) 
Declaration of Helsinki as a statement of ethical principles 
for medical research involving human subjects.30

Tissue Processing and Slide Preparation

The FFPE tissue blocks were cut with a microtome 
(thickness of 7μm was chosen, in order to receive a 

Importance of the Study

In this study, we established an SVM (support 
vector machine)-based classifier, which can 
identify specific histological areas in glioblas-
toma by the use of spectral tissue properties. 
In contrast to other studies, our classifier can 
be used on aggressively chemically treated 
formalin-fixed paraffin-embedded tissue and 
also on small tissue fragments. Due to its un-
biased approach to tumor diagnostics with 

very little requirements to the sample, Raman 
Spectroscopy may be a useful, relatively cheap 
and easy-to-apply future tool in the toolbox of 
pathology departments. In addition, we have 
shown that a heterogeneous tissue cannot be 
determined by a single spectral property. This 
must be taken into account when creating a 
global RS-based classifier to differentiate be-
tween several entities.

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab077#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab077#supplementary-data
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sufficient amount of tissue as well as the possibility of 
a light microscopical examination) and two consecu-
tive sections were put on two slides. The first section 
was placed on a glass slide and then HE (hematoxylin 
and eosin) stained for histological examination, the 
second section was placed on a CaF2 (calcium fluoride; 
Crystran, Poole, UK) slide and left unstained to prevent 
spectral contamination. With a single peak31 at 321 cm–1 
(Supplementary Figure 1), CaF2 slides have spectral 
properties that allow proper spectroscopic examination 
of the tissue on top. In order to reduce the impact of 
paraffin on the spectra, the slides were dewaxed. The 
slides were first heated for 60  min at 60°C and then 
placed in a bath of xylene for 2 × 15 min before being 
put in descending ethanol solutions for 3  × 2  min. In 
the next step, distinct areas of GBM (vital GBM core/
necrosis/peritumoral zone) were defined on HE stained 
slides. For easier optical handling, distinct areas were 
marked by circling them with a marking pen on the 
backside, before being matched and correlated with 
the corresponding areas on the CaF2 slide (Figure 1). 
The vital zone was defined as an area with increased 
cell density, nuclear pleomorphisms, increased mitotic 
rate as well as facultative hypervascularization. The ne-
crosis zone was defined by eosinophilic areas within 
the tumor in which nuclei did not stain with hematox-
ylin anymore. The peritumoral zone was defined by only 
very mildly elevated cell density, rather containing re-
active astrocytes and potentially very few tumor cells 
mainly infiltrating along blood vessels and axonal 
tracts.14,32 Those areas were chosen because of their his-
tological features, which could be used to provide the 
ground truth for the spectral classifier. For reuse, the 
CaF2 slides were washed after this process. To do so, 
the slides are placed in a bath of warm rinsing agent 
(consisting mainly of surface-active agents and eth-
anol) for 30 min and then cleaned manually, until tissue 
residues could no longer be seen visually. Finally, the 
slides are washed off with distilled water and adhering 
tissue residues were spectroscopically excluded.

Raman Spectroscopy

The ProRaman-L high-performance Raman spectrom-
eter (TSI, Shoreview, USA) (Supplementary Figure 2) has 
an excitation laser at 785  nm and a CCD sensor with a 
cooling temperature of –60°C enabling repeatable meas-
urements.33 For data acquisition, a lens with 7 mm working 
distance and 100 μm spot size was used. The defined areas 
of the tumor tissue were measured repeatedly, but at dif-
ferent locations within the desired area on CaF2 slides. 
The acquisition parameters of the measurement were set 
to 10 s, 30 averages, 90 mW. The data was recorded and 
saved as a.spc file using the ProRaman Reader software 
Version 8.3.6 (TSI, Shoreview, MN).

Data Analysis and Machine Learning

We divided our measurements into two data sets: one 
set for training a classifier (471 measurements, 100 
FFPE blocks from 48 tumors) and a separate, balanced 
set (99 measurements, 17 FFPE blocks from 11 tumors) 
for testing and validating the classifier with measure-
ments from different samples to minimize the bias of 
tumor sample dependent measurement identification. 
The training data set contained 100 measuring points of 
necrosis and 105 measuring points of peritumoral zone 
and 266 measuring points of the vital zone, whereas the 
second independent data set contained 29 measuring 
points of necrosis, 37 measuring points of peritumoral 
area and 33 measuring points of the vital zone. An 
overview on the number of measurements in the in-
dividual histological areas for both data sets is given 
in Table 1. We used the software SPECTRAGRYPH34 
(Menges Friedrich, Oberstdorf, Germany) for the op-
tical display of individual spectra as well as for proc-
essing and displaying of the average spectra of the 
three areas (Figure 2). Data analysis was done using the 
MATLAB Toolbox (MathWork, Natick, MA) for Statistics 
and Machine Learning™.35 The MATLAB Classification 
Learner App36 is an interactive and user-friendly way 
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Figure 1. Correlation of Raman spectroscopy and classic histology. (A) Unstained tissue on a CaF2 slide. (B) Colored tissue (HE) on a glass slide. 
Histologically distinct tissue areas were defined in HE samples (here: example of the vital tumor zone) and visually correlated on subsequent serial CaF2 
slides.
  

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab077#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab077#supplementary-data


 4 Klamminger et al. Raman spectroscopy in FFPE glioblastoma

to practice supervized machine learning. We trained a 
classifier in the Classification Learner App with the dif-
ferent areas as response variables, the intensities of the 
Raman shifts as predictor variables and 5-fold cross-
validation. The app trains a model for each fold and the 
average test error over all folds is calculated.37 We chose 
SVMs (support vector machines) as a method of pattern 
recognition and trained the algorithm with our data. The 
resulting classifier was subjected to a hyperparameter 
optimization; an automatic selection and improve-
ment of hyperparameters to tune our SVM.38 We cal-
culated the performance statistic based on the output 
of the SVM classifier. The post-test probabilities were 
calculated by the Classification Lerner App; the total 
accuracy was calculated as the percentage of correct 
classifications out of all classifications.

Results

Classifier Sesults Show Division Into Three 
Different Spectral Groups

We established a multiclass categorical classifier with 
a total accuracy of 70.5% (332 correct vs 139 misclassi-
fied) and plotted the number of observations as well as 
the class prediction results in a confusion matrix (Figure 
3). Our classifier revealed a True Positive Rate (TPR) of 
81% for the vital zone, 60% for necrosis and 54% for the 
peritumoral zone. The False Negative Rate (FNR) was 19% 
for the vital zone, 46% for the peritumoral zone and 40% 
for necrosis, respectively (Figure 3). We obtained a Positive 
Predictive Value (PPV) rate for the vital zone of 76%, for ne-
crosis of 66%, and for the peritumoral zone 58% as well 
as a False Discovery Rate (FDR) for the vital zone of 24%, 
for necrosis of 34%, and for the peritumoral zone of 42% 
(Supplementary Figure 3). In addition, the ROC (receiver 
operating characteristics curve) curve and the AUC (area 
under the curve) number can be used as an indicator of 
the classifier performance, even for multi-class classifica-
tions.39 We received a ROC for each of the three classes. 
The corresponding AUC value for the necrosis class was 
0.86 (Figure 4), for vital zone class 0.81 and for peritumoral 
zone class 0.80.

Good Discrimination Between Necrosis 
and Peritumoral Area Even in Unbalanced 
Training Data

As a result of the area distribution within the tumor tissue, 
the number of measuring points corresponding to one of 
the three areas is not distributed equally (refer to Table 1). 
The surgeon used imaging techniques or intraoperative 
neuronavigation and microscopy (including labeling 
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Figure 2. Raman spectroscopy data of histologically defined areas in GBM. Average spectra of the three histologically defined areas in GBM (vital 
tissue / peritumoral tissue / necrosis). For a better overview, the CaF2 peak at 321 cm–1 has been subtracted. SPECTRAGRYPH software was used 
for data analyses.

  

  
Table 1. Data Overview

Sample size: 117 
FFPE blocks from 
59 glioblastomas

Pathohistological 
area (n = 3)

Measuring 
points training 
data set (n = 471; 
48 tumors)

Measuring points ex-
ternal validation data 
set (n = 99; 11 tumors) 

Necrosis 100 29

Peritumoral 105 37

Vital zone 266 33

Overview about the number of glioblastomas and measurements car-
ried out in total as well as distribution of the measurements related to 
the two data sets. The external validation data set contains different 
tumors to avoid bias.
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with aminolevulinic acid) as well as visual and tactile im-
pressions to resect tumor tissue, which, compared to 
peritumoral or healthy brain tissue, is resected in larger 
quantities. Of note, our classifier has been trained with 
an unbalanced data set reflecting this distribution. The de-
tection of the vital zone revealed the highest TPR at 81% 
and PPV at 76%, which is dependent on the frequency of 
vital zones appearing in our data set. Most misclassifica-
tions occurred between the vital zone and the necrosis 
/ peritumoral zone, respectively, while only a small per-
centage (in total 21 mispredictions of 471 measurements) 
is between necrosis and peritumoral zone (Figure 5), sug-
gesting a good separability of these two areas using our 
established classifier.

Classifier Validation

We tested our classifier with a balanced dataset of different 
tumors to exclude the imbalance of input data. Testing the 
classifier with an extra data set is also a protection against 
overfitting after the optimization process.38 The true pos-
itive rate / true negative rate (TNR) in this classification 
was 59% (TPR) / 94% (TNR) for necrosis, 54% (TPR) /  
94% (TNR) for peritumoral zone and 79% (TPR) / 58% 
(TNR) for vital zone (Supplementary Figure 4). Amongst 
the misclassifications, there was only one overlap (mis-
classification) between necrosis and peritumoral zone, all 
other misclassification occurred either between vital zone 
and necrosis (12 necrosis as vital zone, 3 vital zones as ne-
crosis) or vital zone and peritumoral zone (16 peritumoral 
zones as vital zone, 4 vital zones as peritumoral zone). This 
mirrors the situation in the 5-fold cross-validation of the 
classifier training, suggesting a good separation between 
the peritumoral zone and necrosis. The vital zone is also a 
distinct spectral entity but more frequently misidentified 
as either of the other ones. This reflects the morphological 

arrangement of the zones. For a closer look at the sen-
sitivity, specificity and positive predictive value/false dis-
covery rate obtained from the data set for validation, see 
Table 2.

Discussion

Our data shows that RS can distinguish histologically 
defined zones in GBM even upon aggressive chemical 
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Figure 3. SVM of training data set after validation. Performance of our classifier after internal 5-fold cross-validation. (A) Number of observations 
of the established classifier, plotted according to histological area (= true class) and prediction based on the Raman spectra (= predicted class). (B) 
Corresponding TPR (True Positive Rate) and FNR (False Negative Rate) values. The TPR was for vital zone 81% (FNR 19%), for necrosis 60% (FNR 
40%) and for peritumoral zone 54% (FNR 46%).
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treatment leading to a considerable change of the bio-
chemical tissue composition as in FFPE samples.

A considerable number of spectra acquired from the 
vital zone shows spectral similarities to either necrosis or 
infiltrative peritumoral areas, however, most spectra of 
this area are still recognized as a distinct spectral entity by 
the classifier. The clearest separation is achieved between 
the necrotic and the peritumoral areas of the tumor. This is 
in line with previous findings on frozen tumor samples.40,41 
In our SVM classifier, all three histological areas are pre-
sented as distinct spectral entities. This could be confirmed 
with a balanced, independent data set revealing a good dif-
ferentiation between necrosis and peritumoral zone. This 
confirms that GBM cannot be sufficiently determined by a 
single type of spectral property, which is an important fact 
to be considered for global RS-based classifiers aiming 
at distinguishing different tumor entities. For a global 

classifier approach, eg, using RS as an intraoperative di-
agnostic tool to identify the adequate resection margin, fu-
ture studies may use our findings to distinguish the zones 
in fresh, unprocessed tissue as well. However, the trans-
lation of spectra across different levels of processing is 
challenging and will require additional analytic tools. The 
Raman shift values provide information about the under-
lying biochemical properties of the sample. However, the 
approach used in this study does not make use of such in-
formation but treats the spectra as fingerprint-like patterns. 
This leaves several potential sources of influence such as 
the formalin fixation or individual residues of paraffin wax 
sticking to the tissue, difficult to access. Despite optimiza-
tion protocols, we thus cannot exclude residue spectra.

While necrosis and peritumoral zone can be well distin-
guished by our classifier, we see some misclassification 
between the vital zone and of both adjacent areas. There 
are several possible explanations for this phenomenon. 
The classifier was trained based on the histological as-
signment of areas as one of the three classes, however, 
the precision of this assignment is naturally limited. In 
representative tumor tissue, the three areas are in tight 
morphological association and the identification of the 
histological ground truth was not done on the measured 
section but on the adjacent one, which was stained. In the 
small deviation between these two sections, some spa-
tial shifts may explain the observed differences between 
the assigned class and the one predicted by the classifier. 
Even within the same section, the intimate intertwining 
of features may contribute to a heterogenous spectral 
signal within the spot size of the excitation laser, which is 
100 µm in diameter. It would be possible to increase the 
resolution with smaller spot sizes, however, we chose a 
spot-measurement-based method that, in contrast to mi-
croscopic Raman scanning, aims to provide a fast readout 
with a single measurement that is largely insensitive to 
sampling errors. Furthermore, it could be assumed that ne-
crotic areas may still contain biochemical constituents that 
appear within the spectral range of the vital zone. As pro-
posed in a rat model, central necrosis (no signs of prolif-
eration) and peripheral necrosis (associated not only with 
pyknotic but also pseudopalisading cells) display different 
spectral identities, attributed to a different concentration 
of plasma proteins or high lipid content.42 Therefore our 
necrotic area itself may display a merging zone, of which 
some spectral overlap with the vital zone occurs.

Taken together, the classification of tumor areas is based 
on fundamentally different properties of the tissue, on the 
one hand, the morphological appearance, versus on the 
other hand the biochemical composition. Given the good 
discrimination between the peritumoral zone and ne-
crosis and the identification of a distinct but overlapping 
spectral class for the vital zone, this tool presents a use-
able method for the identification of tissue even when 
not all required features for diagnostics are present in 
a sample. This taken into account, our method of meas-
urement and classification does provide a good way to 
identify the different zones in an unstained section of an 
FFPE sample. Even if only one of the histological areas 
would be present in a given sample, the classifier could 
be used for diagnostics, in contrast to histopathological 

  
Table 2. Classifier Results of the Validation Data Set

Necrosis Peritumoral 
zone

Vital zone

True positive rate 
(=sensitivity) 

59% (17/29) 54% (20/37) 79% (26/33)

True negative rate 
(=specificity)

94% (66/70) 94% (58/62) 58% (38/66)

Positive predictive 
value

81% (17/21) 83% (20/24) 48% (26/54)

False discovery 
rate

19% (4/21) 17% (4/24) 52% (28/54)

Overview of sensitivity, specificity and positive predictive value when 
using SVM classifier for the validation cohort (n = 99).
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Figure 5. Distribution of the classifier predictions. Results for the 
training data set. The non-transparent turquoise blue area repre-
sents the misclassification between necrosis and peritumoral zone. 
On the one hand, measuring points can be divided into three dif-
ferent groups. On the other hand, the number of incorrect classifi-
cations between the peritumoral zone and the necrosis is visualized.
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assessment, which requires all three. Further studies are 
needed to determine if this also holds true against similar 
areas of different origin, such as necrosis in a metastasis. 
Further studies with complementary analyzes (eg, mass 
spectroscopy) could offer the possibility of determining 
changed biochemical processes in the course of the pre-
vious fixation and paraffin wax embedding.

In conclusion, this study demonstrates the possibility of 
classifying different tumor areas on FFPE GBM tissue with 
the help of Raman spectroscopy. This may be a useful, rela-
tively cheap and easy-to-apply tool to complement histopath-
ological and molecular diagnostics. Like other qualitative 
methods, it provides an unbiased approach to tumor diag-
nostics with very little requirements to the sample.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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