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Pulmonary infections remain a major cause of morbidity and mortality in hematopoietic cell
transplantation (HCT) recipients. The prevalence and type of infection changes over time
and is influenced by the course of immune reconstitution post-transplant. The interaction
between pathogens and host immune responses is complex in HCT settings, since the
conditioning regimens create periods of neutropenia and immunosuppressive drugs are
often needed to prevent graft rejection and limit graft-versus-host disease (GVHD).
Experimental murine models of transplantation are valuable tools for dissecting the
procedure-related alterations to innate and adaptive immunity. Here we review mouse
models of post-HCT infectious pulmonary complications, primarily focused on three
groups of pathogens that frequently infect HCT recipients: bacteria (often P.
aeruginosa), fungus (primarily Aspergillus fumigatus), and viruses (primarily
herpesviruses). These mouse models have advanced our knowledge regarding how the
conditioning and HCT process negatively impacts innate immunity and have provided new
potential strategies of managing the infections. Studies using mouse models have also
validated clinical observations suggesting that prior or occult infections are a potential
etiology of noninfectious pulmonary complications post-HCT as well.

Keywords: hematopoietic cell transplantation, bone marrow transplantation, infectious pulmonary complications,
herpesvirus, Pseudomonas aeruginosa, Aspergillus fumigatus
INTRODUCTION

Hematopoietic cell transplantation (HCT) is a potentially curative treatment for high-risk
hematopoietic neoplastic disorders, metabolic, genetic and immune-mediated diseases. It involves
eradication or suppression of the recipient’s hematopoietic cells using a conditioning regimen
followed by infusion of stem cells collected from the bone marrow, placenta (cord blood) or
peripheral blood (1). The source of hematopoietic cells can be either autologous (auto, recipient-
derived) or allogeneic (allo, matched related or unrelated donor-derived) hematopoietic cells. HCT
has been carried out increasingly over the years with 47,468 transplants in 50 European and
associated countries (2), and 22,573 transplants in the United States in 2018 (3).

Unfortunately, the toxicity of conditioning regimens, alloimmune responses and
immunosuppressive therapies cause severe post-transplant complications, in which the lung is
org August 2021 | Volume 12 | Article 7186031
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one of the most common target organs. Pulmonary
complications occur in up to 60% of allo-HCT recipients (4)
and 25% of auto-HCT recipients (5). The frequent pulmonary
complications and their significant contribution to post-
transplant morbidity and mortality limit the success of HCT
(6–8). These complications are heterogeneous, and include
pathologies generated by infectious agents and noninfectious
disorders. Although infectious pulmonary complications after
HCT have been significantly reduced due to aggressive
prophylaxis and the use of broad-spectrum antimicrobial
medications, these infections still remain problematic,
especially among the patients with graft-versus-host disease
(GVHD). Major noninfectious pulmonary complications
include early onset idiopathic pneumonia syndrome (IPS) (7),
and late onset bronchiolitis obliterans syndrome (BOS) (9).Current
experimental data support alloimmunity as an underlying
mechanism of these idiopathic noninfectious lung injuries (7, 9).
For a review on non-infectious pulmonary complications of stem
cell transplantation, please see references (10, 11).

Animal models have been extensively used for the
establishment and improvement of HCT therapy (12, 13).
Animal models allow manipulation of single factors during the
development of complications associated with HCT, and thus are
crucial for successfully improving clinical applications. Most of
the current knowledge regarding defects in immune responses
during infectious pulmonary complications come from studies
using mouse models of HCT. In this review, we will first briefly
introduce infectious pulmonary complications post-HCT, and
then describe relevant mouse models and current understanding
of host immune responses to lung infections post-HCT that have
been acquired from studying these models.
CLINICAL PHENOTYPES OF INFECTIOUS
PULMONARY COMPLICATIONS
POST-HCT

The immune system of HCT recipients is eradicated or weakened
by either myeloablative or less intense nonmyeloablative
conditioning regimens before transplant to eradicate/reduce
tumor burdens and to prevent graft rejection. Thus, it is not
surprising that infections are a major complication post-HCT.
Infectious complications are more frequent and severe in
patients with allo-HCT due to prolonged immunosuppressive
therapy and GVHD (14). The timing of reconstitution of the
immune system post-HCT varies considerably among patients,
depending on the type of transplant (autologous vs allogeneic),
the intensity of conditioning regimen, the source of
hematopoietic cells, the presence of GVHD and the length of
immunosuppressive therapies. Nevertheless, post-HCT
reconstitution can be roughly divided into three phases: severe
neutropenia or pre-engraftment phase (first 2-4 weeks), early
engraftment phase (second and third month) and late
engraftment phase (after second or third month) (14).

The prevalence and types of infection change over time and
often follow the course of immune reconstitution post-transplant
Frontiers in Immunology | www.frontiersin.org 2
in patients (14). During the pre-engraftment phase, the depletion
of neutrophils and damage to the mucosal barriers caused by
conditioning regimens allow opportunistic pathogens to become
infectious. The predominant pathogens during this phase are
Pseudomonas, Candida and Aspergillus species (15–18). During
the early engraftment phase, most innate immune cell subsets
such as monocytes, neutrophils, and natural killer cells
repopulate at normal levels (19), but lymphocyte counts are
still low. This allows the reactivation of herpesviruses, such as
cytomegalovirus (CMV), Epstein–Barr virus (EBV), human
herpesvirus 6 (HHV-6), and new infections with respiratory
viruses (20–22). A second peak of invasive Aspergillus infection
occurs at the end of the early engraftment phase in allo-HCT
recipients due to prolonged GVHD and its immunosuppressive
therapy (18). During the late posttransplant phase (about three
months after transplant), innate immunity is mostly
reconstituted, but the recovery of T cells takes about a year
and B cells may take even longer to completely repopulate (23).
Bacterial pneumonia is less common during this late phase, but
allo-HCT recipients are still at risk of late CMV reactivation and
fungal infection. Current preemptive therapeutic strategies have
significantly reduced early onset CMV infections after allo-HCT,
but the incidence of late CMV infections have increased (24, 25).
CMV reactivation remains a life-threatening infectious
complication that is difficult to manage following allo-HCT
(26–28). Allo-HCT recipients with chronic GVHD and
immunosuppressive therapy continue to be susceptible to
Aspergillus and Gram-positive bacteria as well (29). It is thus
important to understand the interplay among host immunity,
pathogens and GVHD in an allo-HCT setting.
MOUSE MODELS OF INFECTIOUS
PULMONARY COMPLICATIONS
FOLLOWING BONE MARROW
TRANSPLANTATION

There have been many functional studies on immune responses
to pathogens in mouse models of HCT. These have included
both syngeneic (syn) and allogeneic strain combinations to
recapitulate autologous or allogeneic HCT in patients. The
pneumonia pathogens studied span bacteria (mostly
Pseudomonas aeruginosa), fungus (primarily Aspergillus
fumigatus), and viruses (primarily herpesviruses). There are
also reports of sepsis subsequent to gastrointestinal damage
due to conditioning regimens in HCT mouse models (30).

Mouse Models of Post-HCT
Bacterial Pneumonia
Bacterial pneumonia usually occurs early after HCT during the
neutropenic period (31), but can also occur post-engraftment.
P. aeruginosa is the most common pathogen isolated from the
lower respiratory tract within 100 days post-transplant (15).
P. aeruginosa is a ubiquitous environmental bacterium, and if
inhaled into the lung airway by a immunocompetent individual,
it is quickly cleared by alveolar macrophages (AMs) (32).
August 2021 | Volume 12 | Article 718603
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Because P. aeruginosa has become increasingly resistant to
multiple antibiotics over the years (33), it can be difficult to
treat multidrug resistant Pseudomonal pneumonia (MDRPa)
(16). About 40% of the hematologic malignancy patients
infected with MDRPa will die in 30 days (34) and MDRPa
outbreaks are associated with a death rate as high as 80% (35).

A syn-HCT mouse model was established in our laboratory to
understand why HCT recipients are susceptible to P. aeruginosa
(36). This model is clinically relevant, as both autologous and
allogeneic transplant patients are susceptible to P. aeruginosa
infection (37). Like auto-HCT recipients, mouse syn-HCT
recipients have no risk of GVHD, and thus the model can be
used to explore how the transplant procedure alone impacts
pulmonary immunity. Recipient C57BL/6 mice are given a split
dose of 13 Gy total body irradiation (TBI) from either a 137Cs or
x-ray orthovoltage source with an interval of 3 hours between
doses. Bone marrow is harvested from donor C57BL/6 mice, and
5x106 whole bone marrow cells are infused into the recipients via
tail vein injection. Five weeks after transplant, the percentage of
donor-derived cells is approximately 95% in the spleen and the
percentage of donor-derived AMs in the lung is about 83% (38).
At this time point, HCT or age-matched non-HCT control mice
are infected with P. aeruginosa PAO1 via intratracheal (i.t.)
inoculation (36). These experiments demonstrated increased
bacterial burden in the lung and dissemination to the blood at
24 h post-infection in HCT mice compared to non-transplant
Frontiers in Immunology | www.frontiersin.org 3
controls (36). See Figure 1 for schematic illustration of the
model system.

The defect in bacterial clearance in HCT mice is associated
with reduced phagocytosis and killing of P. aeruginosa in lung
AMs (39, 40) and impaired killing and defective formation of
neutrophil extracellular traps (NETs) in neutrophils (41). Similar
to HCT patients, the levels of immunosuppressive prostaglandin
E2 (PGE2) are elevated in HCT mice (39, 42). Subsequent studies
found that overproduction of PGE2 impairs the functions of both
AMs and neutrophils, and pharmacologic inhibition of PGE2
production in vivo restores host defense of HCT mice (39, 41).

The syn-HCT model permits further dissection of the
mechanisms explaining how the HCT procedure promotes
AMs to overproduce PGE2. Conditioning-associated cellular
stress stimulates alveolar epithelial cells to produce TGF-b
(43). TGF-b signaling stimulates AMs to transcribe microRNA
(miR)-29b which suppresses the expression of DNA
methyltransferases (DNMTs) (44). Under homeostatic
conditions, DNMT3a and DNMT3b methylate the promoter
region of cyclooxygenase (COX)-2 gene which encodes a critical
enzyme for the production of PGE2 (40). Methylation of the
COX-2 promoter limits transcription and reduces COX-2 gene
expression. Suppression of DNMTs by the TGF-b-miR-29b axis
releases this endogenous break on COX-2 expression and thus
increases the production of PGE2 in AMs (44). Interestingly,
these epigenetic changes can be long lived with human HCT
FIGURE 1 | Schematic illustration of syn HCT mouse model. The figure shows the process of syn HCT used in experiments to test impaired host defense against
Pseudomonas aeruginosa as described in the text. The figure is created with Biorender.com.
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patients (even 6 years post-HCT) showing elevated levels of
PGE2 in the lung. Thus, this mechanism likely accounts for long-
lived innate immune impairment post-HCT.

The immunosuppressive function of PGE2 is mediated by its
receptors E prostanoid receptor 2 (EP2) and EP4 (44). Signaling
via these receptors can activate a cyclic adenosine
monophosphate (cAMP)-mediated signaling cascade with
multiple downstream effects. One effect is downregulation of
the scavenger receptor MARCO which is critical for recognition
and phagocytosis of P. aeruginosa (45). Another effect is
upregulation of IL-1 receptor associated kinase M (IRAK-M),
which is an inhibitor of TLR signaling (46). Ultimately, this
alteration impairs the proinflammatory cytokine response (e.g.
TNF-a and IFN-g) that could help clear bacterial infection. At
the same time, PGE2 promotes transcription of IL-1b which is a
mediator of tissue damage in the lung (47). Furthermore, PGE2
stimulates the expression of phosphatase and tensin homolog
deleted on chromosome 10 (PTEN), which negatively regulates
phagocytosis and killing of P. aeruginosa (48). A summary figure
Frontiers in Immunology | www.frontiersin.org 4
describing some of the innate immune changes in AMs post-
HCT is found in Figure 2.

In contrast to the impaired phagocytosis of P. aeruginosa post-
HCT by AMs, phagocytosis of Staphylococcus aureus is actually
enhanced (45). This increased phagocytosis of S. aureus, is also
regulated byPGE2, by stimulating the expression ofmiR-155which
upregulates scavenger receptor (SR-)AI/II (45). However, despite
the enhanced uptake of S. aureus, AMs fromHCTmice are unable
to effectively kill the pathogen intracellularly as a result of the
impacts on IRAK-M and PTEN described above. Additionally, the
impaired innate immune function of neutrophils likely contributes
to poor S. aureus clearance. Interestingly, a study by Zimecki et al.
explored the use of bacteriophages as a therapeutic strategy for syn-
HCT mice infected with S. aureus strain L (49). Similar to the
findings reported above, HCT mice were highly susceptible to
S. aureus infection (only 8.3% of infected mice survived whereas
mice treatedwith phage showed 72% survival. Itwas also noted that
the phage therapy increased the circulating leukocyte and
neutrophil counts.
FIGURE 2 | Schematic illustration of Syn HCT induced changes in innate immunity. Conditioning with TBI causes injury to lung epithelium resulting in production of
TGF-b. Binding of TGF-b to alveolar macrophages results in increased miR29b expression which then limits expression of DNA methyltransferases (DNMT). This
allows for the promoter of the cyclooxygenase 2 (COX-2) gene to be unmethylated resulting in increased production of prostaglandin E2 (PGE2). PGE2 then binds to
the E prostanoid 2 (EP2) receptor which is also upregulated post-HCT. Downstream signaling by PGE2 results in upregulation of IL-1, elevations in phosphatase and
tensin homolog on chromosome 10 (PTEN) and elevations in IL-1 receptor associated kinase (IRAK-M). These changes impair intracellular killing while downregulation
of the MARCO scavenger receptor impairs phagocytosis of P. aeruginosa. Original references described in text. The figure is created with Biorender.com.
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While the majority of the studies reviewed above show
defective innate immune function, there is one study from
1989 showing that early after marrow transfer in allogeneic
radiation chimeras that macrophages can be non-specifically
activated by the conditioning milieu and show enhanced
resistance to Listeria monocytogenes initially, but that this
protection eventually declines with time (50).

Mouse Models of Post-HCT
Fungal Pneumonia
Invasive fungi have become the leading infectious cause of
morbidity and mortality in HCT recipients in the era of
improved prophylaxis and treatment of bacterial and viral
infections (51, 52). Invasive pulmonary aspergillosis (IPA) is
the most common fungal infection in the lung of HCT recipients.
IPA causes high mortality among HCT patients, ranging from
30% to 70% (53), accounting for 10% of all death among the
recipients (54). IPA is highly associated with neutropenia,
GVHD and its related immunosuppressive therapy, and thus
the incidence of IPA peaks early in the pre-engraftment phase
and then later post-engraftment in allo-HCT recipients (18).
This bimodal distribution of IPA post-HCT reflects different
etiologies of Aspergillus infection: early IPA is due to prolonged
neutropenia, especially when using myeloablative conditioning
regimens, while late IPA is secondary to receiving corticosteroid
or other immunosuppressive therapies to treat GVHD (55).
Interestingly, the pro-inflammatory status noted in allo-HCT
mice without immunosuppressive treatment may enhance
clearance of Aspergillus as noted in one study by Hildebrandt
et al. (56). The significant shift to using lower intensity non-
myeloablative regimens allows a shorter neutropenic period and
the systematic use of antifungal prophylaxis has led to a decrease
in the incidence of early IPA (57). The early and late IPA time
periods present distinct immunopathology patterns in HCT
recipients. Early IPA in the neutropenic phase is characterized
by rapid fungal growth and low levels of inflammation, but late
IPA in immunosuppressed patients usually presents with
overabundant inflammation including excessive neutrophil
infiltration with insufficient fungal clearance (58).

Accordingly, several animal models have been established to
understand the pathogenesis of early or late aspergillosis in HCT
patients (59). Neutropenic models include treating mice with
chemotherapeutic agents such as cyclophosphamide (60), TBI
(61, 62), and using antibody depletion of neutrophils (63).
Immunomodulated models usually involve the use of
corticosteroids (64). These two types of mouse models
recapitulate the different pathologies of IPA that present in
neutropenic and immunosuppressed patients respectively (64,
65). For the neutropenic mouse models, it is most common to
administer cyclophosphamide at 150 mg/kg via the
intraperitoneal route thrice weekly before infection. Some
studies have used monoclonal antibodies to achieve neutrophil
depletion. A dose of 100µg of anti-Ly6 (Gr1) rat IgG2b MAb57
(clone RB6-8C5) via intraperitoneal injection on the day before
and 2 days after fungal intranasal inoculation dramatically
reduces the number of neutrophils for up to 5 days (63). The
Frontiers in Immunology | www.frontiersin.org 5
lethal dose of irradiation varies depending on mouse strain
receiving the treatment. For example, a single lethal dose of
9 Gy given to C3H/HeJ mice followed by transplants with 2x106

T-cell-depleted allogeneic bone marrow cells from DBA/2 mice
shows profound neutropenia 3 days after transplant (63).
Immunomodulated models commonly administer cortisone at
100 to 200 mg/kg via subcutaneous injection thrice weekly for 1
or 2 weeks before experimental infection. In a cortisone-treated
immunosuppressive model, myeloid cells such as neutrophils
and macrophages, are massively recruited to the lungs upon
infection, but lymphocytes fail to be recruited to the lung,
indicating the requirement of lymphocytes to efficiently clear
the infection (64). The most common routes of inoculation of
Aspergillus are intranasal and intratracheal administration. A
conidial suspension of A. fumigatus inoculated into the nares is
close to natural infection, but due to upper mucociliary clearance
of mice, only about 10% of the inoculum actually enters into the
lungs (66). As a result, the development of IPA is highly variable
in intranasally inoculated mice. Delivery of spore suspension
directly into the trachea, by either tracheotomy or oropharyngeal
aspiration in anesthetized mice, can more tightly control the
fungal inoculum and lead to reproducible IPA (59). The most
commonly used A. fumigatus strains are the low virulent strain
AF293 (ATCC MYA4609 or CBS101355) and the high virulent
strain Dal/CEA10 (ATCCMYA1163 or CBS 144.89). Depending
on the strain of A. fumigatus and the route, the dose ranges from
1.0×102 to 1.0×109 conidia for mice infected through the
intranasal route, and 1.0 to 2.0x107 conidia through the
intratracheal route (59).

Studies on mouse models and human patients have greatly
increased our knowledge of the host immune responses to A.
fumigatus and have aided in the development of novel
therapeutic targets to treat IPA [reviewed in references (67,
68)]. Here we highlight a few advances in the field during
recent years. Mouse models have confirmed or identified
several important pattern recognition receptors (PRRs) on the
cell surface of innate immune cells, such as AMs, which include
dectin-1 (61), TLR2 (69, 70), TLR4 (70), TLR9 (71–73), NOD2
(74), soluble pentraxin-3 (75) and TREM1 (76) in recognizing
Aspergillus components. Inflammatory cytokines such as IL-1a
and IL-1b are critical for host defense against A. fumigatus in
neutropenic mice (77, 78). The role of antigen presentation and
development of antigen specific T cell subsets has been studied
with respect to clearance of IPA, but with some conflicting
results. For example, adoptive transfer of dendritic cells pulsed
with conidia stimulates a T helper type 1 (Th1) responses and
improves survival in a syn-HCT model suggesting an important
role of Th responses to clear infection (79). This is consistent
with several other studies in mouse HCT models that also
demonstrated that Th1-mediated immunity is important in
clearing A. fumigatus infection (80–82). Interestingly, it
appears paradoxical that CCR7 deficient HCT mice whose
dendritic cells cannot enter draining lymph nodes to prime T
lymphocytes show improved survival in a monoclonal antibody
(anti-Gr1) induced neutropenic model (83). This study suggests
that retaining CD11b+ dendritic cells inside the neutropenic
August 2021 | Volume 12 | Article 718603
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lung during initial infection with Aspergillus is beneficial,
potentially by complimenting the loss of neutrophils. The role
of the Th17 response in the pathogenesis of IPA is somewhat
controversial, as it can be either protective (84, 85) or pathogenic
(80). Th2 responses and the production of IL-4 are detrimental
to control A. fumigatus infection, as IL-4-/- mice are protected
from IPA (86). Finally, regulatory T cells are producers of IL-10
which is l inked to disease progress ion in steroid
immunosuppressive experimental IPA (87, 88). Figure 3
provides a summary of recent insights from mouse models of
HCT or neutropenia with regards to Aspergillus infection.

Mouse Models of Post-HCT
Viral Pneumonia
Viral infections often occur after engraftment when the
reconstitution of lymphocytes is not yet complete, or when
immunosuppression due to prophylaxis or treatment of
GVHD in allo-HCT recipients is needed. Nearly every human
being is infected with one or more herpesviruses in the first two
decades of life and the viruses can establish life-long latency to
escape immune surveillance and detection (20). Viral pneumonia
can be caused by reactivation of latent human herpesviruses or
new infection with community acquired respiratory viruses.
Additionally, primary herpesvirus infections can occur in
seronegative patients receiving grafts from seropositive donors
(89). Besides causing direct lung injuries, such as,
Frontiers in Immunology | www.frontiersin.org 6
cytomegalovirus (CMV) pneumonia (20), occult or prior
herpesvirus infections appear to trigger the development of
“noninfectious” pulmonary complications at later time points
after allo-HCT (21, 22, 90).

Most human herpesviruses have very strict host-species
specificity, and it is thus difficult to study human herpesviruses in
mice.Herpes simplex virus type 1 (HSV-1) is an exception, as it can
directly cause pneumonia inHCTmice (91). To bypass this hurdle,
some researchers have generated transgenic mouse models that
express receptors for human herpesvirus. For example, human
CD46, an HHV-6A receptor, is expressed in the brain of a mouse
line to study host innate immunity against HHV-6A (92). Other
researchers engrafted human CD34+ hematopoietic progenitor
cells into NOD-scid IL2Rgcnull (NSG) mice which can then be
directly infected with human herpesvirus (93). More often, murine
homologs of their corresponding human herpesviruses are used in
mousemodels to study the principles of virus-host interactions that
are thought to be shared among human andmouse systems.Mouse
CMV (mCMV), murine gammaherpesvirus 68 (MHV-68) and
murine roseolovirus (MRV) are frequently used to study human
CMV, Epstein-Barr virus (EBV) and human herpesvirus (HHV)-
6A/B, respectively in HCT settings.

Most murine herpesvirus models fall into two categories: pre-
HCT latent infection or post-HCT infection models. Both
syngeneic and allogeneic HCT have been studied. Latent
infection models usually involve a primary infection in
FIGURE 3 | Factors important for clearance of Aspergillus fumigatus in HCT or neutrophil (PMN) depleted mouse models. See text for details. The figure is created
with Biorender.com.
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neonates or adult mice to mimic the natural history of
herpesviral infection, followed by various lengths of “waiting
time” to let the virus enter latency (21, 94). After that, an allo-
HCT is usually performed to stimulate viral reactivation.
Latently infected mouse models are most suitable for studying
the reactivation of herpesvirus, their subsequent effects and for
testing novel therapeutic strategies. This model has facilitated the
discovery of the critical role of humoral immunity in controlling
the reactivation of mCMV (94). The half-life of preexisting
antibodies in latently infected mice and the elimination of
recipient plasma cells due to GVHD can lead to a loss of anti-
mCMV antibodies, which eventually leads to mCMV
reactivation in recipients. Importantly, the reactivation of
mCMV in allo-HCT recipients can be prevented by the
transfer of immune serum (94). In a similar latent infection
model, two doses of leukotriene B4 administered via intravenous
route effectively reduced the reactivation of mCMV in allo-HCT
mice through yet unknown mechanisms (95). To determine the
relationship between herpesviral reactivation and noninfectious
pulmonary complications, MRV, a mouse homolog of HHV-6,
was given to neonatal mice and then reactivated in response to a
minor histocompatibility antigen mismatched allo-HCT 8 weeks
later. Indeed, the reactivation of MRV not only caused IPS-like
pathology but also exacerbated histologic signs of acute GVHD
in the gut (21).

Due to variable waiting times for entering latency and the
heterogenous nature of post-HCT viral reactivation among
latently infected mice, some researchers infect mice post-HCT
or concurrent with HCT to mimic the reactivation of herpesvirus.
The HCT procedure creates an immunosuppressive lung
microenvironment, characterized by increased levels of PGE2
(39), TGF-b (91, 96) and Kynurenine (97). Reduced influx or
altered function of CD8+ T cells, which are critical for clearance of
mCMV (98, 99), HSV-1 (91) and community acquired respiratory
viruses (100, 101), were observed in both syn- and allo-HCT
recipients. As a result, most HCT mice experienced delayed viral
clearance and persistent pneumonitis. Interestingly, the impact of
HCT on T cell immunity does not seem to be mediated by the
elevated levels of PGE2 (101), but rather by TGF-b (91).

Recently, studies using MHV-68, a mouse herpesvirus
genetically related to Kaposi’s sarcoma-associated herpesvirus
(KSHV) and EBV, in a syn-HCT model in our laboratory have
advanced our understanding of host immune response to
herpesvirus infection in the HCT setting. A C57BL/6 to
C57BL/6 syn-HCT mouse model as described above was
adopted to study MHV-68 infection. The HCT procedure not
only causes an immunosuppressive environment, but also
changes the structure of the lung microbiome (102). Together,
these alterations in the lung microenvironment have significant
impacts on the biology of conventional dendritic cells (cDCs) in
HCT lungs. After exposure to MHV-68, the cDCs in syn-HCT
mice increased their expression of pro-Th17 cytokines such as
IL-6 IL-23 and TGF-b relative to the responses noted in
untransplanted mice (103). These HCT lung cDCs also become
deficient for delta like ligand 4 (DLL4), a Notch ligand, on their
cell surface which further permits Th17 polarization (104). In
Frontiers in Immunology | www.frontiersin.org 7
addition, the migration of cDCs into mediastinal draining lymph
nodes is impaired, significantly reducing Th1 responses, but
augmenting Th17 responses which appear to be primed locally
in the lung (105). Thus, the functional changes of lung cDCs
post-HCT tip the balance of Th responses against MHV-68
infection from protective Th1 responses to pathogenic Th17
responses (96, 103).

Excessive IL-17A due to Th17 responses eventually causes the
development of pneumonitis and pulmonary fibrosis 3 weeks
after infection, when lytic MHV-68 is no longer detectable (103,
106). Administration of anti-IL-17A antibodies or using bone
marrow cells isolated from IL-17A-/- donor mice protects HCT
recipients from pneumonitis and fibrosis after infection with
MHV-68 (103). Figure 4 highlights some of the changes noted in
HCT lungs post-infection with herpesvirus. Note that the
pathology seen in this mouse model also resembles many
histological features seen in noninfectious complications such
as IPS and restrictive lung disease, suggesting a potential etiology
of noninfectious pulmonary complications caused by prior or
occult infections that trigger pathogenic immune responses
leading to lung injury and improper repair. This hypothesis is
supported by recent discoveries of occult infections in IPS
patients (90), and the strong association between the infections
with herpesviruses (21) or community acquired respiratory
viruses (22) and noninfectious complications in HCT
recipients. Furthermore, direct evidence comes from a study
mentioned above showing that reactivation of MRV in allo-HCT
mice causes IPS-like pathology and exacerbates acute
GVHD (21).
DISCUSSION

Pulmonary infections remain a major cause of morbidity and
mortality in HCT patients. This is not surprising given that the
conditioning regimens create periods of cytopenia and
immunosuppressive drugs are often needed to limit GVHD.
The rise of antibiotic resistant strains of bacteria, challenges of
vaccinating immunocompromised patients, and limited
availability of vaccines for many of the common pathogens in
this patient population all help explain the infectious challenges
facing HCT patients. Additionally, mucosal tissue damage as a
result of GVHD and bacterial colonization can significantly
increase the likelihood of opportunistic infection (107–109). As
discussed above, non-myeloablative conditioning and fungal and
viral prophylaxis have helped reduced infections during the
cytopenic/neutropenic phases; however, there is a growing
appreciation that even post-engraftment, innate and adaptive
immune cells display altered immune function.

Even as early as 1982, it was noted that AMs from HCT
patients were defective at phagocytosis, chemotaxis towards, and
killing of fungal and bacterial pathogens when studied 4 months
post-HCT (110). Importantly, while phagocytic and chemotactic
defects normalized, the killing defects persisted even 12 months
post-HCT (110). This suggests that alterations in the lung milieu,
most likely caused by conditioning regimens may interfere with
August 2021 | Volume 12 | Article 718603
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the function of innate immune cells. It also suggests that long-
lived alterations may result from epigenetic alterations. A decade
later, elevated levels of PGE2 were noted in both auto and allo-
HCT patients; however, this finding was not linked to impaired
innate immune function (42). It was not until 2006 that murine
models were able to provide a mechanistic link between these
two observations and demonstrate that overproduction of PGE2
post-HCT was responsible for impaired phagocytosis and killing
by AMs (39). It took almost another decade to describe the
epigenetic alterations in methylation of the COX-2 promoter
that were caused by elevated levels of TGFb1 caused by the
conditioning regimen (44). Interestingly, this same mechanism
that impairs innate immune function in HCT, has recently been
shown to explain defective macrophage responses to wound
healing and wound infection in diabetes as well (111). No
doubt there are many other, yet to be discovered pathways that
impair the function of innate immune cells in the transplant
Frontiers in Immunology | www.frontiersin.org 8
setting that are likely to be regulated via epigenetic alterations
induced by the altered lung milieu.

We are also starting to learn more about how alterations of
the normal microbiota in the lung and gut of HCT recipients
may alter immune tone. The process of allo-HCT has been
shown to reduce the diversity of the gut microbiota in humans
(112). Furthermore, low diversity of gut flora at the time of
neutrophil engraftment predicts mortality (113). Interestingly,
when focused on the connection between gut microbiome and
pulmonary complications, an observational study found that
HCT patients that had low baseline gut microbiome diversity
or proteobacteria domination early post-HCT had the highest
incidence of pulmonary complications (114). This highlights the
potential for a gut-lung axis when considering regulation of
pulmonary immunity and such a concept has previously been
suggested (115–118). More recently, the concept of alteration of
the lung microbiome in the setting of HCT has demonstrated
FIGURE 4 | Schematic showing alterations shown to occur in Syn HCT mouse models of murine gammaherpesvirus infection. In responses to HCT, lung
conventional dendritic cells 2 (cDC2) display defective delta like ligand 4 leading to impaired notch signaling when interacting with virus-specific T cells. This leads to
production of cytokines able to drive both Th1 and Th17 cell differentiation, but because of poor ability of the cDCs to migrate to the draining lymph nodes
secondary to reduced CCL21 levels, the Th1 response is impaired, while the Th17 response is primed efficiently in the lungs. Elevated IL-17 levels stimulate lung
epithelium to produce CXCL1 and recruit PMNs prominently, although other cell types also accumulate. The IL-17 can also directly activate myofibroblast
proliferation and extracellular matrix production leading to fibrosis. Alterations to the lung and gut associated microbiome are also prominent post-HCT and may
contribute to altered immune cell functions. See text for details. The figure is created with Biorender.com.
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that dysbiosis is associated with alterations in inflammatory
cytokines and poor outcomes (102, 119). Interestingly, in the
murine studies, it was found that while the HCT procedure alone
altered the microbiota, there was a more profound and
prolonged alteration in the setting of herpesviral infection as
well (102). Similarly, HCT patients with confirmed
transcriptionally active pathogens in the bronchoalveolar
lavage fluid display overall lower microbiome diversity in the
lung, and many of these patients had viral infections (120).
Whether the alterations caused by disturbances of the lung or gut
microbiota are related to altered signaling via pathogen
recognition receptors on immune cells or altered metabolites
secreted by the microbiota or both remains to be determined.
Interestingly, such findings may offer new diagnostic approaches.
Zinter et al. recently performed metatranscriptomic analysis of
pre-HCT bronchoalveolar lavage fluid in pediatric patients and
found that children with evidence of viral enrichment and innate
immune activation had the highest incidence of post-HCT lung
injury while patients with diverse oropharyngeal taxa and lacking
inflammatory signatures rarely developed post-HCT lung injury
(119). While there are known differences in the composition of
human and murine microbiota, murine models should still be
useful for proof-of-concept studies regarding the role of potential
prebiotics, fecal microbiome transplant and other potential
therapies to improve outcomes post-HCT.

Our understanding of the host-pathogen interaction in HCT
recipients has been accumulated over decades from studying
animal models. Mice and humans have fairly similar organs and
systems, immunity and pathology. Mouse models permit tightly
controlled experimental conditions and unified genetics of host
and pathogens. One of the most important advantages of mice is
the availability of a huge collection of gene knockout or
transgenic mouse strains, and it is now relatively easy to
generate such mice if they are not readily available. In practical
aspects, the cost of mice is inexpensive and experiments are
reproducible. However, there are a few important limitations
that need to be kept in consideration. First, the immune system
in mice is considerably different from that in humans (121), and
thus the knowledge acquired from mice may serve as “proof-of-
concept”, but may not readily be translated to human clinical
treatment. Second, mice are small and have short live spans. The
small sizes of the body and lungs of mice may contribute to the
different kinetics of immune reconstitution post-HCT and
disease course in the lung compared with humans, as mouse
lungs can be quickly overwhelmed by pathogens or immune cell
Frontiers in Immunology | www.frontiersin.org 9
infiltration. While there have been mouse models of BOS in mice
that have provided important insights (122–128), it is not clear
that the evolution of this disease in mice which have short
lifespans fully recapitulate the features of disease that evolve
over years in humans. Similarly, long term effects of chronic
latency and reactivation of herpesviruses may be difficult to
capture. Third, the host-pathogen interactions, especially with
viral infections, is usually species-specific, which reduces clinical
translatability. Other limitations of mouse models include a lack
of parallel methodologies with the ones commonly used in
clinical settings. Many of the studies have used syn-HCT
models to avoid the complications of alloimmune responses,
yet clinically, allo-HCT patients often have the most severe
pulmonary complications and many of the current mouse
models do not sufficiently explore the effects of GVHD or
immunosuppressive therapy and how those factors impact
immune function. Additionally, for convenience, mouse
models often use TBI as the conditioning regimen, yet human
HSCT is often accomplished with chemotherapy, reduced
intensity irradiation or combinations. Despite these limitations
however, the power of mouse genetics and the ability to
genetically modify gene expression in a cell-type specific
manner makes these murine models important tools that
enable the dissection of fundamental mechanisms which
underlie disease. Given that we do not have good anti-
microbial strategies for many of the common pathogens that
plague patients post-HCT, it is important to better understand
how we can quickly repopulate the immune cells of the host and
how we can manipulate the HCT regimens to improve the
functionality of these immune cells. The power of HCT to cure
inherited genetic diseases and malignancies will never be fully
realized until the infectious complications, particularly in the
lung can be better managed.
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