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Abstract: Human corneal epithelial (HCE-T) and human lens epithelial (SRA01/04) cells derived
from the human eye were exposed to 60 gigahertz (GHz) millimeter-wavelength radiation for 24 h.
There was no statistically significant increase in the micronucleus (MN) frequency in cells exposed
to 60 GHz millimeter-wavelength radiation at 1 mW/cm2 compared with sham-exposed controls
and incubator controls. The MN frequency of cells treated with bleomycin for 1 h provided positive
controls. The comet assay, used to detect DNA strand breaks, and heat shock protein (Hsp) expression
also showed no statistically significant effects of exposure. These results indicate that exposure to
millimeter-wavelength radiation has no effect on genotoxicity in human eye cells.

Keywords: millimeter-waves; cellular genotoxicity; micronucleus formation; comet assay;
heat shock protein; long-term exposure; human eye cells

1. Introduction

The past decade has seen rapid changes in the technology used to communicate electronically.
New communications technologies will undoubtedly arise and spread despite limitations in
available radio frequencies. There is, therefore, demand for access to new frequency ranges of the
electromagnetic spectrum. However, the rapid introduction of wireless devices has increased the use
of millimeter-wavelength (30–300 gigahertz (GHz)) technologies, and with it increased public concern
about possible adverse effects of radiation sources on human health. It was previously reported that
wide-band millimeter-wavelength exposure at 53–78 GHz significantly inhibited the proliferation of
human skin melanoma cells [1]. In addition, Korenstein-Ilan et al. [2] reported that 0.1 terahertz (THz)
continuous-wave radiation increased the genomic instability of human lymphocytes. Another study
indicated that expression of the adiponectin, GLUT4 and PPARG genes showed clear effects of THz
irradiation after prolonged, broad-band exposure of mesenchymal mouse stem cells [3]. A recent
study reported that THz radiation induced spindle disturbances in human-hamster hybrid cells [4],
and other studies also reported negative physiological effects [5–7]. However, there are also several
reports showing some non-thermal effects on biological membranes from millimeter-wavelength
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exposure [8–12]. It is therefore necessary to evaluate the influence of low-level exposure of the human
body to millimeter-wavelengths because the energy of millimeter-wavelength radiation is absorbed by
the body’s surface, in particular the skin and eyes [13,14]. To investigate the non-thermal effects of
millimeter-wavelength radiation, we developed a device to expose cells to 60 GHz millimeter-waves
and assessed the frequency of micronucleus (MN) formation, single-strand breaks in the DNA, and the
expression of heat shock proteins (Hsp) in cells derived from the human eye.

2. Materials and Methods

2.1. Millimeter-Wave Exposure Set-Up

We used a specially designed apparatus to expose cells to 60 GHz millimeter-waves (Figure 1a,b).
Details of the exposure system were described previously [15]. Briefly, the exposure conditions were
as follows. The chamber in the exposure system was maintained under controlled conditions similar
to those in a conventional incubator, i.e., an atmosphere of 95% air and 5% CO2 at a relative humidity
of >95% and a temperature of 37 ˘ 0.1 ˝C. The exposure apparatus was based on a printed circuit
board with a disc-shaped area surrounded by a post-wall waveguide to feed millimeter-waves into the
substrate of the exposure area. A culture dish 100 mm in diameter was placed on the disc-shaped area
of the apparatus and 60 GHz millimeter-waves were applied to the bottom of the dish through narrow
slot coupling windows on the top of the circuit board, thus exposing cells adhered to the bottom of
the culture dish to millimeter-waves. The spatially averaged power density was set 1 mW/cm2 at the
bottom of the culture medium and temperature elevation was maintained to less than 0.1 ˝C.

Int. J. Environ. Res. Public Health 2016, 13, 802  2 of 9 

 

exposure of the human body to millimeter-wavelengths because the energy of millimeter-wavelength 
radiation is absorbed by the body’s surface, in particular the skin and  
eyes [13,14]. To investigate the non-thermal effects of millimeter-wavelength radiation, we developed 
a device to expose cells to 60 GHz millimeter-waves and assessed the frequency of micronucleus 
(MN) formation, single-strand breaks in the DNA, and the expression of heat shock proteins (Hsp) 
in cells derived from the human eye. 

2. Materials and Methods 

2.1. Millimeter-Wave Exposure Set-Up 

We used a specially designed apparatus to expose cells to 60 GHz millimeter-waves (Figure 1a,b). 
Details of the exposure system were described previously [15]. Briefly, the exposure conditions were 
as follows. The chamber in the exposure system was maintained under controlled conditions similar 
to those in a conventional incubator, i.e., an atmosphere of 95% air and 5% CO2 at a relative humidity 
of >95% and a temperature of 37 ± 0.1 °C. The exposure apparatus was based on a printed circuit 
board with a disc-shaped area surrounded by a post-wall waveguide to feed millimeter-waves into 
the substrate of the exposure area. A culture dish 100 mm in diameter was placed on the disc-shaped 
area of the apparatus and 60 GHz millimeter-waves were applied to the bottom of the dish through 
narrow slot coupling windows on the top of the circuit board, thus exposing cells adhered to the 
bottom of the culture dish to millimeter-waves. The spatially averaged power density was set  
1 mW/cm2 at the bottom of the culture medium and temperature elevation was maintained to less 
than 0.1 °C.  

(a) (b)

Figure 1. The built-in incubator of the 60 GHz exposure system (a) and an inside view of the incubator 
(b). The chamber of the exposure system was maintained under controlled conditions similar to those 
in an incubator, i.e., an atmosphere of 95% air and 5% CO2 at a relative humidity of >95% and a 
temperature of 37 °C. 

2.2. Cell Culture 

The HCE-T human corneal epithelial cell line (RIKEN CELL BANK, Ibaraki, Japan) derived from 
human corneal epithelial cells was maintained in DMEM (Wako Pure Chemical Industries, Ltd., Osaka, 
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bovine serum (FBS), insulin (Sigma-Aldrich, St. Louis, MO, USA) at a final concentration of 5 μg/mL, 
and human epidermal growth factor (Roche, Basel, Switzerland) at a final concentration of 10 ng/mL. 
This cell line was kindly supplied by Masao Taki, Tokyo Metropolitan University. The SRA01/04 
human lens epithelial cell line (RIKEN CELL BANK) derived from human lens epithelial cells was 
maintained in DMEM (Wako Pure Chemical Industries, Ltd.) medium supplemented with 20% FBS. This 
cell line was kindly supplied by Hiroshi Sasaki, Kanazawa Medical University. The cells were seeded 
onto 10 cm dishes (Asahi Glass, Tokyo, Japan) at a density of 1 × 106 cells/mL with total volume of 
11.6 mL medium to adjust the medium layer thickness to 2 mm for ideal exposure. After overnight 

Figure 1. The built-in incubator of the 60 GHz exposure system (a) and an inside view of the
incubator (b). The chamber of the exposure system was maintained under controlled conditions
similar to those in an incubator, i.e., an atmosphere of 95% air and 5% CO2 at a relative humidity
of >95% and a temperature of 37 ˝C.

2.2. Cell Culture

The HCE-T human corneal epithelial cell line (RIKEN CELL BANK, Ibaraki, Japan) derived
from human corneal epithelial cells was maintained in DMEM (Wako Pure Chemical Industries, Ltd.,
Osaka, Japan):HamF12 (Wako Pure Chemical Industries, Ltd.) (1:1) medium supplemented with 5%
fetal bovine serum (FBS), insulin (Sigma-Aldrich, St. Louis, MO, USA) at a final concentration of
5 µg/mL, and human epidermal growth factor (Roche, Basel, Switzerland) at a final concentration
of 10 ng/mL. This cell line was kindly supplied by Masao Taki, Tokyo Metropolitan University.
The SRA01/04 human lens epithelial cell line (RIKEN CELL BANK) derived from human lens epithelial
cells was maintained in DMEM (Wako Pure Chemical Industries, Ltd.) medium supplemented with
20% FBS. This cell line was kindly supplied by Hiroshi Sasaki, Kanazawa Medical University. The cells
were seeded onto 10 cm dishes (Asahi Glass, Tokyo, Japan) at a density of 1 ˆ 106 cells/mL with
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total volume of 11.6 mL medium to adjust the medium layer thickness to 2 mm for ideal exposure.
After overnight culturing, the cells were exposed to 60 GHz. The cells were collected 24 h after exposure
to millimeter-wavelength radiation. For positive controls, cells were treated with 10 µg/mL bleomycin
for 1 h for the genotoxicity test and with heat (43 ˝C for 2 h and then 37 ˝C for 1 or 2 h) for the Hsp
expression test.

2.3. Micronucleus (MN) Frequency

The methodology for conducting the Micronucleus (MN) formation test was described
previously [16]. Briefly, after exposure to millimeter-wavelength radiation or 10 µg/mL bleomycin for
1 h, the cells were cultured in medium supplemented with 3 µg/mL cytochalasin B (Sigma-Aldrich) in a
conventional incubator for 24 h, centrifuged onto slides using a Cytospin centrifuge (Shandon Southern
Instruments Ltd., Cambridge, UK) at 100ˆ g for 5 min, fixed with cold 80% ethanol for 30 min,
and stained with 0.2 µg/mL propidium iodide (Sigma-Aldrich). A total of 1000 binucleated cells
were counted and the frequency of MN formation was determined using a fluorescence microscope
(Olympus, Tokyo, Japan) according to the criteria described previously [17]. At least three independent
tests were performed.

2.4. Comet Assay

The comet assay was performed using a Trevigen Comet Assay Kit (Trevigen Inc., Gaithersburg,
MD, USA) to detect DNA strand breaks at the single-cell level as described previously [18]. Briefly, cells
were exposed to millimeter-wavelength radiation for 24 h, collected by trypsinization and centrifuged
immediately after exposure, then mixed with low melting point agarose to prepare a cell suspension
in 0.1% agarose/phosphate buffered saline (PBS). After gelation of the agarose, the cells were lysed,
then the alkaline unwinding was performed (1 h at 4 ˝C, pH > 13). The resulting DNA samples
were electrophoresed at 1 V/cm for 30 min in a 0.3 M NaOH (Nacalai Tesque, Kyoto, Japan)
and 1 mM ethylenediamine-N,N,N’,N’-tetraacetic acid (Sigma-Aldrich) solution. After the DNA
was stained with SYBR Green I, immunofluorescence images were captured using a fluorescence
microscope (Olympus, Tokyo, Japan). DNA strand breaks were analyzed using Comet software
(Perceptive Instruments, Suffolk, UK). At least 100 comets from each gel were analyzed, and at least
five independent experiments were performed. Tail length indicates the pixel length of the comet tail,
tail percent indicates the percentage of tail content relative to comet content, and tail moment was
calculated as follows:

Tail moment = (the distance between the center of the comet head and the
center of the comet tail) ˆ (tail percent)/100

(1)

2.5. Hsp Expression

The methodology for quantifying Hsp expression has been described previously [18]. Briefly, after
millimeter-wavelength exposure or heat treatment, the cells were washed with cold PBS, collected using
a cell scraper, and the proteins were extracted using CelLyticTM-M (Sigma-Aldrich) supplemented
protease inhibitor cocktail (Sigma-Aldrich). The extracted proteins were incubated at 4 ˝C for 15 min
and centrifuged at 100ˆ g for 15 min. The supernatants were collected and the protein concentrations
were measured using an iMark plate reader (Bio-Rad, Hercules, CA, USA) and a calibration curve
and adjusted to 1 mg/mL. The samples were mixed with 2ME sample buffer (Wako) at a ratio
of 1:1 and incubated at 100 ˝C for 1 min, then immediately put on ice. Extracted protein (20 µg)
was loaded onto a 12.5% sodium dodecyl sulfate (SDS)-polyacrylamide gel (Wako), separated by
electrophoresis, and transferred to a nitrocellulose membrane (Life Technologies Japan, Tokyo, Japan)
using iBlot (Life Technologies Japan). BenchProTM 4100 (Invitrogen, Carlsbad, CA, USA) was
used for blocking and immunostaining. The membrane was blocked with skim milk (DS Farma
Biomedical, Osaka, Japan) for 1 h and immunostained with antibodies for 1 h. Primary antibody for
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Hsp27 (R&D Systems, Minneapolis, MN, USA, 1:10,000), Hsp70 (StressMarq Biosciences Inc., Victoria,
BC, Canada, 1:1000), Hsp90α (StressMarq, 1:2000) and β-actin (Sigma-Aldrich, 1:1000) were used.
The secondary antibodies used were anti-mouse (GE Healthcare, Tokyo, Japan, 1:1000), anti-goat
(R&D, 1:500) and anti-rabbit (Sigma-Aldrich, 1:500). After immunostaining, the membranes were
stained with horseradish peroxidase, followed by analysis using ATTO Image Analysis Software
(Tokyo, Japan). At least three independent experiments were performed.

2.6. Statistical Analysis

The data were analyzed using Tukey’s test. p-Values < 0.05 or 0.01 were considered to be
statistically significant. The statistical power (1´β) in MN and comet assay test were calculated using
the effect size (f ) = 0.1. All assays were performed in a blinded fashion.

3. Results

3.1. MN Formation

The frequency of MN formation in HCE-T and SRA01/04 cells is shown in Figure 2a,b, respectively.
MN frequency in HCE-T and SRA01/04 cells increased significantly following bleomycin treatment,
whereas no significant difference was observed between incubator control, sham-exposure, and
the millimeter-wavelength–exposed cells. These results suggest that 24 h exposure to 60 GHz
millimeter-wavelength radiation may have no significant effect on the MN frequency in HCE-T
and SRA01/04 cells.
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tail moment indicates the degree of the genotoxic effect on the DNA. The tail moments of both HCE-
T and SRA01/04 cells increased significantly following the bleomycin treatment, whereas no 
significant difference in the tail moment was observed between the incubator control, sham and 
millimeter-wave exposure samples. The tail moments were calculated using the tail length and the 
tail percent. The results of these values were statistically almost the same as the results of the tail 
moment (data are not shown). These results suggest that 24 h exposure to 60 GHz millimeter-
wavelength radiation may have no significant effect on the comet assay of HCE-T and SRA01/04 cells. 

Figure 2. Micronucleus frequency in cells exposed to millimeter-wavelength radiation at 60 GHz
for 24 h: HCE-T cells (a) and SRA01/04 cells (b). Treatment with bleomycin (10 µg/mL) provided
the positive controls. Data are presented as the mean ˘ SD from three independent experiments.
Asterisks ** indicate p < 0.01. f = 0.1, (1´β) = 0.9903.

3.2. Comet Assay

The tail moments of lysed HCE-T and SRA01/04 cells are shown in Figure 3a,b, respectively.
The tail moment indicates the degree of the genotoxic effect on the DNA. The tail moments of both
HCE-T and SRA01/04 cells increased significantly following the bleomycin treatment, whereas no
significant difference in the tail moment was observed between the incubator control, sham and
millimeter-wave exposure samples. The tail moments were calculated using the tail length and the tail
percent. The results of these values were statistically almost the same as the results of the tail moment
(data are not shown). These results suggest that 24 h exposure to 60 GHz millimeter-wavelength
radiation may have no significant effect on the comet assay of HCE-T and SRA01/04 cells.
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Figure 3. Values of a comet parameter (tail moment) for cells exposed to millimeter-wavelength 60 GHz
radiation for 24 h: HCE-T (a) and SRA01/04 (b). The positive control was treatment with bleomycin
(10 µg/mL). Data are presented as the mean ˘ SD from three independent experiments. Asterisks **
indicate p < 0.01. f = 0.1, (1´β) = 0.2193.

3.3. Hsp Expression

The expression of Hsp27, 70 and 90α in HCE-T cells is shown in Figure 4a–c, respectively.
Heat treatment (Hsp27: 43 ˝C (2 h) to 37 ˝C (1 h), Hsp70 and 90α: 43 ˝C (2 h) to 37 ˝C (2 h)) clearly
increased the level of each Hsp. The expression of Hsp27, 70 and 90α in SRA01/04 cells is shown in
Figure 5a–c, respectively. Heat treatment (Hsp27: 43 ˝C (30 min) to 37 ˝C (2 h), Hsp70: 43 ˝C (2 h) to
37 ˝C (2 h), Hsp90α: 43 ˝C (3 h)) significantly increased the level of each Hsp.
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radiation for 24 h. The positive control underwent heat treatment at 43 ˝C for 30 min (Hsp27), 2 h
(Hsp70) and 3 h (Hsp90α). Data are presented as the mean ˘ SD from three independent experiments.
Asterisks * and ** indicate p < 0.05, and 0.01, respectively.

4. Discussion

In this study we evaluated the effects of exposure to 60 GHz millimeter-wavelength radiation
at a constant temperature for 24 h on cellular genotoxicity and stress responses using HCE-T
and SRA01/04 cells. No effects were detected on MN formation, single-strand breaks in the
DNA, and the expression of Hsp27, 70 and 90α, indicating the absence of non-thermal effects of
millimeter-wavelength exposure.

Several studies have evaluated the biological effects of millimeter-wavelength exposure and
found effects on neuronal activity [11], proliferation [19], and cell metabolism [20], as well as effects
on genomic instability [2]. Korenstein-Ilan et al. described that the continuous application of 0.1 THz
radiation (0.031 mW/cm2) to human lymphocytes for 2 or 24 h induced genomic instability of
chromosomes 11 and 17, detected using a fluorescence in situ hybridization method, and suggested
that such exposure may result in an increased risk of cancer. In contrast, in the present study, we only
detected micronucleus formation (Figure 2) and DNA strand breaks (Figure 3) induced by bleomycin
treatment, and not by exposure to 60 GHz millimeter-wavelength radiation for 24 h, suggesting
that exposure did not cause an increase in genotoxicity. These contradictory results may be due to
differences in the frequency, power density or experimental design between the two studies, and thus
the underlying factors for these discrepancies require further investigation.

Alexandrov et al. reported data showing non-thermal effects on the gene expression of cells
following exposure to terahertz radiation [3]. They used mesenchymal mouse stem cells exposed to
broadband 10 THz pulsed radiation, a system that is totally different from that used in the current study.
Importantly, they did not detect differences in the protein levels of heat shock proteins Hsp105, 90 and
CPR, consistent with our study, although the expression levels of the three corresponding genes showed
clear effects of THz irradiation. In our study, we detected an increase in Hsp expression following heat
treatment, used as a positive control, but not by exposure to 60 GHz millimeter-wavelength radiation
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for 24 h, suggesting that this exposure did not cause upregulation of Hsp. Further work is required to
investigate other proteins in addition to the Hsp27, 70, and 90α explored in the current study.

A large body of literature reports no adverse effects of exposure to millimeter-wavelength
radiation. Beneduci et al. [21] showed that long-term exposure of human skin melanoma cells to
42 GHz and 53 GHz radiation at a power density below 0.3 mW/cm2 did not induce any effect on the
cell cycle of these cells. Nicolaz et al. [22] described that exposure to 60.4 GHz radiation at a power
density of 0.14 mW/cm2 did not cause endoplasmic reticulum stress in human glial cells. Le Dréan’s
group has also published studies on the effects of 60.4 GHz radiation [23–25]. Le Quément et al. [23,24]
showed no significant differences in gene expression following exposure to millimeter-wavelength
radiation: although after 6 h exposure at 20 mW/cm2 real-time PCR analysis showed that some gene
expression levels were affected, and this effect was linked to the increased temperature caused by
exposure. Haas et al. [25] also indicated that a slight increase in protein expression observed following
exposure to 60.4 GHz for 24 h was related to heating, and that there were no differences in the protein
expression of neuronal marker β-tubulin or in the internal expression of control β-tubulin, consistent
with our data. However, in a separate study the same group proposed specific millimeter-wavelength
effects [26]: specifically, that millimeter-wavelength exposure induced a drastic modification of the
whole gene expression system primarily associated with the thermal effects of radiation, although no
significant differences were found in the expression levels of several genes in the absence of thermal
effects. We could not detect any effects on genotoxicity and Hsp expression in the current study, but
the molecular mechanisms underlying cellular responses after millimeter-wavelength exposure remain
to be determined.

Vijayalaxmi et al. [27] reported that genotoxicity tests provided no evidence for the induction of
MN formation in murine peripheral blood and bone marrow cells exposed to 42 GHz electromagnetic
millimeter-wavelength radiation, consistent with our data. Taken together, most studies to date
have shown no effect of exposure to millimeter-wavelength radiation, although a few studies have
shown effects. These controversial results may come from differences in the experimental conditions.
Overall, it appears that exposure to millimeter-wavelength radiation has no genotoxicity effect, and
does not alter Hsp expression in the absence of thermal effects. However, our study was performed on
specific conditions. It has been shown that the effects of microwaves including millimeter-wavelength
radiation strongly depend on a number of physical parameters such as frequency, modulation,
polarization, background extremely low-frequency and static magnetic fields [28,29]. We have to
be more careful in comparing the data which were performed at different conditions. In addition, we
have to consider rigid statistical calculations which we might be missing. In this study, we obtained
high statistical power in the MN test; however, we could not obtain enough statistical power in the
comet assay. We should be carefully aware of these statistical issues.

We are currently conducting similar studies using 40 GHz radiation.

5. Conclusions

The findings from the present study suggest that exposure of HCE-T and SRA01/04 cells to
millimeter-wavelength radiation at 60 GHz for 24 h has no significant effect on MN frequency,
single-strand breaks in the DNA, or Hsp expression. In conclusion, the exposure of cells to
millimeter-wavelength radiation at 60 GHz does not seem to have adverse effects on the genotoxicity
or Hsp expression of cultured HCE-T and SRA01/04 cells using our specific experimental conditions,
although the possible effects of other frequencies require further study.
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