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Target definition is the largest source of geometric uncertainty in radiation therapy. This is partly due to a lack of contrast between
tumor and healthy soft tissue for computed tomography (CT) and due to blurriness, lower spatial resolution, and lack of a truly
quantitative unit for positron emission tomography (PET). First-, second-, and higher-order statistics, Tamura, and structural
features were characterized for PET andCT images of lung carcinoma and organs of the thorax. A combined decision tree (DT)with
K-nearest neighbours (KNN) classifiers as nodes containing combinations of 3 features were trained and used for segmentation
of the gross tumor volume. This approach was validated for 31 patients from two separate institutions and scanners. The results
were compared with thresholding approaches, the fuzzy clustering method, the 3-level fuzzy locally adaptive Bayesian algorithm,
the multivalued level set algorithm, and a single KNN using Hounsfield units and standard uptake value. The results showed the
DTKNN classifier had the highest sensitivity of 73.9%, second highest average Dice coefficient of 0.607, and a specificity of 99.2%
for classifying voxels when using a probabilistic ground truth provided by simultaneous truth and performance level estimation
using contours drawn by 3 trained physicians.

1. Introduction

The clinical outcome of radiation therapy is closely linked to
the ability to deliver dose within tightly confined boundaries
to maximize target control while minimizing dose to sur-
rounding tissue to reduce the probability of complications.
This is the basis for treatment planning in radiotherapy,
the success of which relies on the minimization of geo-
metric and dosimetric uncertainties. Target uncertainty is
compounded by movement when disease is present in the
thorax which can be minimized with the aid of breath hold
techniques such as audio coaching or active breathing control
using a frame. However, for many patients who suffer from
breathing difficulties, these are often not tolerable solutions.
Fortunately, a host of recent technological developments and
techniques have aided in reducing the errors at each stage
of treatment from simulation, planning, quality assurance,
and delivery [1]. Modern delivery techniques can conform

dose fields geometrically to within 2mm and dosimetrically
to within 2-3% [2]. However, this is largely undermined by
uncertainty in target definition. Interobserver variability in
target segmentation is one of the largest sources of error in
radiotherapy [3], with ratios of the largest to smallest gross
tumor volume (GTV) definition being as high as 7.66 in lung
when using CT alone [4] and 2.63 when using fused PET/CT
images [5].

The addition of 2-[18F]-fluoro-2-deoxy-D-glucose(FDG)
PET has been shown to provide valuable information to aid
in target definition [7] and reduce interobserver variability
but suffers from interpatient and interscanner variability and
relatively low spatial resolution. For this reason, computer
guided delineations based on objective criteria are needed for
defining the tumor edge. Most clinically available techniques
rely on SUV thresholding choices, of which many have
been proposed [8, 9] including tumor volume and back-
ground dependent formulas [10–12]. However, thresholding
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techniques are unable to address confounding factors such
as uptake heterogeneity, partial volume effect, and tissue
inflammation which can influence interpretation of PET
images. Thresholding techniques are thus unable to con-
sistently delineate the tumor volume accurately [13, 14]. A
significant number of alternative segmentation techniques
have been proposed to provide a more robust delineation of
the gross tumor volume (GTV) and biological target volume
(BTV). For example, several unsupervised approaches such
as the fuzzy locally adaptive Bayesian segmentation approach
(FLAB and 3-FLAB) [15, 16] and fuzzy hidden Markov
chains (FHMC) [6] assign a fuzzy classification using the
voxel environment and noise by iteratively modelling the
probability distributions of different classes found within
the current image. Fuzzy clustering methods (FCM and
FCM-SW) [17, 18] are similar approaches that find distinct
groupings within the intensity distributions. FCM-SW is
an application of clustering that relies on a handful of
preprocessing filters to eliminate the effects of noise and
heterogeneity. However, these algorithms usually require an
initial class estimate as well as a bounding box, and their
implementations have not yet incorporated information from
more than one modality. Ultimately, while previous work in
this area has been promising, application has so far been
limited to first-order statistical features and a small number
of spatial features.

An overwhelming amount of additional information is
present within PET/CT images in terms of textural and
structural characteristics. The use of texture features as a
means of automatic segmentation has shown promising
results, providing additional information that can improve
the robustness of delineation criteria. This has been shown
in multiple modalities including ultrasound [19] and MRI
[20]. PET and CT textures in the lung have been used in a
large number of applications such as differentiating malig-
nant from benign lymph nodes [21, 22], judging treatment
response [23], diagnosing diffuse parenchymal lung disease
[24–26], determining tumor staging [27], detection [28], and
segmentation [29]. However, these applications have used
the textures from each modality independently. A number
of groups have suggested that the use of information from
both PET and CT should provide improved segmentation
over the use of either modality alone. Because of this a
handful of algorithms exist that utilize the combination of
multimodality segmentation such as the multivalued level set
(MVLS) [30], the variational Bayes inference [31], and graph
basedmethods [32]. Our group also previously demonstrated
that the use of a combination of PET and CT texture
features in images of patients with head and neck cancer
improved classification versus using PET and CT separately
[33]. Similarly, segmentation within the context of lung could
benefit from such a strategy, particularly in cases where
the tumor is highly integrated into the mediastinum, shows
heterogeneous uptake, or is surrounded by collapsed lung
or inflamed tissue. Unfortunately, it cannot be assumed that
the texture characteristics of abnormal and normal tissues in
the head and neck will be consistent with the thorax, hence
this paper aims to evaluate this strategy in the lung by (1)
characterizing a larger list of texture features in the lung that

can or have been shown to be useful for differentiating tumor
from healthy tissue in PET/CT images, (2) determining the
optimal combination of such features for segmentation, and
(3) validating the results against expert observer contours.

2. Materials and Methods

2.1. Test, Training, and Validation Data. Coregistered FDG-
PET/CT scans of 34 cases presenting both small cell and
nonsmall cell lung carcinoma (stages T1–T4) and undergoing
treatment at the Princess Margaret Hospital in Toronto,
ON, were selected for training data. Research ethics board
approval and informed consent were acquired for all patients.
Scans were acquired prior to treatment. Regions of interest
(ROIs) were drawnmanually around the gross tumor volume
by a radiation oncologist experienced in treatment of lung
carcinoma, and healthy structures such as the heart, liver,
spleen, trapezius muscle, descending aorta, fat, sternum,
spinal cord, and vertebral bodies were contoured afterwards
by a graduate student. Tissues were chosen based on two
criteria, whether they contained unique attenuation values,
or if they typically have high FDG uptake values (i.e., liver
and heart), and thus may possibly overlap with tumor FDG
uptake distributions. A 7mm margin was subtracted from
the edges of all ROIs to avoid filter artifacts caused by the
sudden changes in intensity at the borders of objects from
contaminating the feature measurements. Of the 34 cases,
noise was estimated using the definition of signal to noise
ratio (SNR) as follows:

SNR =
𝜇liver
𝜎liver

, (1)

where 𝜇 and 𝜎 are the mean and standard deviation of a
ROI drawn around the liver. The liver was chosen because
it provided a large, homogeneous region with a significant
signal in both the CT and PET images. The ROIs were drawn
as to carefully avoid any inhomogeneities due to vasculature
or nonfunctioning portions of tissue. In order to prevent
noise from contaminating the texture measurements a SNR
of 3.7 taken from the CT values was chosen as a cutoff
leaving 21 patients remaining for use in training. This was
decided visually from the texture maps, where a decrease in
the texture map quality was seen past this point.The CT SNR
was used since the PET SNR remained fairly consistent with
a range of 6.12–10.09, mean of 7.56, and standard deviation of
1.12. 43; feature images in total were calculated for the PET
and CT volumes. The features chosen for characterization
fall into 5 categories, first order, second order, higher order,
structural features, and Tamura features. For each ROI, the
feature values were averaged at every slice which constituted
the samples. This was done in order to partially account
for variability within the patient. In total 2385 samples were
calculated of which 337 were abnormal, and 2048 were
normal.

Additionally 10 patients presenting with nonsmall cell
lung carcinoma and undergoing treatment at the Odette
Cancer Centre in Toronto, ON, were chosen to validate the
performance of the texture training data for classification
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of abnormal from normal tissue. The patients selected were
deemed difficult to contour manually and hence would
possibly showcase the advantages of using texture above
alternative measures. In addition it was desired to determine
whether the ROI-based training data could be reliably used
for voxel-by-voxel segmentation of images taken from a
different scanner and institution.

Three radiation oncologists manually contoured GTVs
for the 10 test patients to provide a ground truth. The simul-
taneous truth and performance level estimation (STAPLE)
algorithm was used to combine the GTVs into probabilistic
maps for each patient. Since this probabilistic map was used
as a ground truth for these cases, slightlymodified definitions
of sensitivity, specificity, and the Dice coefficient, (2), were
used. Here 𝑃(𝑥

𝑖
= 𝑇) and 𝑃(𝑥

𝑖
= 𝐹) are the probability

values given by STAPLE showing that the voxel 𝑥
𝑖
is belongs

to the abnormal or normal class, respectively, Ω
−
andΩ

+
are

the subsets of voxels found outside and inside the segment,
Ω is the full image domain, and |Ω| is the volume of the
segment. All three oncologists had experience in contouring
thoracic tumors. Common guidelines for contouring were
agreed upon by all three oncologists prior to contouring.
The PET and CT volumes were presented to the oncologists
using two sets of three windows, each displaying the PET,
CT, and CT with the PET overlaid in a color scale. Two CT
window and level settings were used for the two sets in order
to simultaneously enhance the tissue to air boundary and
subtle soft-tissue contrast. These were window/level settings
of 1600/−400HU and 400/+40HU, respectively. Because of
interpatient SUV variability among both benign and malig-
nant tissue, the SUVwindow and level settings were left to the
discretion of the oncologist, similar to the clinical setting. No
additional patient information was provided, as this would
be information not used by the automated program and
hence would bias results. Any visible positive nodes easily
discernible from any adjoining tumor mass were separately
contoured. In total 10 primary tumors and 19 positive nodes
were contoured as follows:

Sensitivity =
∑
𝑖∈Ω
+

𝑃 (𝑥
𝑖
= 𝑇)

∑
𝑖∈Ω
+

𝑃 (𝑥
𝑖
= 𝑇) + ∑

𝑖∈Ω
−

𝑃 (𝑥
𝑖
= 𝑇)

,

Specificity =
∑
𝑖∈Ω
−

𝑃 (𝑥
𝑖
= 𝐹)

∑
𝑖∈Ω
−

𝑃 (𝑥
𝑖
= 𝐹) + ∑

𝑖∈Ω
+

𝑃 (𝑥
𝑖
= 𝐹)

,

Dice =
2 (∑
𝑖∈Ω
+

𝑃 (𝑥
𝑖
= 𝑇))

∑
𝑖∈Ω

𝑃 (𝑥
𝑖
= 𝑇) + |Ω+|

.

(2)

The 21 training cases were also utilized for validation by
performing a leave-one out training of 21 different DTKNNs
and using them to segment the case that was excluded from
their training set. For these cases the GTV included in the
treatment plan was used for validating the segmentations.

2.2. Scanning Parameters and Preprocessing. Training data
scans of the thorax were acquired 1 hour after-injection of
5MBq/kg of FDG using a Discovery ST PET/CT scanner
(GE Medical Systems Waukesha, WI) in CINE mode using

a CT voxel size of 0.98 × 0.98 × 2.5mm and a PET voxel
size of 3.9 × 3.9 × 3.27mm. PET images were reconstructed
using an Ordered Subset Estimation Maximization (OSEM)
algorithm. Scatter correction was performed using convolu-
tion subtraction, decay was corrected to the acquisition start
time, and attenuation correctionwas performed using the CT
volumes. Transaxial matrix sizes were 512 × 512 and 128 ×

128 for CT and PET, respectively. An initial ungated CT scan
was acquired at 120 kVp with a current of 105mAs/slice for
0.956 s per slice in helical mode for attenuation correction
of the PET image. Then two subsequent gated CT scans at
inhale and exhale were acquired at 120 kVp and 180mAs/slice
for 0.5 s per slice. The reconstructed field of view (FOV)
was 50 cm for both PET and CT volumes. All PET images
were upsampled to match the resolution and size of the CT
volume using linear interpolation. If the resulting size of
the PET was larger than the CT volume, the PET image
was cropped and manually realigned to the CT. The inhale
phase CT volume was chosen for feature analysis over
the ungated scan, as it provided better image quality and
resolved the issue of gating artifacts. However, since the PET
volumes were physically coregistered to the ungated CT scan,
they were deformed to the inhale phase using deformation
vectors calculated by nonrigidly registering the ungated CT
to the inhale CT volume using the symmetric log-domain
diffeomorphic demons algorithm (ver. 0.0.4) provided by
the Insight Journal. All other correction and reconstruction
algorithms were vendor supplied.

The test patients were scanned 1 hour after-injection of
5.5MBq/kg of FDG to amaximumof 370MBq using a GEM-
INI PET/CT scanner (Philips Medical Systems, Cleveland
OH) with a CT voxel size of 0.98 × 0.98 × 3.0mm and a
PET voxel size of 4.0 × 4.0 × 4.0mm. PET images were
reconstructed using a 3D RAMLA algorithm with scatter
correction using a Monte Carlo single-scatter simulation,
decay correction using the acquisition start time and atten-
uation correction using the CT volumes. Transaxial matrix
sizes were 512 × 512 and 144 × 144 with a FOV of 45 and
57.6 cm for CT and PET, respectively (a FOV of 60 cm was
originally used for the CT when attenuation correction was
performed). CT images were acquired at 120 kVP with a
current of 250mAs/slice for 1 s per slice. CT images were
scanned in helical mode.

Prior to filtering, the CT image was scaled into 256 bins,
while the PET image was scaled using bins of 0.05 SUV.
This was done to avoid excessive computation time when
calculating the cooccurence matrices for the Haralick texture
features.

2.3. Feature Calculations. The features chosen for characteri-
zation fall into 5 categories. Unless otherwise stated, a 7 × 7 ×
3 voxel neighbourhoodwas used for every feature calculation,
as it reflected the anisotropic resolutions of the PET/CT
volumes. This was done, so that the physical dimensions of
the neighbourhood were as close to being equal as possible.
The distance between cooccurring voxels was always chosen
to be 1 (any adjoining voxels). Visual maps of the additional
features not considered in the work by Yu et al. [33] are shown
in Figure 1.
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Figure 1: Examples of the different texture maps derived from SGLDM and NGTDM features for coronal CT and PET images of the same
patient.

2.3.1. First-Order Histogram Statistics. These features rely
on information derived from single-voxel values and their
distribution found within a neighborhood window centered
around any given voxel.Themeasurements are simple statisti-
cal characteristics and include mean, median, standard devi-
ation, skewness, and kurtosis.While simple,many algorithms
have incorporated the use of these features [6, 18, 34].

2.3.2. Second-Order Features. Second-order features refer to
characteristics that take into account the context by which
pairs of voxels are found or their cooccurrence.These features
are derived using a spatial grey-level dependence matrix
(SGLDM) which is determined by the joint-probability dis-
tribution of each combination of grey-level values that occur
next to each other, averaged over angles of 0∘, 45∘, 90∘,
and 135∘. These features were first developed by Haralick
et al. [35] in 1973 and have been shown to be useful for
classification of aerial, satellite, and photomicrograph images.
Features used from this work include energy (i.e., angular
second momentum), entropy, sum average, homogeneity,
correlation, dissimilarity, and contrast (termed “S-contrast”).
An additional feature, cluster shade, formulated by Conners
et al. [36] was also included as a measure of the discrepancy
in size of homogenous clusters. Additionally a new feature
termed “consistency” was created that offers an alternate
measure of occurrence homogeneity, as this characteristic
has been seen to be characteristic of tumors in PET [33] as
follows:

Consistency =
∑
𝑁
𝑔

𝑖
∑
𝑛

𝑗
𝑃 (𝑖, 𝑗) cos [(𝑖 − 𝑗) (2𝜋/𝑁

𝑔
)]

∑
𝑁
𝑔

𝑖
∑
𝑁
𝑔

𝑗
𝑃 (𝑖, 𝑗)

, (3)

where 𝑃(𝑖, 𝑗) is the (𝑖, 𝑗)th entry of 𝑁
𝑔
× 𝑁
𝑔
cooccurrence

matrix, and 𝑁
𝑔
is the number of discretized grey levels. The

basis of using these features is to detect the distinct vascular
and structural pattern that is characteristic of cancerous
lesions. While there are more second-order features, those
included in this category were chosen based on their general
response to heterogenous patterns as well as mathematical
independence. Second-order features have been well cor-
related with human perception in textural discrimination
studies when no other visual cues were available [37].

2.3.3. Higher-Order Features. Higher-order texture statistics
refer to similar measurements based on the relationship of
more than two voxels at a time; here the contrast with

the neighborhood grey tone is considered. The features
considered were formulated by Amadasum and King in 1989
[38] who proposed the use of Neighborhood Grey-Tone
Difference Matrices (NGTDMs) to describe visually intuitive
concepts such as coarseness, contrast (referred to here as
“N-contrast”), and busyness. While only an approximation
of human visual perception of texture, higher-order features
can detect subtle statistical differences well beyond that of
a human observer. Due to their sensitivity to local varia-
tions and independent method of calculation, these texture
characteristics were considered to compliment the previously
mentioned features. The modified formulations in Yu et al.
[33] were used in this case in order to be intensity scale
invariant.

2.3.4. Structural Features. Structural features were included
in order to characterize the macrotextures present in the
human thoracic anatomy. This is necessary as all the fea-
tures listed so far are limited to fine scales due to their
computational impracticality at larger neighbourhood sizes.
Three structural features were chosen in this category, the
morphological gradient, the standard deviation of the mor-
phological gradient, and the left-to-right symmetry ratio.
Themorphological gradient is determined by subtracting the
dilation of an image by its erosion and was calculated using
the Insight Toolkit (ITK) (Kitware Inc., New York NY), with
a ball kernel of radius 2 voxels. The standard deviation of this
morphological gradient image was also taken as a feature by
scanning a neighborhood window over the image. The left-
to-right symmetric ratio was calculated by dividing a given
neighborhood of voxels by the same neighborhood mirrored
across the left-right axis.

2.3.5. Tamura Features. Tamura features are an alternative
method for computationally approximating perceptual con-
cepts such as coarseness, contrast, and directionality. These
features were formulated by Tamura et al. in 1978 [39] and
were found to correlate well with visual rankings of texture
patterns. Of the 6 features proposed in this work only contrast
and directionality were chosen, as they showed the highest
correlation with texture rank, were mathematically indepen-
dent formulations, and lent themselves well to calculation
within a limited neighborhood size.

2.4. KNN Classifiers and Decision Trees. A K-nearest neigh-
bor or KNN is a simple nonlinear classifier that is able to use
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prior training data to make predictions regarding new data
using the Euclidean distance in feature space.This distance is
calculated from (4) for each of the training samples as follows:

𝐷
𝑖
= √

𝑛

∑
𝑗=1

(𝜒
𝑗
− 𝑥
𝑗𝑖
)
2

, (4)

confidence = arg max (
𝑛
𝑎

𝑘
,
𝑛
𝑛

𝑘
) . (5)

Here 𝜒 is the feature vector of a test point, being classified by
its 𝑛-dimensional distance to the training point 𝑥

𝑖
. To avoid

overfitting to the training data and thus ensuring generality,
rather than taking the nearest data point, the distances of the
𝑘 closest training examples are used. 𝑛

𝑎
and 𝑛
𝑛
are the number

of these 𝑘 examples that fall into either class (abnormal or
normal). The classification decision is made by choosing
the class with the highest number of examples within the 𝑘
examples chosen. In this work a 𝑘 value of 7 was used. A
confidence value (5) is determined by the ratio of examples
from each class, which was used to calculate the receiver
operating characteristic (ROC) curve. KNN classifiers are
attractive because of their simplicity and performance which
has been found to be competitive with more sophisticated
classification algorithms [40, 41]. In order to account for the
different scaling of all the features included, each feature value
was subtracted from the training mean and divided by the
standard deviation. Decision trees are a method used for
combining multiple decision making rules in such a way as
to partition the training data into multiple sets which can
each be classified according to different sets of rules or in
this case feature subsets. In previous work, it was shown that
a combined decision tree K-nearest neighbors resulted in
excellent classification [42]. The training method involves an
exhaustive search of atmaximum three features for each node
that provide the best AUC90 (area under the ROC greater
than 90% specificity).The training data is then split using this
classifier, and falsely classified examples in both branches are
further teased out by training additional KNNs and repeating
the process.This tree growing is stopped once either a further
improvement in overall classification accuracy cannot be
achieved, or the number of training samples in either class
fall below a certain number, in this case 4 to be able to
achieve a majority out of 7. AUC90 was chosen as it was
more sensitive to the shape of the ROC curve near the plateau
edge.TheROCwas determined by performing a leave one out
cross-validation of the ROI-based training data and using the
confidence value given in (5) to provide multiple points.

The resulting tree is shown in Figure 2. It consists of 5
levels, with all but one containing a combination of PET
and CT features, suggesting that the combination of the
two modalities generally provides a better classification. The
resulting tree was able to classify the training data ROIs with
an AUC of 0.996, an AUC90 of 0.097, and a sensitivity and
specificity of 0.973 and 0.991, respectively. The ROC was
calculated using a leave-one-out method where each data
point is left out of the training data, while it is being classified.
The sensitivity and specificity are listed where a 𝑘 value of 4

or greater is required to select either class in the final leaf of
the tree. The ROC is shown in Figure 3.

2.5. Segmentation Pre- and Postprocessing. Extending ROI-
based training results to voxel-by-voxel segmentation in an
independent set of images required additional processing
steps. In order to reduce computation time and improve
accuracy of the segmentation, several steps were taken prior
and after classification. Only voxels with an SUV greater than
1, a HU value between −300 and 200, and a PET busyness
that did not equal zero and was less than 0.8 were considered.
This automatically removed voxels from regions that had little
FDG uptake as well as nonsoft tissue from consideration.
Thresholding PET busyness was done to remove many heart
and liver voxels from consideration. Connected component
analysis was performed after segmentation to remove clas-
sification errors which were characterized as sparse voxels
distributed throughout the volume. Components with a
volumes less than 0.5 cm3 were reclassified as normal as these
were thought unlikely to represent actual tumor. Contours
were then dilated by a disc of radius 2 voxels, sent through
a morphological closing, then a fill procedure, then eroded
back to the correct size by the same disc. The CT window
chosen in preprocessing was then reapplied to eliminate any
voxels that may have accidentally leaked into bone or air.
This last series of steps was performed because the algorithm
would occasionally miss sections at the center of the tumor
where FDGuptakewas fairly homogenous.This occurred due
to the fact that many of the features look for sharp gradients
in FDG uptake.

2.6. Thresholding Methods. A SUV threshold of 2.5 proposed
by Paulino et al., [9] and thresholds of 20%, 25%, 30%,
35%, 40%, and 50% of the maximum uptake value were
included in a comparison. It was found that among the
various percentages, the 30% max SUV threshold performed
the best according to Dice coefficient, and hence for brevity
only this threshold is included in the results section.

2.7. First-Order KNN. In order to see whether the addition of
feature information played a significant role in segmentation,
a single KNN classifier using only SUV andHUwas included
for comparison. This is referred to as “HU-SUV-KNN” in
Figures 6, 7, and 8.

2.8. 3 Class Fuzzy Locally Adaptive Baysian (3-FLAB). The
3-FLAB algorithm developed by Hatt et al. [16] was imple-
mented to enable comparison against a current state-of-the-
art, PET-only algorithm. In this algorithm a fuzzy classifi-
cation is performed between three hard classes. A fuzzy K-
means algorithm is used to initialize stochastic estimation
maximization. An iterative estimation of the probability of
each voxel’s class is based on its 3 × 3 × 3 neighbourhood in
order to improve robustness to noise.

2.9. Fuzzy Clustering Method. The FCM algorithm included
in the fuzzy logic toolbox ofMATLABwas used to cluster the
PET data into three classes as a means of segmentation. The
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Figure 2:The trainedDTKNN tree alongwith the three best features chosen for each node.Note that thisDTKNNwas trained to discriminate
between the tumor ROIs defined by an oncologist and the normal tissue ROIs defined by a medical physicist for a set of 21 patient PET/CT
images.
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Figure 3: The receiver operating curve for the DTKNN tree using
the 𝑘 value determined at the leaves of the tree as the threshold. Note
that this ROC shows the ability of the DTKNN to distinguish tumor
ROIs from normal tissue ROIs in the training set.

class with the largest resemblance to the tumor boundary as
defined by the oncologist was chosen and thresholded at a
class membership probability of 50%.

2.10. Multivalued Level Set Method. The multivalued level
set algorithm as published by El Naqa et al. in 2007 [30] is

a geometric variationalmethod that incorporatesmultimodal
information using a set of weights to emphasize the impor-
tance of each force evolving the contour and each modality.
The level set method begins with an initialization and
represents the contour implicitly using a level set function
where the contour is defined by the zero crossing of this
function. Here themetric is defined by (6) which relies on the
differences in mean intensity inside and outside the segment
and ismaximized through iterative evaluation of the function
gradient as follows:

inf
𝐶
𝐽 (𝐶, 𝑐

+
, 𝑐
−
) ∝ 𝜇,

length (𝐶) + 1

𝑁
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𝑖

𝜆
+

𝑖
∫
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+

𝑖


2

𝐻(𝜙) 𝑑𝑥 + 𝜆
−

𝑖

× ∫
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−

𝑖


2

(1 − 𝐻 (𝜙)) 𝑑𝑥 +
1

𝑁
∑
𝑖

𝛾
𝑖
(𝑐
+

𝑖
− 𝑐
−

𝑖
)
2

,

(6)

where 𝐶 is the contour, 𝑐+ and 𝑐− are the regions outside and
inside the contour, 𝑁 is the number of samples taken from
the images indexed by 𝑖, 𝜙 is the scalar level set function,
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Figure 4: Performance characteristics of the chosen features in terms of area under the curve (AUC) and sensitivity. Specificity was excluded
as all values were above 0.95 and showed little difference between features. Directionality was also excluded for application to the PET images
and is thus not shown.

and 𝐻(𝜙) is the Heaviside function. Ω is the image space,
and 𝜆

+

𝑖
, 𝜆−
𝑖
, and 𝛾

𝑖
are the weights attributed to the outside,

inside and spring force of the equation for input 𝑖. 𝜇 is
another weighting factor associated with the length of the
contour, controlling the smoothness of the segment. Due to
the fact that active contour methods are generally sensitive to
the initial segmentation, two methods of initialization were
used.The first method used the physician contours, following
erosion using a square structuring element with a width and
height of 4 voxels applied two-dimensionally to every slice. In
the case of the testing data when using the STAPLE derived
probabilities, this erosion was applied to the binary mask of
the 90% threshold. The second method calculated the center
of mass for each connected component of the binary mask
defining the manual delineations. The binary mask taken by
thresholding the 90% probability level in the STAPLE maps
was similarly used for the 10 test patients. Spheres with a
radius of 8.16mmor 8 voxels in the transverse plane, centered
on the centers of mass of the connected components, were
then used as initialization. The first method is referred to
as the manual method in the results and was included to
demonstrate the optimal results that theMVLS could achieve.
The second is referred to as the spheres method and was
included to not only show how initialization would effect
the results but also to replicate the method by which the
algorithm was initialized in the paper by El Naqa et al. [30].
The parameters chosen were 𝜆+

𝑖
, 𝜆−
𝑖
, and 𝛾

𝑖
equal to [1, 1.5],

[1, 1.5], and [0.01, 0.015] where the first element refers to the
PET weight and the second to the CT. For three cases in the
training datawhere instability was observed, theweights were
changed to [1.5, 1], [1.5, 1], and [0.2, 0.3] in order to relymore
heavily on the PET image and spring term, 𝛾. A step size of
0.05 and a maximum iteration limit of 250 steps were used in
order to provide a smooth evolution of the level set function
and ensure that convergencewas reached. A𝜇 value of 0.5 was
used.

3. Results

The individual classifier results in Figures 4 and 5 show a
great disparity between the CT and PET features, which is
to be expected considering the sensitivity of FDG. The most
discriminatory PET and CT features were CT skewness and
PET coarseness with AUCs of 0.692 and 0.975, respectively,
for discriminating between tumor and normal tissue ROIs.

In order to judge their potential for combinatorial strate-
gies, their performance with regards to discrimination of
individual tissue types was also evaluated and summarized
in Figure 5. Here the AUC is shown on a warm color scale
ranging from 0.5 to 1. The tiles show the performance of the
feature for discriminating individual organ ROIs from tumor
ROIs.

Each feature was also evaluated for its robustness to noise.
To do this, the Pearson’s correlation coefficient was calculated
between the mean liver ROI feature value, and the SNR was
calculated from the same ROI. The majority of PET features
showed little correlation to SNR, while some of the CT
features showed high correlation, suggesting susceptibility to
noise. CT skewness showed the least correlation with an 𝑟

value of 0.06, while most of the SGLDM and NGTDM CT
features showed a much higher correlation with SNR.

Using the probability maps calculated by STAPLE and
the GTVs of the 21 training patients, the voxel-by-voxel
performance of the various segmentationmethods, including
the DTKNN, two threshold techniques, a single KNN based
on Hounsfield units (HU) and SUV (referred to as HU-SUV-
KNN), MVLS, 3-FLAB, and the fuzzy clustering method
was evaluated. This is demonstrated for 4 cases in Figure 9
using the DTKNN, a manual contour, a threshold of 30%
SUV and 3-FLAB. Three metrics were used, Dice coefficient,
sensitivity, and specificity. The DTKNN was shown to have
the second highest average Dice coefficient across both data
sets of 0.607. When validated among the training data alone,
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Figure 5: Summary of performance by area under the receiver operation characteristic (ROC) curve (AUC) when using individual features
to discern a given tissue from the tumor volume. The 𝑘 value of the KNN classifier was used to vary sensitivity and specificity and plot the
curve. Lighter areas indicate better discrimination. Note that these data refer to discrimination of tumor ROIs from normal tissue ROIs, not
individual voxel discrimination.

the classifier performed with an average Dice coefficient, sen-
sitivity, and specificity of 0.571, 0.742, and 0.946, respectively.
Similarly when validated using solely the 10 independent
patient images the classifier was found to perform with the
same respective metrics at 0.654, 0.684, and 0.996 as shown
in Figures 6, 7, and 8. The DTKNN algorithm performed
with the highest sensitivity compared to other segmentation
methods but had one of the lowest specificities due to false
positive regions such as the left ventricle of the heart, superior
edge of the liver, and a slight overestimation of the tumor
boundary.The concordance index (CI) of the three observers
was calculated according to the definition by Struikmans et al.
[43]. The average CI of the 10 test patients from Sunnybrook
was found to be 0.588. Since variability based on training
data is a concern for decision trees [44], a cross-validation

leave one out of each training patient was performed. For
each leave one out case, the DTKNN was retrained on the
remaining data and the resulting tree, and data set was used
for segmentation of the 10 test cases. The standard deviation
among the Dice coefficients for each leave one out case was
calculated for each test patient. The average value of this as
a percentage of the average Dice coefficient was found to be
14%.

The MVLS-manual method was shown to perform with
the highest average Dice coefficient for both datasets and the
second highest sensitivity when using the manual method.
However, these optimal segmentationswould likely not occur
consistently in a real world situation, since it relied on data
the user might not agree with. When using a consistent
initialization using spheres, similar to that used in the paper
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Figure 6: Summary of the averageDice coefficient for both datasets.
The ground truth was evaluated using a single physician contour
for the training data and an estimated consensus using STAPLE for
the test data which explains the generally higher scores for each
algorithm.
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Figure 7: Summary of the average sensitivity for each algorithm.
The DTKNN algorithm showed the highest sensitivity to abnormal
voxels with an average value of 73.9%.

by El Naqa et al. [30] it was found that the algorithm
converged on solutions that did not agree nearly as well
with the expert observers’ segmentations in terms of Dice
coefficient. The MVLS, initialized using spheres, had an
average Dice coefficient of 0.590, which was very similar to
the average coefficient of the DTKNN (0.607).

4. Discussion

Presented in this work is the training and validation of a
DTKNN classifier algorithm based on the use of 3D texture
features derived from PET/CT scans of patients with lung
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Figure 8: The average specificity for each algorithm. The majority
of the tested algorithms had a higher specificity for the test data
following the trend of the Dice coefficients with the exception of the
MVLS method.

carcinoma, in order to estimate the contours of the gross
tumor volume. The DTKNN differentiates itself from other
methods in that it utilizes machine learning to classify voxels
as being either normal or abnormal by relying on the textural
patterns from both PET and CT. The other algorithms
presented in this paper do not rely on previously observed
data and only work with knowledge of the case they are
applied to. This work develops the DTKNN method further
by investigating the use of additional texture features to
improve the performance of the algorithm and characterizes
these features in the context of the lung.

One of the challenges of validating image segmentation
is determining a ground truth. While the use of contours
derived from histological examination of surgically resected
tumors would seem an ideal gold standard, errors are often
introduced due to changes in tissue morphology during
resection, histoprocessing [45], and during registration [46].
While a great deal of interobserver variability exists, the use
of STAPLE to draw a probabilistic map has shown validity for
predicting expert consensus [47] and providing ground truth
in the case of the Cardiac Atlas Project [48].This is combined
with the fact that our observers agreed with a concordance
index similar to that observed in the study by Struikmans
et al., [43] that leads us to believe the STAPLE method was
able to provide a reliable ground truth for our test data. It can
be seen in Figure 6 that all algorithms performed better with
regards to the test data as opposed to the training data, which
is indicative of a more reliable ground truth.

To study tree stability, 21 different decision trees were
trained via a leave one out approach for each of the patient
image sets. The structures of the trees were found to vary
widely near the terminal ends. In terms of the classification
results, standard deviation as a percentage of the average Dice
coefficient was 14%, which is not unreasonable; however, this
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Figure 9: Results from the voxel-by-voxel DTKNN classification
(red) shown with the oncologist’s GTV contour (green) overlaid on
transverse slices of a fused PET/CT volumes (top left, top right, and
bottom right). The highest performing PET threshold of 30% max
SUV (purple) is also shownovertop of the best performing hard class
defined by the 3-FLAB algorithm (teal).

suggests that the method may benefit from a larger training
set.

One of the drawbacks encountered in the preprocessing
of our method were in conditions where a tumor may
present a necrotic core with a low uptake. In a few instances,
this produced a small cavity in the segmentation which is
another reason why the fill procedure was included in the
postprocessing step. However, if the segmentation is not a
closed shape, this would of course not work.

The performance results showed that the DTKNN seg-
mentations produced a statistically significant (𝑃 < 0.05)
improvement in sensitivity compared to the tested algorithms
when using a Student t-test. Improvement in Dice coefficient
was statistically significant when compared to all algorithms
with the exception of the 30% max SUV threshold and the
MVLS algorithm. However, the literature and the results
of this work have shown the 30% SUV threshold and
thresholding in general to be an inconsistent segmentation
technique [13, 14]. The DTKNN did not show the highest
specificity which suggests overestimation of the boundaries.
However, this may be preferable to an underestimation due
to the dangers of recurrence from undertreating the target.
While the DTKNN algorithm did show a slightly higher
average Dice coefficient than the MVLS when initialized
using spheres, it cannot be concluded that there was a
significant difference in performance between the DTKNN
and the MVLS using this dataset.

It was found that all three performance metrics were
drastically changed by the choice of initialization for the
MVLS. The DTKNN has an advantage in this regard in that
it does not require user input.

From Figure 5 we can see that while the general per-
formance of some individual features may be poor, there is
a considerable amount of interplay that may be exploited

between them. A large number of CT features can be seen
to have difficulty in distinguishing abnormal tissue from the
descending aorta and spleen. Unsurprisingly the organ in
which the PET features had the lowest performance was with
the heart due to frequent cases of high myocardial glucose
utilization in the training data and hence high uptake values.

When combining these features using a DTKNN for
classification it was found that the resulting classifier could
outperform a number of alternative segmentationmethods in
terms of Dice coefficient and sensitivity. The HU-SUV-KNN
classifier was included to determine whether the inclusion
of statistical, structural, and textural features offered an
improvement to using the unprocessed intensity values alone.
The improvement inDice coefficient showed that the addition
of texture improved the overlap of the segmentation with the
ground truth. The results also suggest that the performance
remains relatively consistent across images taken from a dif-
ferent scanner and institution when compared to alternative
segmentation methods. It must be noted that the DTKNN,
HU-SUV-KNN, and MVLS methods were the only ones
tested to incorporate information from both PET and CT in
their segmentation. It would also appear that for the most
part, these methods performed significantly better than the
PET—only algorithms included in this study. If CT features
were added to some of the other methods, it seems likely that
their segmentation performance might also be improved. It
should be noted, however, that with the inclusion of a second
modality into the segmentation process, registration errors
will inevitably also be introduced. From the results shown
here, it would seem that the benefit to accuracy outweighs the
additional error. The inclusion of additional modalities such
asmagnetic resonance imagesmay be able to further improve
results; however, the intuition and anatomical knowledge that
an expert observer can possess will always remain a challenge
to replicate using automated and semiautomated software.

Future work could involve the incorporation of 4D-
PET images in order to better coincide with the gated CT
images and reduce motion blurring. Whether 4D-PET holds
useful texture information and whether the texture itself
demonstrates dynamic properties is still unclear.

5. Conclusion

Presented is a characterization and usage of 3-dimensional
texture features found within the thorax for segmentation
of carcinoma in coregistered PET/CT scans. The approach
relies on a DTKNN to classify voxels based on their first-,
second-, and higher-order statistics as well as structural and
Tamura features. Of these it was found that, independently,
CT skewness and PET coarseness were the strongest discrim-
inators of carcinoma from healthy tissue for each modality
with AUCs of 0.692 and 0.975, respectively. For validation,
contours of 10 test patients deemed difficult to contour
from 3 oncologists were combined into a probabilistic map
using STAPLE along with the 21 training images which
were evaluated using a leave-one-out method. Utilizing the
features in conjunction within the DTKNN it was found that
the tree could outperform a variety of threshold methods,
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an implementation of the 3-FLAB algorithm, and a single
KNN based on Hounsfield units and standard uptake value
alone for defining the tumor volume. The approach was able
to segment tumor with an average Dice coefficient of 0.607
and an average sensitivity and specificity of 73.9% and 99.2%
across both data sets, respectively. The results show that the
usage of texture features within PET/CT images of the thorax
is a promising approach for target delineation in radiotherapy
of the lung, automatically producing GTVs both qualitatively
and quantitatively similar to a consensus of expert observers.
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