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Human G-protein coupled receptors (hGPCRs) constitute a large and highly
pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs’
family members are chemosensory receptors, involved in bitter taste and olfaction,
along with a variety of other physiological processes. Hence these receptors constitute
promising targets for pharmaceutical intervention. Molecular modeling has been so far
the most important tool to get insights on agonist binding and receptor activation. Here
we investigate both aspects by bioinformatics-based predictions across all bitter taste
and odorant receptors for which site-directed mutagenesis data are available. First, we
observe that state-of-the-art homologymodeling combined with previously used docking
procedures turned out to reproduce only a limited fraction of ligand/receptor interactions
inferred by experiments. This is most probably caused by the low sequence identity
with available structural templates, which limits the accuracy of the protein model and in
particular of the side-chains’ orientations. Methods which transcend the limited sampling
of the conformational space of docking may improve the predictions. As an example
corroborating this, we review here multi-scale simulations from our lab and show that,
for the three complexes studied so far, they significantly enhance the predictive power
of the computational approach. Second, our bioinformatics analysis provides support to
previous claims that several residues, including those at positions 1.50, 2.50, and 7.52,
are involved in receptor activation.

Keywords: G-protein coupled receptor, chemosensory receptor, bitter taste receptor, odorant receptor,

bioinformatics, homology modeling, molecular docking, molecular mechanics/coarse grained simulations

INTRODUCTION

The G-protein coupled receptor (GPCR) superfamily is the largest group of plasma eukaryotic
membrane receptors, with about 850 members in the human genome (Fredriksson et al.,
2003; Lagerstrom and Schioth, 2008; Tikhonova and Fourmy, 2010). According to the GRAFS
classification (Schioth and Fredriksson, 2005), human G-protein coupled receptors (hGPCRs) are
divided in five different families, i.e., Rhodopsin-like (or class A), Glutamate (or class C), Adhesion
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(or class B2), Frizzled (or class F) and Secretin (or class B1).
They all share a seven transmembrane (TM) helix bundle shape
(Kobilka, 2007; Venkatakrishnan et al., 2013, 2016; Latorraca
et al., 2017). Binding of an extracellular agonist (or a photon in
the case of rhodopsin) triggers conformational changes in the
receptor. This activates intracellular signaling cascades, leading
to downstream events. Because of their crucial role for many
cellular signaling pathways, hGPCRs are of immense importance
in pharmacology, being the target of ∼50% of currently FDA
approved drugs (Schlyer and Horuk, 2006; Lundstrom, 2009;
Salon et al., 2011; Tautermann, 2014; Miao and McCammon,
2016).

Approximately half of themembers of the hGPCR superfamily
are chemosensory receptors (hChem-GPCRs hereafter) (Takeda
et al., 2002). These include odorant receptors (hORs), bitter
taste receptors (hTAS2Rs) and sweet and umami taste receptors
(Buck and Axel, 1991; Chandrashekar et al., 2006; Yarmolinsky
et al., 2009). Here we focus on hORs and hTAS2Rs, because
they represent the first and third largest hGPCR subfamilies
(with ∼400 and ∼25 members, respectively) (Lagerstrom and
Schioth, 2008; Foster et al., 2014). Although initially found to be
responsible for odorant (Buck and Axel, 1991; Zhao et al., 1998;
Firestein, 2001, 2005) and bitter taste perception (Adler et al.,
2000; Chandrashekar et al., 2000; Matsunami et al., 2000), it is
now recognized that hChem-GPCRs participate in other extra-
nasal (Ansoleaga et al., 2013; Foster et al., 2014; Abaffy, 2015;
Ferrer et al., 2016), and extra-oral (Behrens and Meyerhof, 2011;
Shaik et al., 2016; Lu et al., 2017) physiological processes. In
addition, hChem-GPCRs are involved in pathological processes
(Behrens andMeyerhof, 2011; Ansoleaga et al., 2013; Foster et al.,
2014; Abaffy, 2015; Ferrer et al., 2016; Shaik et al., 2016; Lu
et al., 2017). Thus, they are emerging as promising targets for
pharmaceutical intervention (Foster et al., 2014; Ferrer et al.,
2016; Shaik et al., 2016; Lu et al., 2017), as it happened in the past
for other GPCRs (Schlyer and Horuk, 2006; Lundstrom, 2009;
Salon et al., 2011; Tautermann, 2014; Miao and McCammon,
2016).

hORs belong to class A GPCRs, sharing with the other class
A GPCRs several conserved motifs (de March et al., 2015a) (see
Table 1). They are expressed in different tissues, from the cilia of
olfactory sensory neurons in the nose, to the testis, the gut, the
skin, the tongue, leucocytes, thrombocytes, the skeletal muscle,
primordial germ cells and oocytes, the atrioventricular node
and the brain (Goto et al., 2001; Spehr et al., 2003; Durzynski
et al., 2005; Feldmesser et al., 2006; Braun et al., 2007; Jenkins
et al., 2009; Breer et al., 2012; Ansoleaga et al., 2013, 2015;
Flegel et al., 2013, 2015; Garcia-Esparcia et al., 2013; Wijten
et al., 2013; Busse et al., 2014; Grison et al., 2014; Malki
et al., 2015; Ko and Park, 2016). Their functions span from
olfaction to sperm chemotaxis, to regulation of renal function,
to regeneration and migration in muscle cells, or to neuronal
regulation (Spehr et al., 2004; Griffin et al., 2009; Pluznick
et al., 2009; Grison et al., 2014; Ferrer et al., 2016). hORs
are connected to several diseases, including cervical cancer,
prostate cancer, pancreatic ductal adenocarcinoma, Creutzfeldt-
Jakob’s disease, Alzheimer’s disease, progressive supranuclear
palsy, schizophrenia, and retinitis pigmentosa (Wang et al., 2006;

TABLE 1 | Shared conserved motifs between Class A GPCRs (Lagerstrom and
Schioth, 2008; Venkatakrishnan et al., 2013; Tehan et al., 2014), hTAS2Rs (Pydi
et al., 2014a, 2016; Di Pizio et al., 2016), and hORs (de March et al., 2015a).

TM

helix

Class A hTAS2Rs hORs

TM1 N1.50xxV1.53 N1.50xxI1.53 G1.49N1.50xxI1.53

TM2 L2.46xxxD2.50 L2.46xxxR2.50 L2.46S2.47xxD2.50

TM3 D[E]3.49R3.50Y3.51 L3.46xxF3.49Y3.50xxK3.53 D[E]3.49R3.50Y3.51

TM4 W4.50 4.50 not conserved W4.50

TM5 –
P5.50

–

L5.39xxS5.42L5.43

P5.50
–
5.50 is not conserved
S5.57Y5.58

TM6 –
F6.44xxxW6.48x
P6.50

–
F6.44xxxY6.48

6.50 is not conserved

KAFSTCxSH6.40

–
6.50 is not conserved

TM7 N7.49P7.50xxY7.53 H7.49S7.50xI[V]7.52L7.53 N7.49P7.50xI[L]7.52Y7.53

Residue positions are indicated using the Ballesteros-Weinstein numbering (Ballesteros
and Weinstein, 1995).

Neuhaus et al., 2009; Kang and Koo, 2012; Zhou et al., 2012;
Ansoleaga et al., 2013; Rodriguez et al., 2014; Ma et al., 2015;
Guerrero-Flores et al., 2017).

hTAS2Rs have been suggested either to form a distinct, novel
GPCR class, or to belong to class F (Fredriksson et al., 2003),
or class A (Nordstrom et al., 2011; Cvicek et al., 2016). The
latter hypothesis has been recently corroborated by phylogenetic
analyses (Nordstrom et al., 2011), as well as by the observation
that several class A motifs are also conserved in hTAS2Rs (Di
Pizio et al., 2016; Table 1). hTAS2Rs are located in the tongue
and palate epithelium, but also in the gastrointestinal tract,
heart, leukocytes, vascular smooth muscle cells, bone marrow
derived mesenchymal cells and sinonasal cells of the airway
epithelium, and the brain (Hoon et al., 1999; Meyerhof, 2005;
Sternini, 2007; Behrens and Meyerhof, 2009; Singh et al., 2011b;
Garcia-Esparcia et al., 2013; Lund et al., 2013; Foster et al., 2014;
Lee and Cohen, 2014; Manson et al., 2014; Ansoleaga et al.,
2015; Malki et al., 2015; Shaik et al., 2016). hTAS2Rs’ extra-oral
roles include detection of toxins, bronchodilation, and hormone
secretion (Janssen et al., 2011; Lee et al., 2012; Robinett et al.,
2014). Moreover, polymorphic variants of hTAS2Rs have been
found to be correlated to diseases, such as chronic rhinosinusitis
and cystic fibrosis, pancreatic cancer, risk of dental caries and
vection-induced motion sickness and nausea (Wendell et al.,
2010; Benson et al., 2012; Adappa et al., 2014; Gaida et al., 2016;
Shaik et al., 2016; Lu et al., 2017).

Cheminformatics methods have provided encouraging results
regarding the in silico prediction of sensory attributes of
chemicals (bitterness or smell) using either machine-learning
algorithms, or ligand-based methods, or (binding site) structure-
based methods (Bahia et al., 2017; Keller et al., 2017). However,
an important limitation is represented by the paucity of the
experimental data and by the reliability of the psychophysical
tests that these methods often use (Bahia et al., 2017; Keller et al.,
2017). Furthermore, it is still not possible to predict the smell
quality of a compound from its chemical structure or whether
a given molecule has a perceived odor (Keller et al., 2017).
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Understanding agonist binding of hChem-GPCRs at the
molecular level can provide complementary insights on chemical
sensing (Charlier et al., 2013; Di Pizio and Niv, 2014; Suku et al.,
2017), as well as offer exciting and unexplored opportunities
for drug design (Foster et al., 2014; Ferrer et al., 2016; Shaik
et al., 2016; Lu et al., 2017). In addition, it may provide
hints on receptors’ agonist binding site architecture (Sandal
et al., 2015) and activation mechanisms (Lai et al., 2005, 2014;
Biarnes et al., 2010; Dai et al., 2011; Singh et al., 2011a;
Pydi et al., 2014a; de March et al., 2015b). Because of the
lack of experimental structural information, structural insights
rely on computations (reviewed in Charlier et al., 2013; Di
Pizio and Niv, 2014; Suku et al., 2017). The predictions may
be validated against site-directed mutagenesis and functional
(agonist dose–response curves) assays (Table 2). By measuring
changes in the half maximal effective concentration (EC50) values
of the ligand upon specific mutations (see Supplementary Table
1), one can pinpoint residues important for ligand binding
and/or activation. Nonetheless, the EC50 values are measured
using downstream signaling effects (e.g., cAMP, Ca2+ ions or
IP3 concentration increase Restrepo et al., 1990; Bruch, 1996;
Berridge et al., 2000; Clapp et al., 2001; Matthews and Reisert,
2003), and thus one cannot disentangled whether the observed
changes are associated only with ligand binding and/or with
the resulting signal transduction cascade caused by receptor
activation (Colquhoun, 1998; Strange, 2008, 2010; Williams and
Hill, 2009) (see Supplementary Information Section 2.1 for
further details).

Hence, validation of the predictions may be in principle
carried out (i) by cross-checking whether the residues whose
mutations are associated with EC50 changes are forming actual
interactions with the ligand in the model and/or have an
impact on activation and (ii) by predicting new residues
involved in binding or activation that are subsequently verified
experimentally. In practice, the formermutations aremuch easier
to design than the latter.

Computational approaches aimed at structural predictions
of hChem-GPCR/ligand complexes (reviewed in Charlier et al.,
2013; Di Pizio and Niv, 2014; Suku et al., 2017) include homology
modeling, based on GPCR X-ray structures as templates, along
with molecular docking, often guided by information about
the putative binding site, as done for other GPCRs (Michino
et al., 2009; Kufareva et al., 2011, 2014). Unfortunately, on
one hand the sequence identity of hChem-GPCRs with GPCRs
for which experimental structural information is available, is
<20% (Charlier et al., 2013; Di Pizio and Niv, 2014; Suku
et al., 2017). Hence, the resulting homology models have low
statistical confidence. In particular, the orientation of the side
chains, essential for protein-ligand interactions, is not accurately
predicted (Chothia and Lesk, 1986; Baker and Sali, 2001;
Eramian et al., 2008; Piccoli et al., 2013; Busato and Giorgetti,
2016). On the other hand, standard docking algorithms, while
very successful to predict ligand poses when high resolution
experimental structures are used (Michino et al., 2009; Katritch
et al., 2010; Kufareva et al., 2011, 2014; Beuming and Sherman,
2012), may also show limited predictive power in the case

TABLE 2 | Human chemosensory GPCRs (hChem-GPCRs)/agonist complexes for which experimental data are available.

hChem-GPCR Agonist (charge) Complex abbreviation Reference

hTAS2R1 dextromethorphan (+1) T2R1/dmx Singh et al., 2011a

hTAS2R4 quinine (+1) T2R4/quin Pydi et al., 2014b,c

hTASR10 denatonium (+1) T2R10/dena Born et al., 2013

parthenolide (0) T2R10/parthe

strychnine (+1) T2R10/strych

hTAS2R16 arbutin (0) T2R16/arbu Sakurai et al., 2010

phenyl-β-D-glucopyranoside (0) T2R16/phenyl

salicin (0) T2R16/sali

hTAS2R30 denatonium (+1) T2R30/dena Pronin et al., 2004

hTAS2R31 aristolochic acid (−1) T2R31/aristo Pronin et al., 2004; Brockhoff et al., 2010

hTAS2R38 phenylthiocarbamide (0) T2R38/PTC Biarnes et al., 2010; Marchiori et al., 2013

propylthiouracil (0) T2R38/PROP

hTAS2R43 n-isopropyl-2-methyl-5- nitrobenzenesulfonamide (0) T2R43/IMNB Pronin et al., 2004; Brockhoff et al., 2010

6-nitrosaccharin (0) T2R43/6-nitro

hTAS2R46 strychnine (+1) T2R46/strych Brockhoff et al., 2010; Sandal et al., 2015

hOR1A1 (R)-(–)-carvone (0) OR1A1/R-carvone Geithe et al., 2017

(S)-(+)-carvone (0) OR1A1/S-carvone

citronellol (0) OR1A1/citro Schmiedeberg et al., 2007

hOR2AG1 amylbutyrate (0) OR2AG1/amyl Gelis et al., 2012

hOR2M3 3-mercapto-2-methyl-pentan-1-ol (0) OR2M3/3-mercapto Noe et al., 2016

hOR7D4 androstadienone (0) OR7D4/androste Keller et al., 2007; Zhuang et al., 2009

androstenone (0) OR7D4/androsta
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of hChem-GPCRs (Stary et al., 2007; Biarnes et al., 2010;
Launay et al., 2012; Marchiori et al., 2013; Sandal et al., 2015)
(see Supplementary Information Section 1.1). These methods
usually cannot take fully into account receptor dynamics and
hydration (Katritch et al., 2010; Spyrakis et al., 2011; Spyrakis
and Cavasotto, 2015), crucial for ligand binding and receptor
activation in GPCRs (Pardo et al., 2007; Angel et al., 2009;
Nygaard et al., 2010; Latorraca et al., 2017).

Refinement of the hChem-GPCR/ligand complexmodels have
been carried out by molecular dynamics (MD) simulation (Gelis
et al., 2012; Lai and Crasto, 2012; Charlier et al., 2013; Marchiori
et al., 2013; Lai et al., 2014; Sandal et al., 2015). This approach
may alleviate some of the limitations of the bioinformatics
procedure (Charlier et al., 2013; Di Pizio and Niv, 2014; Suku
et al., 2017). In particular, it allows a more extensive exploration
of the conformational space in the presence of the solvent
(Spyrakis et al., 2011; Chen, 2015; Spyrakis and Cavasotto, 2015;
Broomhead and Soliman, 2017), though at the expense of a
higher computational cost.

Here, we investigate for the first time the reliability of
bioinformatics/docking predictions, by systematically predicting
the structural determinants of ligand binding in hChem-GPCRs
for which experimental mutagenesis data are available (Table 2
and Supplementary Table 1). We focus on mutants located in
the top half of the receptor, because this is the location of
the canonical orthosteric binding site of class A GPCRs, as
known from the available crystal structures of ligand/receptor
complexes (Venkatakrishnan et al., 2013). We use a state-
of-the art homology modeling protocol together with blind
molecular docking-based tools used previously for hChem-
GPCRs’ structural predictions (reviewed in Di Pizio and Niv,
2014). It turns out that only 36% or less of the predictions are
consistent with experiment (under the assumption that all of
the mutants considered are involved, at least in part, directly
or indirectly, in ligand binding). The predictive power varies
from system to system in a non-trivial manner. Hence, while
bioinformatics/docking-based models constitute an excellent
starting point to study ligand binding, theymay require structural
refinement to improve their agreement with experiment, as well
as to increase their predictive power. We show that this is the
case for the three systems investigated so far with our multiscale
MD simulation approach (Marchiori et al., 2013; Sandal et al.,
2015).

We close this investigation by analyzing the experimentally
characterized residues that have been suggested to be involved
in activation in hChem-GPCRs (Biarnes et al., 2010; Singh
et al., 2011a; Pydi et al., 2012, 2014a). These are residues whose
mutation causes changes in receptor’s response, from abolishing
activation to constitutive activation. Using bioinformatics
analyses, we provide interesting information regarding a novel
conserved hydrophobic position that may be involved in
activation of hTAS2Rs, but also hORs and, in general, class
A GPCRs. These analyses, together with the phylogenetic tree
in reference (Nordstrom et al., 2011) and the conservation of
some TM motifs (Table 1; Di Pizio et al., 2016), support the
classification of hTAS2Rs as a branch diverging from class A
GPCRs.

RESULTS AND DISCUSSION

Here we present first an assessment of the quality of models of
hChem-GPCRs based on bioinformatics and molecular docking.
Next, we show that bioinformatics approaches also corroborate
previous suggestions on the role of specific residues of hTAS2Rs
for activation.

Bioinformatics-Based Binding Predictions
Multiple sequence alignments (MSAs) of hTAS2Rs and hORs (see
Section 1.2 of the Supplementary Information) were considered
for the creation of the Hidden Markov Model (HMM) profiles
of both subfamilies. These profiles were then used for template
search among the GPCRs with known structure using the
GOMoDo pipeline (Sandal et al., 2013). The templates turned
out to share a sequence identity of 11–20% with the targets.
The best template corresponds to the human class A GPCR β2
adrenoceptor (PDB code: 4LDE, X-ray resolution: 2.79 Å Ring
et al., 2013). Indeed, this template is one of the top ranked
templates based on the HHsearch output (Soding et al., 2005), in
which all the conserved features of the target-template alignment
are captured (see Section 1.3 of the Supplementary Information).
In addition, the models generated with this template present
consistently the best MODELLER quality scores (Melo et al.,
2002; Shen and Sali, 2006) for all hChem-GPCRs. Finally, the
template is in a fully activated state (Venkatakrishnan et al.,
2016), which is expected to be the agonist-bound conformational
state; this is particularly important here because all the ligands
in Table 2 are agonists. Hence, this template was used to
generate all the hChem-GPCR models, ensuring uniformity of
the predictions.

Homology models were built following a protocol previously
used in references (Marchiori et al., 2013; Sandal et al., 2013,
2015). Agonists’ binding modes were predicted using blind
docking approaches and programs previously used for hChem-
GPCRs (Stary et al., 2007; Launay et al., 2012; Marchiori
et al., 2013; Sandal et al., 2015). These include: HADDOCK
(Dominguez et al., 2003), AutoDock Vina (Trott and Olson,
2010), and Glide (Friesner et al., 2004).

To characterize the quality of the binding poses
(Supplementary Figures 2–4), precision (PREC) and recall (REC)
values are calculated for each of the hChem-GPCR/agonist
complex predictions and for each of the docking programs
(Figure 1 and Table 3). We find that the bioinformatics results
vary from system to system in a non-trivial manner. For instance,
the predictions for the same receptor with three different agonists
(e.g., hTAS2R10 in complex with denatonium, parthenolide or
strychnine) have significantly different values of recall and
precision. This is also the case when comparing the docking of
the same agonist to two different receptors (such as strychnine
bound to hTAS2R10 and hTAS2R46).

The three docking programs used in this study [HADDOCK
(Dominguez et al., 2003), AutoDock Vina (Trott and Olson,
2010) and Glide (Friesner et al., 2004)] give similar predictions
for some of the complexes analyzed. The predictions for
hOR7D4 in complex with androstenone and androstadienone
show high precision for all three docking programs, but low
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FIGURE 1 | Precision and Recall plots for the predictions of hChem-GPCR/agonist complexes. (A-C) show the HADDOCK (Dominguez et al., 2003), AutoDock Vina
(Trott and Olson, 2010), and Glide (Friesner et al., 2004) docking predictions, respectively. The abbreviations used for the hChem-GPCR/agonist complexes are listed
in Table 2. Bioinformatics/Docking-based predictions are shown as circles, colored according to the two performance metrics: dark blue (0 precision, 0 recall), red
(precision 1, low recall), yellow (low precision, recall 1) and cyan (all the rest, with intermediate precision and recall values). In panel A, MM/CG simulation results
(Marchiori et al., 2013; Sandal et al., 2015), started from Haddock docking complexes, are displayed as colored triangles.

recall (Figure 1, red circles). In contrast, the predictions for
the hTAS2R38/PROP and PTC complexes, as well as the
hTAS2R43/IMNB, hOR1A1/citronellol and hOR1A1/(R)-(–)-
carvone complexes, show all recall and precision equal to
zero (Figure 1, dark blue circles). Finally, the predictions for
hTAS2R10 in complex with denatonium and strychnine, as
well as those for the hTAS2R16 in complex with arbutin or
with phenyl-β-D-glucopyranoside and the hTAS2R46/strychnine
complex (Figure 1, cyan circles) feature intermediate values of
recall and precision for all three docking programs.

For the other hChem-GPCR/agonist complexes, the
results are not uniform among the three docking programs
(for a detailed description, see Sections 2 and 3 in the
Supplementary Information). In particular, the prediction
for the hTAS2R1/dextromethorphan complex has precision
1.0 for HADDOCK, but recall 1.0 for AutoDock Vina and
both zero recall and zero precision for Glide. Instead, that
for the hOR2M3/3-mercapto-2-methyl-1-penthanol complex
shows precision 1.0 for both HADDOCK and Glide, while for
AutoDock Vina has both zero recall and precision. Given this
high variability among complexes and docking programs, no
particular trends can be drawn. Furthermore, the differences
in performance may be due not only to the limitations of
the docking algorithms, but also of the homology models.
Nonetheless, it is noteworthy that even the group with the best
docking performance (red circles in Figure 1) is able to recover
only a few of the experimentally characterized binding residues.

Overall, the predictive power of the bioinformatic approach
is low; only 36% (or less) of the residues were predicted
correctly (see Methods), regardless of the docking program used
(36, 35, and 33% for HADDOCK, AutoDock Vina and Glide,
respectively). Of course, one cannot exclude that some of the
residues are exclusively involved in activation and not in the
binding. Nonetheless, these are expected to be very few, as all
of the mutations considered here are localized closely to the
putative binding region, as known from the crystal structures of

class A GPCRs (Venkatakrishnan et al., 2013). Hence, we expect
that the difficulties in interpreting the experimental data are not
going to change the main conclusion of this analysis, namely that
the bioinformatics/docking procedure is able to recover only a
few of the experimentally characterized binding residues. The
low predictive power of the bioinformatics approaches, may be
caused, at least in part, by the low resolution of the homology
modeling techniques when the sequence identity between the
target and the template is low, as it is the case for hChem-
GPCRs. In addition, the limited sampling of standard docking
techniques might be insufficient to exhaustively explore the
conformational space of the ligand bound in the binding site
(see also Supplementary Information Section 1.1). Thus, the
bioinformatics-based procedure calls for refinement to improve
the results. An insight into this issue is offered in the next section.

Molecular Dynamics-Based Refinement of
Binding Predictions
While the complete molecular simulations of all the complexes
in Table 2 is beyond the scope of the present paper, it is
interesting to discuss the reliability of simulations on a few
specific cases, which have been already studied in our group
(see Methods section). We focus on our own studies carried
out using the so-called hybrid Molecular Mechanics/Coarse-
Grained (MM/CG) molecular dynamics simulation approach.
The method, developed in our group (Neri et al., 2005, 2008;
Leguebe et al., 2012; Giorgetti and Carloni, 2014; Musiani et al.,
2014, 2015), focuses the computational effort in the binding site,
where ligand, solvent and protein are treated with an atomistic
force field, whereas the rest of the protein is described using a
coarse-grained representation and the presence of the membrane
is modeled by introducing appropriately designed wall potentials
(Leguebe et al., 2012). Hence, the approach includes hydration at
the binding site, as well as temperature fluctuations and protein
flexibility, increasing the sampling of the conformational space of
the ligand binding site.
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TABLE 3 | Performance assessment of the computational predictions of hChem-GPCR/agonist complexes, using the docking codes HADDOCK (Dominguez et al.,
2003), AutoDock Vina (Trott and Olson, 2010), and Glide (Friesner et al., 2004) and MM/CG simulations (Marchiori et al., 2013; Sandal et al., 2015).

Test statistics HADDOCK AutoDock Vina Glide

Human bitter taste receptor/agonist complex REC PREC REC PREC REC PREC

hTAS2R1/dextromethorphan 0.67 1.00 0.33 1.00 0.00 0.00

hTAS2R4/quinine 0.17 0.50 0.17 0.50 0.17 0.50

hTAS2R10/denatonium 0.25 0.17 0.25 0.25 0.20 0.33

hTAS2R10/parthenolide 0.50 0.20 0.00 0.00 0.00 0.00

hTAS2R10/strychnine 0.67 0.29 0.40 0.40 0.33 0.20

hTAS2R16/arbutin 0.20 0.33 0.33 0.67 0.33 0.67

hTAS2R16/phenyl-β-D-glucopyranoside 0.17 0.50 0.17 0.50 0.25 0.25

hTAS2R16/salicin 0.20 0.33 0.33 0.67 0.00 0.00

hTAS2R30/denatonium 0.50 1.00 0.00 0.00 0.00 0.00

hTAS2R31/aristolochic acid 1.00 0.50 0.00 0.00 0.00 0.00

hTAS2R38/phenylthiocarbamide 0.00 0.00 0.00 0.00 0.00 0.00

hTAS2R38/propylthiouracil 0.00 0.00 0.00 0.00 0.00 0.00

hTAS2R43/IMNB 0.00 0.00 0.00 0.00 0.00 0.00

hTAS2R43/6-nitrosaccharin 0.50 1.00 0.00 0.00 0.00 0.00

hTAS2R46/strychnine 0.33 0.60 0.09 0.50 0.09 0.50

Test statistics HADDOCK Auto Dock Vina Glide

Human odorant receptor/agonist complex REC PREC REC PREC REC PREC

hOR1A1/(R)-(−)-carvone 0.00 0.00 0.00 0.00 0.00 0.00

hOR1A1/(S)-(+)-carvone 0.00 0.00 0.29 0.67 0.00 0.00

hOR1A1/citronellol 0.00 0.00 0.00 0.00 0.00 0.00

hOR2AG1/amylbutyrate 0.20 1.00 0.40 1.00 0.25 0.50

hOR2M3/3-mercapto-2-methyl-pentan-1-ol 0.25 1.00 0.00 0.00 0.50 1.00

hOR7D4/androstadienone 0.16 1.00 0.16 1.00 0.17 1.00

hOR7D4/androstenone 0.16 1.00 0.16 1.00 0.17 1.00

Test statistics MM/CG

Human bitter taste receptor/agonist complex REC PREC

hTAS2R38/phenylthiocarbamide 1.00 0.75

hTAS2R38/propylthiouracil 1.00 1.00

hTAS2R46/strychnine 1.00 1.00

The two test statistical metrics used here are recall (REC) and precision (PREC). Residues below the canonical binding site in class A GPCRs (Venkatakrishnan et al., 2013) have not
been taken into account for the test statistics calculation, as they are expected not to be involved in ligand binding.

We calculate the recall and the precision values for
the MM/CG complexes previously studied by our group
[TAS2R38/PTC, TAS2R38/PROP Marchiori et al., 2013 and
TAS2R46/strychnine Sandal et al., 2015] and the results turn
out to be highly encouraging: both the recall and the precision
values are near or equal to one (Figure 1A and Section 4 of
the Supplementary Information). In particular, the number of
FN decreases to 0 for all three complexes, improving the recall
compared to the bioinformatics predictions (see Table 3). In
addition, zero FPs are present for the hTAS2R46/strychnine
and hTAS2R38/propylthiouracil complexes and only one
for the hTAS2R38/phenylthiocarbamide complex, increasing
the precision. Hence, the MM/CG simulations are able to
dramatically improve the prediction results by capturing the

majority of the residues crucial for ligand-receptor interaction,
without introducing any significant bias, at least for the
hChem-GPCR/agonist cases studied so far. Indeed, based on
the predictive power of the method, several residues playing a
role for ligand binding were identified and were subsequently
confirmed by performing additional mutagenesis and functional
experiments (Marchiori et al., 2013; Sandal et al., 2015).
Systematic MM/CG simulations and extensive comparison with
experiments are required to establish the predictive power of the
method across all hChem-GPCRs.

Receptor Activation Predictions
Although it cannot be excluded completely that they could also be
involved in ligand binding, several residues have been previously

Frontiers in Molecular Biosciences | www.frontiersin.org 6 September 2017 | Volume 4 | Article 63

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Fierro et al. Chemosensory Receptors: Systematic Bioinformatics Analysis

suggested to play a role for activation in hTAS2Rs (Biarnes et al.,
2010; Pydi et al., 2014a). These are residues whose mutation
causes changes in receptor’s response, from abolishing activation
to constitutive activation (see Supplementary Table 3). Here, we
show that our bioinformatics analysis provides further support to
some of these findings. Namely, we can distinguish three different
groups of residues (hereafter indicated using the class A GPCR
generic numbering Isberg et al., 2015).

The first group, proposed to be involved in hTAS2R1
activation, includes N24 and R55 (positions 1.50 and 2.50)
(Singh et al., 2011a). These residues are highly conserved across
hTAS2Rs (92 and 96% respectively, see Supplementary Table
3). Moreover, we notice here that these two positions are also
conserved in human class A GPCRs (98 and 87%) and have been
shown to play a role for activation across class A hGPCRs, based
on mutagenesis data (see references Fenalti et al., 2014; Labadi
et al., 2015 and Supplementary Table 4) and structural analyses
(Venkatakrishnan et al., 2013; Tehan et al., 2014). Therefore,
this may further support the claimed role of positions 1.50 and
2.50 for hTAS2Rs activation. Nonetheless, the chemical nature of
residue 2.50 changes dramatically, from a positively charged Arg
in hTAS2Rs to a negatively charged Asp in class A GPCRs. Hence,
we suggest here distinct activation mechanisms on passing from
bitter taste receptors to class A hGPCRs, yet converging at the
same positions.

Next, we consider position 7.52, which has been suggested
to play a role in activation for hTAS2R38 (Biarnes et al.,
2010). A branched aliphatic residue (V, L or I) is present at
this position in 92% hTAS2Rs (Supplementary Table 3). This
position has never been proposed to be involved in an interaction
network that changes upon activation in any class A GPCR.
Therefore, to blindly investigate if this is the case, we used a
pool of structures of human class A GPCRs (see Table 4 and
reference Venkatakrishnan et al., 2016) for which both active and
inactive structures are available and carried out a graph-based
structural analysis with the aim of identifying pairs of highly
conserved residues that change intramolecular interactions upon
activation (Tehan et al., 2014; Venkatakrishnan et al., 2016). This
analysis not only confirms, as expected, all of the previously
known residues important for class AGPCR activation, including
positions 1.50 and 2.50 (Fenalti et al., 2014; Labadi et al., 2015),
but also shows that (i) the hydrophobic nature of residue 7.52
is conserved across human class A GPCRs (Supplementary
Table 5), and (ii) this residue does change its interactions

TABLE 4 | Active/inactive pairs of mammalian class A GPCR crystal structures
used for the graph-based structural analysis.

Class A GPCR Active state Inactive state Species

β2-adrenergic receptor 2RH1 (2.40) 3SN6 (3.20) human

M2 muscarinic receptor 3UON (3.00) 4MQS (3.50) human

adenosine A2A receptor 3EML (2.60) 5G53 (3.40) human

rhodopsin 1GZM (2.65) 3PQR (2.85) bovine

µ-opioid receptor 4DKL (2.80) 5C1M (2.10) murine

The corresponding PDB codes are listed, together with the crystallographic resolution
(between parentheses, in Å).

upon activation (Supplementary Figure 5). This observation is
in agreement with previous experimental data showing that
mutations at this position modify the receptor activity in class
A GPCRs (see Supplementary Table 4). Therefore, our analysis
not only confirms that position 7.52 is important for activation
in hTAS2Rs, but also suggests for the first time, from a structural
point of view, that this position is actively involved in a network
of residues that changes upon activation in class A GPCRs.

The final group of residues proposed to be involved in
activation are I27 in hTAS2R1 (position 1.53) (Singh et al.,
2011a), as well as S285 and H214 (positions 7.50 and 5.63)
and three residues in the intracellular loop ICL3 (Q216, V234,
M237) in hTAS2R4 (Pydi et al., 2012, 2014a). Some of these
positions (1.53, 5.63 and 7.50) are highly or fairly well conserved
across hTAS2Rs (96, 96, and 68%, respectively). Interestingly,
position 7.50 bears either a Ser (68%) or a Pro (28%) in
hTAS2Rs, while, in human class A GPCRs, Pro is highly
conserved (95%). This position belongs to the conserved TM7
motif NPXXY that is essential for class A GPCRs’ activation
(Fritze et al., 2003; Audet and Bouvier, 2012; Trzaskowski et al.,
2012), but there are no experimental data available for this
residue. In the case of ICL3 residues, they do not present high
conservation values and a role in activation for these positions
in human class A GPCRs has not been suggested so far (and
does not emerge from our analysis). This is probably due to
their intracellular location in a highly variable region and their
likely participation in G-protein binding (Pydi et al., 2014a;
Venkatakrishnan et al., 2016) and Gα-subunit selectivity (Flock
et al., 2017).

CONCLUSIONS

Structural predictions of human GPCRs are a challenge
for computational biologists (Michino et al., 2009; Katritch
et al., 2010; Kufareva et al., 2011, 2014; Cavasotto and
Palomba, 2015). Integration of experimental and computational
information is fundamental to understand ligand binding to
these proteins (Thomas et al., 2014; Munk et al., 2016), and
in particular to hChem-GPCRs (Charlier et al., 2013; Di Pizio
and Niv, 2014; Suku et al., 2017). The reliability of the
structural predictions must be validated not only by comparison
against previously published experimental data, but also by
performing additional site-directed mutagenesis and functional
experiments.

Here, we have presented a systematic structural bioinformatics
study of all human bitter taste and odorant receptors that feature
available experimental data. To the best of our knowledge,
this is the first time that such comprehensive study has
been undertaken. State-of-the-art bioinformatics approaches,
combined with docking algorithms, show clear limitations
in the structural predictions of ligand binding determinants.
Indeed, several of the residues experimentally shown to be
important for ligand binding could not be identified (i.e., low
recall), and residues actually not involved in ligand interaction
were suggested as so (i.e., low precision) (see Figure 1).
These shortcomings are probably due to a variety of factors,
including the low sequence identity between the class A GPCR

Frontiers in Molecular Biosciences | www.frontiersin.org 7 September 2017 | Volume 4 | Article 63

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Fierro et al. Chemosensory Receptors: Systematic Bioinformatics Analysis

templates and the hChem-GPCR targets, as well as the limited
sampling of the docking algorithms. Similarly, previous studies
on GPCR/ligand complexes have suggested that the sequence
identity lower threshold for accurate prediction of binding
modes is between 30% (Beuming and Sherman, 2012) and 40%
(Kufareva et al., 2011). As mentioned in the Introduction, a
possible way to overcome, at least in part, these limitations is the
refinement of the predictions using advanced docking methods
or molecular dynamics simulations able to better sample the
conformational space (Gelis et al., 2012; Lai and Crasto, 2012;
Charlier et al., 2013; Lai et al., 2014). As an example from our
own lab, we have shown that the Molecular Mechanics/Coarse
Grained (MM/CG) approach developed in our group does
improve the quality of the predictions for the three hChem-
GPCR/ligand complexes studied so far (Marchiori et al., 2013;
Sandal et al., 2015). Similar considerations were suggested for
GPCR/ligand complexes in general by Cavasotto and Palomba
(2015). Upon reviewing several predictions of the GPCR Dock
experiments (Michino et al., 2009; Kufareva et al., 2011, 2014),
they concluded that homology modeling combined with docking
can be considered just as an initial step in the characterization of
ligand-receptor interactions, and that the bioinformatics-based
predictions can benefit of refinement with molecular dynamics.

Furthermore, our bioinformatics analysis supports previous
claims that residues in positions 1.50, 2.50, and 7.52 might be
involved (at least in part) in the activation of hTAS2Rs. Hence,
despite the probable differences in the activation mechanisms,
some of the activation-related features could be shared between
hChem-GPCRs and other class A human GPCRs[8].

METHODS

Homology Modeling
The structures of the human chemosensory receptors (hChem-
GPCRs, Table 2 and Supplementary Table 6) were predicted
using our GOMoDowebserver (Sandal et al., 2013), following the
protocol in references (Marchiori et al., 2013; Sandal et al., 2015).

First, we downloaded all of the available sequences for
hTAS2Rs (25) and hORs (464) from the Pfam database
(Bateman et al., 2004). The number of hTAS2Rs is established
(Meyerhof et al., 2010). In contrast, different numbers have
been proposed for hORs (Malnic et al., 2004; Young et al.,
2008). This required great care in selecting the hORs used
for the corresponding multiple sequence alignment (MSA).
Specifically, before performing the alignment, we removed hOR
sequences not manually annotated and reviewed, as well as
those corresponding to pseudogenes. In addition, once the
MSA is generated (see below), we discarded hOR sequences
containing large gaps or lacking highly conserved features
(Table 1). Indeed, these sequences correspond most likely to
not annotated pseudogenes or to open reading frames wrongly
predicted to code for hORs.

The 25 hTAS2R sequences and the remaining 411 hOR
sequences are aligned using PROMALS (Pei et al., 2007). The
resulting two MSAs (see Supplementary Information Section
1.1) were manually curated in order to ensure the alignment of
the common conserved features of each chemosensory receptor

family. These include: (i) the X.50 position (Isberg et al., 2015);
(ii) the conserved structural motifs (Venkatakrishnan et al., 2013;
Pydi et al., 2014a, 2016; de March et al., 2015a; Di Pizio et al.,
2016) (see Table 1); and, only for hORs, (iii) the two disulfide
bridges present in most (∼94%) hORs. These involve sulfur
atoms of two cysteines of the extracellular loop ECL2 and sulfur
atoms of cysteines in ECL2 and TM3 (Cook et al., 2009; Charlier
et al., 2013; Kim and Goddard, 2014).

Then, the MSAs were input into the GOMoDo webserver to
generate a Hidden Markov Model (HMM) for each subfamily
of hChem-GPCRs. The resulting HMMs of the target hChem-
GPCRs were aligned against all the HMMs of the GPCR
templates available in the GOMoDo webserver, employing
HHsearch 2.0.16 (Soding et al., 2005). The use of profile HMMs
is known to improve the target-template alignment when dealing
with distant homologs (Soding, 2005), as it is the case with
the target hChem-GPCRs. 100 models were generated for each
target-template pair (see Supplementary Information Section
1.2), using MODELLER 9v10 (Webb and Sali, 2016). The
receptor models were then evaluated relying on MODELLER
quality scores (low normalized DOPE and high GA341 values)
(Melo et al., 2002; Shen and Sali, 2006).

Among all the templates, the human β2 adrenoceptor (PDB
code: 4LDE, resolution: 2.79 Å) was identified as themost suitable
one (see also Results section). On one hand, the models carried
out with β2 adrenoceptor show better MODELLER quality scores
(Melo et al., 2002; Shen and Sali, 2006) for all the hChem-GPCRs
object of this study. On the other, this template was solved in a
fully active state (Venkatakrishnan et al., 2016), which is expected
to be the agonist-bound conformational state.

The template-target alignments were then checked and refined
by hand, in order to preserve the conserved features of class
A GPCRs (see Table 1). Then, 100 new models based on the
manually curated alignment between the target hChem-GPCR
and the 4LDE template were regenerated, using a standalone
version of the MODELLER 9v10 program (Webb and Sali, 2016),
and re-evaluated following the procedure described above. For
each receptor, the selection of the model was based on (i) the
MODELLER quality scores (Melo et al., 2002; Shen and Sali,
2006), and (ii) preservation of the secondary structure of the TM
helices. The chosen model was further considered for docking.

Throughout the manuscript, we use the GPCRdb generic
number position (Isberg et al., 2015) (except where specified),
which generalizes the Ballesteros-Weinstein numbering
(Ballesteros andWeinstein, 1995), to have a coherent numeration
of the residues between human chemosensory GPCRs and
other class A GPCRs. In particular, we used the GPCRdb
numbering scheme of the selected template, the β2 adrenoceptor
(Supplementary Table 1).

Molecular Docking
The agonists in Table 2 were docked on the final receptor
models using (i) HADDOCK (Dominguez et al., 2003) through
the GOMoDO webserver (Sandal et al., 2013) (version 2.1),
(ii) AutoDock Vina (Trott and Olson, 2010) through Chimera
(Pettersen et al., 2004) (version 1.11.2), and (iii) Glide (Grid-
based Ligand Docking with Energetics) (Friesner et al., 2004)
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through the Schrodinger Suite (version 2017-1). All the dockings
presented here are blind, i.e., no experimental data was used
to guide them. The ligand structures and parameters were
obtained from the ZINC database (Irwin and Shoichet, 2005) and
the PRODRG webserver (Schuttelkopf and van Aalten, 2004),
respectively.

For the prediction-guided HADDOCK docking, putative
binding cavity residues (see Supplementary Table 7) were
predicted with fpocket (Le Guilloux et al., 2009), and used as
active residues to define ambiguous interaction restraints (AIRs).
For each ligand, 1000 random structures were generated through
initial rigid docking. Then, the structures were ranked and the
best 200 complexes underwent refinement with both ligand and
receptor treated as flexible (first by simulated annealing, and then
by refinement in explicit water). The resulting receptor-agonist
complexes were clustered using an RMSD cutoff of 2.0 Å and the
complex of the most populated cluster with the lowest energy was
chosen for further analysis.

For AutoDock Vina docking, a grid which covers all the
fpocket predicted residues was created and the ligands were
docked inside the grid. Docking was performed with default
parameters (Trott and Olson, 2010) and considering the receptor
as rigid. The best complex, i.e., the one with the lowest energy
scoring function, was chosen for further analysis.

Finally, for the Glide docking, the grid was built using the
same criterium as for AutoDockVina. 50 binding poses have been
produced and ranked according to the Emodel score, a score well-
suited for comparing different binding poses of the same ligand
(Friesner et al., 2004). The binding pose with the lowest Emodel
has been selected.

Statistical Analysis
The residues involved in protein-ligand interactions were
identified based on two criteria. As a first step, we use a distance
threshold, in which an atomic contact between protein and
ligand is considered to be present when their distance is below
5.5 Å (i.e., the sum of the van der Waals carbon radii plus
the water molecule diameter (Lee and Richards, 1971; Bohacek
and McMartin, 1992; Graziano, 1998). In the second step, we
apply a chemical definition, to keep only those contacts that
do correspond to classical chemical interactions (i.e., hydrogen
bonds, salt bridges, stacking or hydrophobic contacts, etc.)
upon visual inspection. Using these two criteria, we analyze
the number of true positives (TP), false positives (FP), true
negatives (TN) and false negatives (FN) for all ligand-receptor
complexes (see Figure 2), by comparison with the experimental
data (Supplementary Table 1). Only mutants located in the top
half of the receptor are taken into account because this is the
location of the canonical orthosteric binding site of class A
GPCRs (Venkatakrishnan et al., 2013). Using the aforementioned
test outcomes, we calculate the corresponding values of precision,

PREC = TP/(TP+ FP)

and recall,

REC = TP/(TP+ FN)

FIGURE 2 | Scheme showing the definition of true positive (TP), false positive
(FP), true negative (TN) and false negative (FN) residues used in this study.
Comparison of predicted residues with experimental data (EC50 values) is
performed on the basis of both a distance cut-off (5.5 Å) and a chemical
definition (i.e., presence or absence of a canonical protein/ligand interaction).

in order to assess the reliability of our docking results. These
standard statistical parameters are usually employed for method
performance assessment (Raghavan et al., 1989; Manning and
Schütze, 1999; Davis and Goadrich, 2006; Saito and Rehmsmeier,
2015). Here, the precision is given by the ratio between
the experimentally characterized binding residues that the
bioinformatics approach is able to capture (TP) and other
residues that docking wrongly considers as important in ligand-
receptor interaction (FP). On the other hand, the recall is the ratio
between TP and experimentally characterized binding residues
that the bioinformatics approach is not able to capture (FN).
Both precision and recall are normalized and thus values equal
to one suggest optimum performance of the method. In addition,
in order to evaluate the predictive power of the bioinformatics
approach, we calculate the following percentage:

(TP+ TN) ∗ 100/(total number of experimental data

in the top half of the receptor)

which is not aimed at evaluating the performance of the
individual docking programs, but the combination of homology
modeling and docking.

Multiscale Molecular Dynamics
Simulations
As written above, the simulations analyzed here correspond
to our previous works on hTAS2R38 in complex with two
of its agonists (PROP and PTC) (Marchiori et al., 2013)
and hTAS2R46 in complex with strychnine (Sandal et al.,
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2015). These simulations were carried out with a Molecular
Mechanics/Coarse-Grained (MM/CG) method developed in our
group. In this approach, the MM part (ligand and surrounding
protein residues and water molecules) is treated with the
GROMOS96 atomistic force field (Scott et al., 1999), whereas the
CG part (the rest of the protein, including only the Cα atoms)
is described using a Go-like model (Go and Abe, 1981). The
two regions are connected at the interface by using a coupling
scheme (Neri et al., 2005, 2008). The presence of the membrane
is mimicked by introducing five repulsive walls (Leguebe et al.,
2012; Giorgetti and Carloni, 2014; Musiani et al., 2014, 2015).
For each hTAS2R38 complex (PROP or PTC), two replicas (with
different velocities) were run for 0.6 µs each (Marchiori et al.,
2013). For the hTAS2R46/strychnine complex, three replicas were
run for 1 µs each (Sandal et al., 2015).

Receptor Activation Predictions
The sequences of all human class A GPCRs (698) were
downloaded from the Pfam database and aligned with
PROMALS (Pei et al., 2007). Conserved motifs were identified
using in-house scripts written in Python.

The structural analysis was performed on the X-ray structures
of human class A GPCRs crystallized both in the active and
inactive states, listed in Table 4. We generated a contact map
for all independent atomic distances (excluding backbone atoms)
and then defined a contact between a pair of residues as formed
when the distance between any two atoms of the residue pair
is shorter than the sum of their van der Waals radii, as defined
in reference (Venkatakrishnan et al., 2016). For completeness

and in line with references (Venkatakrishnan et al., 2013; Tehan
et al., 2014), this analysis was also performed on the other
two mammalian receptors solved in both active and inactive
states, i.e., bovine rhodopsin (1GZM/3PQR) and murine µ-
opioid receptor (4DKL/5C1M), confirming the results obtained
for the human structures (see Results section).
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