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Abstract

The vast majority of hearing loss, the most common sensory impairment, and vertigo, which

commonly causes falls, both reflect underlying dysfunction of inner ear cells. Perilymph

sampling can thus provide molecular cues to hearing and balance disorders. While such “liq-

uid biopsy” of the inner ear is not yet in routine clinical practice, previous studies have uncov-

ered alterations in perilymph in patients with certain types of hearing loss. However, the

proteome of perilymph from patients with intact hearing has been unknown. Furthermore,

no complete characterization of perilymph from patients with vestibular dysfunction has

been reported. Here, using liquid-chromatography with tandem mass spectrometry, we ana-

lyzed samples of normal perilymph collected from three patients with skull base meningio-

mas and intact hearing. We identified 228 proteins that were common across the samples,

establishing a greatly expanded proteome of the previously inferred normal human peri-

lymph. Further comparison to perilymph obtained from three patients with vestibular dys-

function with drop attacks due to Meniere’s disease showed 38 proteins with significantly

differential abundance. The abundance of four protein candidates with previously unknown

roles in inner ear biology was validated in murine cochleae by immunohistochemistry and in

situ hybridization: AACT, HGFAC, EFEMP1, and TGFBI. Together, these results motivate

future work in characterizing the normal human perilymph and identifying biomarkers of

inner ear disease.

Introduction

Hearing loss is the most common sensory impairment in humans and it currently disables 466

million people across the globe; this number is expected to rise to 900 million by 2050 [1].

Nearly two-thirds of the population aged over 70 in the United states is affected by disabling

hearing loss [2]. A vast majority of this burden is due to sensorineural hearing loss (SNHL),

which originates from defects in the cochlea, the spiraling organ of the inner ear (Fig 1). In

addition, a third of the general population in the U.S. report vestibular symptoms such as

PLOS ONE | https://doi.org/10.1371/journal.pone.0218292 June 11, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lin H-C, Ren Y, Lysaght AC, Kao S-Y,

Stankovic KM (2019) Proteome of normal human

perilymph and perilymph from people with

disabling vertigo. PLoS ONE 14(6): e0218292.

https://doi.org/10.1371/journal.pone.0218292

Editor: Kourosh Parham, University of Connecticut

Health Center, UNITED STATES

Received: March 3, 2019

Accepted: May 29, 2019

Published: June 11, 2019

Copyright: © 2019 Lin et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Institute on Deafness and Other Communication

Disorders R01DC015824, Nancy Sayles Day

Foundation, the Lauer Tinnitus Research Center,

the Zwanzger Foundation, the Barnes Foundation

and by Sheldon and Dorothea Buckler to KMS. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

http://orcid.org/0000-0002-3865-0012
https://doi.org/10.1371/journal.pone.0218292
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218292&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218292&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218292&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218292&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218292&domain=pdf&date_stamp=2019-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0218292&domain=pdf&date_stamp=2019-06-11
https://doi.org/10.1371/journal.pone.0218292
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


vertigo, a persistent spinning sensation [3,4]. The majority of vertigo originates from the bal-

ance organs within the inner ear (Fig 1). When both the hearing and balance parts of the inner

ear are affected, this can lead to audiovestibular pathologies such as in Meniere’s disease (MD),

which is characterized by fluctuating hearing loss, vertigo, tinnitus and aural fullness. When

vertiginous attacks become incapacitating and hearing loss turns profound, surgical removal

of the inner ear’s vestibular organs (via labyrinthectomy) provides an effective treatment for

vertigo when conservative medical therapy fails. In addition, labyrinthectomy also provides a

rare opportunity to access the inner ear tissue in living humans.

The human inner ear is a small, three-dimensionally complex, fluid-filled structure encased

in the otic capsule, the densest bone in the body, and located deep in the base of skull. For

these reasons, routine clinical biopsy of the inner ear is currently not possible to establish a cel-

lular-level diagnosis, inform disease prognosis or guide targeted therapies. The contemporary

assessment of the severity of SNHL and vestibular dysfunction (VD) relies on a combination

of semi-quantitative indirect measurements, including pure-tone audiometry (PTA), word

recognition (WR) testing, auditory brainstem response (ABR) recordings, and vestibular bat-

tery testing. Conventional imaging modalities such as computed tomography (CT) and mag-

netic resonance imaging (MRI) have limited spatial resolution (0.5 to 1 mm, respectively).

Therefore, they detect only significant malformations of major inner ear structures but fail to

provide microstructural or cellular details. Although post-mortem studies of human temporal

bone histopathology have offered invaluable insights into cellular correlates of SNHL and

peripheral VD [5], these studies do not offer information in real-time to aid in clinical decision

making and management of disease. Therefore, an ideal clinical diagnostic test should rely on

a biomarker that 1) allows assessment of the extent of cellular damage in the inner ear and 2)

can be sampled and analyzed to provide information in real-time. Such a biomarker would

serve as a platform for development and validation of novel, targeted therapies that emerge

from ongoing inner ear regenerative research.

Fig 1. Schematic of the inner ear and cochlear cross section. (A) The inner ear includes the organ of hearing (i.e. the cochlea), and five vestibular end-organs:

the saccule, utricle and three semicircular canals. Modified after Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine

1 (2). DOI:10.15347/wjm/2014.010. ISSN 2002-4436. (B) Perilymph (blue) is the proximal fluid of the inner ear that bathes most cells in the cochlea and fills the

scala vestibuli and scala tympani. IHC, inner hair cells (dark blue) and OHC, outer hair cells (red) are part of the organ of Corti. Endolymph fluid is

pseudocolored in light yellow. Other structures of interest are labelled as shown, and include the stria vascularis (green), fibrocytes of the spiral ligament (gray),

fibrocytes of the spiral limbus (pink), spiral ganglion neurons (SGNs, bright yellow), different types of supporting cell of the epithelial gap junctional network

(different shades of orange).

https://doi.org/10.1371/journal.pone.0218292.g001
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There is growing interest in developing a “liquid biopsy” of the inner ear as a surrogate for

tissue biopsy to identify molecular biomarkers. Liquid biopsy is based on the sampling of peri-

lymph–the extracellular fluid that bathes most cell types in the inner ear and is enriched in

proteins that these cells secrete. Within the cochlea, perilymph percolates the scala tympani

and scala vestibuli (Fig 1). Previously, the human perilymph has been shown to be of diagnos-

tic value for various etiologies of SNHL [6,7]. Total protein concentration is significantly ele-

vated in the perilymph of patients with vestibular schwannomas (VS), an intracranial tumor

that arises from the vestibular nerve and causes SNHL in 95% of patients [6,8]. The first quan-

titative assessment of the human perilymph proteome was described nearly thirty years ago,

where proteins including albumin, transferrin and immunoglobulins were discovered as

major components [9]. This was subsequently refined by Thalmann et al. where disease-spe-

cific protein patterns in patients with perilymphatic fistulas were identified using two-dimen-

sional gel electrophoresis [10]. These reports led to the separation of over 100 proteins and

subsequent identification and quantitation of approximately 30 proteins in the perilymph

fluid. The first complete human perilymph proteome was assembled by Lysaght et al. using liq-

uid chromatography with tandem MS (LC-MS/MS), where 271 unique proteins were identi-

fied across four samples from patients with VSs or undergoing cochlear implantation (CI),

and 71 proteins were found to be common to all [11]. Elsewhere, Schmitt et al. utilized intrao-

perative sampling of perilymph from patients with SNHL undergoing CI or VS resection, and

identified over 200 proteins unique to the human perilymph that are not present in reference

cerebrospinal fluid (CSF) or plasma. Furthermore, comparative analyses between adult and

pediatric patients led to the identification of 32 proteins solely found in the perilymph of chil-

dren [12]. These studies to date not only highlight the diversity and complexity of the peri-

lymph proteome, but also identify candidate proteins for further validation in both diagnostic

and prognostic applications.

In the current study, we used LC-MS/MS to perform the first proteomic analysis of human

perilymph in patients with otherwise intact, normal hearing. These samples were obtained

from patients with normal audiometric thresholds whose inner ears were sacrificed for access

to life-threatening meningiomas of the skull base. Normal perilymph was compared to patho-

logic perilymph from patients undergoing labyrinthectomy for disabling vertigo with drop

attacks due to MD. The spatial expression patterns of four novel proteins identified from the

analysis with previously unknown roles in inner ear biology were determined in murine

cochlear sections using immunohistochemistry and fluorescence in-situ hybridization (FISH).

Methods

Study population, sample collection and preparation

Two perilymph samples from normal hearing patients were collected during clinically indi-

cated transotic and transcochlear resection of petroclival meningiomas. Meningiomas are

tumors of the meninges that surround the brain. Because petroclival meningiomas did not

directly affect the inner ear, these two patients had clinically normal hearing. One additional

sample was obtained from a patient who had a meningioma within the internal auditory canal

(IAC) and bilateral symmetric mild SNHL of unknown origin. Three pathologic perilymph

samples were obtained during labyrinthectomy from patients with Meniere’s Disease (MD)

resulting in ipsilateral profound hearing loss and disabling vertigo with drop attacks. All

patients provided informed consent for perilymph collection. All study protocols were

approved by the Human Studies Committee of Massachusetts General Hospital and Massa-

chusetts Eye and Ear Infirmary, and conducted in accordance with the Helsinki Declaration.
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For all patients, approximately 1 μL of perilymph was collected with a 28-gauge needle

inserted through the round window into the scala tympani prior to surgical opening of the

cochlea. Each sample was flushed from the needle using 200 μL of sterile phosphate buffered

saline (PBS) and immediately stored at -80˚C.

Gel electrophoresis and LC-MS/MS

A total of 70 μL of each diluted specimen was loaded into each of two wells of a 1.0 mm x 5

well Novex 4–20% Tris-Glycine gel (Invitrogen, EC6024BOX). Gels were run and each sample

lane was cut into 9 equal-sized sections by molecular weight and the corresponding sections

from each of the two lanes were grouped together for further processing. Gel electrophoresis

was done for estimation of the sample concentration. Gel was cut to prevent clogging of the

tubing used for LC-MS/MS. A tenth section was taken from each gel, from a lane which had

been loaded purely with running buffer, to serve as a background control for each gel. Sections

were placed in a sterile container and immediately stored at -80˚C without any preservative,

and transported to the Harvard Faculty of Arts and Sciences Mass Spectrometry and Proteo-

mics Resource Laboratory Core Facility on dry ice. Specimens were processed for LC-MS/MS

per established protocols. Briefly, excised gel bands were trypsin digested and analyzed using

microcapillary reversed-phase high-performance liquid chromatography (HPLC), coupled via

a nano electrospray flex ion source to a linear trap quadrupole (LTQ)-Orbitrap tandem mass

spectrometer (ThermoFisher Scientific). Fragments were stored as centroid m/z value and

intensity pairs. Sequencing of peptides were performed using the SEQUEST algorithm based

on the Uniprot Knowledge base human reference proteome database, and matched to proteins

using Proteomics Browser Suite (ThermoFisher).

Peptide identification, and protein alignment

After processing, peptide identification, and protein alignment of the six samples was com-

pleted, the peptide lists were combined and remapped so that identical peptides were always

attributed to the same parent protein, regardless of parent sample. During this remapping, the

protein that a given peptide had been assigned to most often in the individual analyses was

selected to be the global parent. The protein counts for each sample were adjusted to reflect

this globally uniform assignment. This procedure was necessary to account for the fact that

minor changes in peptide assignment could have highly significant impacts on inferred differ-

ential expression.

Differential expression analyses

We utilized three statistical approaches to infer differential expression between perilymph

groups. The results from each approach were then collated to ensure the largest breadth and

highest confidence in our differential expression determinations. The three methods were

selected because each is a commonly accepted technique to study differential expression from

count data; however, each method produces unique results.

Approaches 1 and 2 were performed with the differential expression analysis package

msmsTests, implemented within R and available through Bioconductor [13]. This package was

developed to infer differential expression between biological conditions using spectral counts

from label-free LC-MS/MS experiments. It can employ several different techniques to model

the data, and due to the over-dispersed nature of LC-MS/MS datasets we employed the quasi-

likelihood GLM regression model and negative-binomial distribution model derived from

edgeR [14] (edgeR is a differential expression package commonly used for the analysis of

RNA-Seq derived count data).
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Approach 3 employed DESeq2 [15], available through Bioconductor and built upon the

negative-binomial distribution. This package is commonly applied to RNA-Seq count data but

is applicable to MS/MS data. However, while DESeq2 and msmsTests-edgeR employ the same

distribution assumption, the processes used to normalize the data, calculate dispersions, and

infer differential expression are different between the two methodologies and thus have signifi-

cant impacts on the end results. Specifically, DESeq2 employs size factor-based normalization

rather than total spectral counts as in msmsTests. This approach utilizes a geometric mean and

weakens the effect that very high count proteins have on the normalization process. Further-

more, DESeq2 also shares dispersion information across similar expression level proteins to

moderate estimates and potentially provide more reliable estimates. Principal component

analyses (PCA) was performed on the count matrix normalized by DESeq2’s size-factor proce-

dure and regularized log-transformed.

The msmsTests-QL and msmsTests-edgeR procedures were conducted per the standard dif-

ferential expression workflow. Counts were normalized based on the total spectra in each sam-

ple. The null model was constructed with a parameter for sample blocking and the alternative

model had terms for blocking and tumor hearing group. A post-test filter was applied to

remove proteins with an absolute log-fold-change� 1 and with mean spectral counts� 5 in at

least one condition. These terms and cutoffs were selected to ensure that statistical inferences

were only being made when sufficient evidence was available in the dataset to warrant them.

Significance values were corrected for multiple hypotheses using the Benjamini-Hochberg

procedure and considered significant for p< 0.05.

DESeq2 was also implemented according to the standard workflow [15]. The design matrix

had terms for blocking and tumor hearing group. Significance values were corrected using the

Benjamini-Hochberg procedure and considered significant for p< 0.05. DESeq2’s native inde-

pendent filtering procedure was utilized to maximize the number of differentially expressed pro-

teins at this alpha value. All three analyses were repeated identically as above on the count data

from the control section of each protein gel. This analysis was performed to ensure all differen-

tially expressed proteins were the result of sample material, not gel processing or contamination.

Ingenuity pathway analysis

For all genes that were significantly differentially expressed (p< 0.05) between patients with

normal hearing and those with severe vestibular dysfunction, a differential analysis was per-

formed using Ingenuity Pathway Analysis (Qiagen, Redwood City, CA, USA) per previously

established protocols [16]. Within IPA, a pathway refers to cell signaling and metabolic path-

ways that have been previously characterized based on existing studies, whereas a network
refers to regulatory relationships among predefined molecules. A central node within a net-

work is defined as the most interconnected molecule. Statistical analysis was performed as part

of IPA using right-tailed Fisher’s exact test. The p-value is reported as the likelihood that the

association between input genes and a given network or pathway is due to chance. Networks

with p� 10−12 were considered significant.

Paraffin-embedded cochleae for immunohistochemistry and in situ
hybridization

Six-week-old C57BL/6 mice were intracardially perfused with 4% paraformaldehyde fixative in

0.1M PBS buffer. Cochleae were extracted and intracochlearly perfused with the same fixative,

then post-fixed for two hours and immersed in 10% EDTA for three days on a shaker at room

temperature. Decalcified cochleae were dehydrated through a series of increasing ethanol con-

centrations, transferred sequentially to 50%, 70%, 95%, 100% ethanol baths for one hour each.
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After removing ethanol by Histo-Clear twice for one hour, samples were infiltrated by molten

paraffin wax in the oven for one hour, and then embedded into paraffin wax blocks. Paraffin-

embedded cochleae were sectioned at 8 μm thickness for subsequent immunohistochemistry

and in situ hybridization.

For immunohistochemistry, after antigen retrieval by 1% sodium dodecyl sulfate (SDS) in

PBS for 10 min, slides were blocked in 10% horse serum in PBS for one hour. Rabbit anti-

alpha-1-antichymotrypsin (LS Bio, WA, USA) and goat anti-myosin Vlla (Proteus Biosciences,

CA, USA) in 0.1% Triton-PBS (PBST) were applied to samples overnight at room temperature.

Negative control samples were processed simultaneously in the same manner, with the excep-

tion that PBST was used to replace primary antibody. Slides were incubated with anti-rabbit

Alexa Fluor 568-conjugated and anti-goat Alexa Fluor 488-conjugated secondary IgG (Invitro-

gen, CA, USA) for one hour. Hoechst dye was placed over each slice twice for 10 min each for

labeling nuclear DNA.

For in situ hybridization, the digoxigenin (DIG) RNA Labeling Mix (Roche, Basel, Switzer-

land) and T7 RNA polymerase were used to synthesize the DIG-labeled single-stranded sense

and antisense RNA probes of target genes: hepatocyte growth factor activator (Hgfac), EGF-

containing fibulin-like extracellular matrix protein 1 (Efemp1) and transforming growth factor

beta induced (Tgfbi). The DIG-labeled single stranded sense RNA probes were prepared with

T3 RNA polymerase. Slides were de-paraffinized in Histo-Clear and rehydrated in ethanol.

Endogenous peroxidase activity was reduced using hydrogen peroxide. Slides were placed in

4% paraformaldehyde (PFA), followed by Proteinase K digestion and treated with triethanola-

mine and acetic anhydride. The hybridization mix including specific DIG-labeled probes were

added to each slide at 50˚C overnight. To remove non-specific RNA hybridization, slides were

washed with Saline-Sodium citrate. Slides were blocked in Tyramide Signal Amplification

reagent (PerkinElmer, USA) for one hour, incubated with anti-DIG POD antibodies for 1.5

hours, treated with the TSA Plus Cyanine 3 System (PerkinElmer, USA) for 15 min to label the

targets of interest. All fluorescent images were captured on a microscope equipped with epi-

fluorescent filters and a CCD camera.

Results

Principal component analyses of the perilymph proteome

A total of 2,773 proteins were identified from peptide fragments derived from all six clinical

samples of human perilymph. Principal component analyses (PCA) revealed that the proteo-

mic profiles of the subset of meningioma patients with normal hearing clearly clustered

together and away from the profiles of patients with severe vestibular dysfunction (Fig 2A).

This pattern of clustering remains true even for the perilymph sample obtained from the

patient with an intra-canalicular meningioma and near-normal hearing, which is therefore

included as one of the clinically “normal” specimens for subsequent differential expression

analysis to improve statistical power. The perilymph proteomes of patients with vestibular dys-

function appeared more heterogeneous and did not cluster along either principal component

(Fig 2A). This result indicates that subset of patients with normal hearing and vestibular func-

tion shares a signature that distinguishes them from other subsets. By contrast, the perilymph

proteomic profiles of the subset of patients undergoing labyrinthectomy likely represent dis-

tinct molecular pathophysiology that underlie vestibular dysfunction in Meniere’s disease.

Assembly of the core perilymph proteome

To assemble a map of the core proteome of the normal human perilymph, two perilymph sam-

ples from patients with meningiomas away from the inner ear and the cochleovestibular nerve
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Fig 2. Proteomic analysis of human perilymph. (A) Principal component analysis (PCA) of the normalized and log-transformed spectral

count matrix from the 6 samples of perilymph, including 3 from patients with normal hearing (pseudocolored green) and 3 from patients

with severe vestibular dysfunction (pseudocolored blue). Tight clustering is observed among the clinically normal samples but the vestibular

dysfunction samples appear quite heterogeneous. (B) Venn diagram of differentially expressed proteins identified by each differential

expression analysis approach (DESeq2, msmsedgeR and msmsQL). (C) Heat map of proteins differentially expressed between perilymph
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were included for analysis. The proteomic profile from the patient with an intra-cananicular

meningioma was excluded, as the composition of the perilymph may be altered due to the

location of the tumor within the IAC and thereby may confound the analysis. A total of 248

proteins were identified via semi-quantitative analysis of protein abundance based spectral

count data, defined as at least 5 spectral counts within both perilymph samples. This analysis

generated a list of 228 common proteins of the human perilymph, which represents the most

complete mapping of human normal perilymph ever performed to date (S1 Table). This list of

228 proteins was further sub-categorized based on the function of each protein (Fig 3A). Pro-

teins within the immunoglobulin and immunoglobulin-related families were present at high

concentrations (31.9%), whereas a variety of enzymes such as proteases as well as their respec-

tive protease inhibitors comprised 21.3% of the perilymph proteome. This was closely followed

by binding proteins (15.0%), structural proteins in the cytoskeleton and extracellular matrix

(10.6%), and apolipoproteins (3.5%).

Using Ingenuity Pathway Analysis (IPA), this list of proteins was further mapped to 159

unique genes (S1 Table). IPA also identified highly interconnected networks (S1 Fig) as well

as significant canonical pathways, which consisted of well-established cytokine signaling and

metabolic pathways, such as acute response signaling (p = 3.19E-47) and retinoid acid receptor

(RXR) activation (p = 7.55E-43) (Table 1).

Comparing this set with a previously published perilymph proteome of 71 common pro-

teins identified from patients with vestibular schwannoma or undergoing cochlear implanta-

tion, there is a significant amount of overlap between the perilymph fluid samples. Our list of

228 proteins included 72% (51 of 71) of those previously identified from pathologic ears (S2

obtained from patients with clinically normal hearing (NL 1, NL 2, and NL 3) versus those from patients with severe vestibular dysfunction

(VD 1, VD 2, and VD 3). Darker blues indicate higher spectral counts. For assembly of the proteome of normal human perilymph, sample

NL3 was excluded as it was obtained from a patient with an intracananicular meningioma.

https://doi.org/10.1371/journal.pone.0218292.g002

Fig 3. Major protein categories in human perilymph. (A) The perilymph of patients with intact hearing. Within each category, the percentage of the total

amount of proteins is denoted within each bar. The Other category included proteins involved in ubiquitination, blood coagulation cascade, and receptors. (B)

Categorization of differentially expressed proteins between perilymph fluid from patients with normal hearing and those with vestibular dysfunction.

https://doi.org/10.1371/journal.pone.0218292.g003
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Table), whereas 28% (20 of 71) proteins were unique to the previously published proteome

[11]. An additional 90 unique proteins were added to the database (S2 Table). Comparing of

our data to a published proteome from the Max-Planck Unified Proteome Database (MAPU)

of human cerebral spinal fluid (CSF), there was an overlap of 62% (88 of 141 genes) (S3 Table)

[17,18]. Comparison of this dataset with proteins from mouse perilymph and CSF revealed

less overlap between the two species, with only 11% (15 of 141) genes from the current set pres-

ent in the list of mouse perilymph proteins (S4 Table) [19]. However, this analysis did not con-

sider homology between proteins, only those with identical gene names.

Differential expression between normal and diseased perilymph

Differential expression between proteins within perilymph of patients with both intact hearing

and vestibular function, and those from patients with severe hearing loss and vestibular dys-

function was performed using 3 different methodologies to gain maximal insight. The results

are summarized in a Venn diagram (Fig 2B). The DESeq2 approach identified 30 differentially

proteins, the msmsTests-edgeR approach identified 29 proteins, and the msmsTests-QL method

did not identify any proteins with differential expression between the two datasets (S5 Table).

A total of 20 proteins were found to be shared between msmsTests-edgeR and DESeq2. Of

note, 3 proteins were identified by the DESeq2 approach as differentially expressed within the

three perilymph samples from patients with normal vestibular function. Amongst these, one

protein (ARGI1, encoded by ARG1), was shared with perilymph from patients with vestibular

dysfunction and was therefore excluded from subsequent analyses of differentially expressed

proteins.

Hierarchical clustering was performed on the subset of 38 differentially expressed proteins

common to all 3 analytical methodologies (Fig 2C; S5 Table). Again, proteins from patients

with normal vestibular function are more homogeneous and cluster together, which is distinct

from the proteomic profiles of patients with Meniere’s Disease (Table 2; S3 Fig). Furthermore,

certain subsets of proteins were observed to be consistently either up-regulated or down-regu-

lated, when comparing their abundance in the vestibular dysfunction cohort relative to the

normal patient cohort.

To interrogate the molecular signaling pathways represented by the differentially expressed

proteins in patients with severe vestibular dysfunction, IPA’s core analysis was performed on

our list of 38 proteins. This revealed significant enrichment for signaling pathways involved in

inflammatory disease, organismal injury, energy metabolism, developmental disorders, cell-

to-cell signaling and interaction, and nervous system development (Table 3). This list of 38

proteins was also sub-categorized based on each protein’s function (Fig 3B). Amongst the top

3 signaling networks, the differentially expressed proteins extracellular signal regulated kinase

(ERK 1/2), heat shock protein (HSP), and amyloid precursor protein (APP) were nodal in

each of the networks, respectively (S2 Fig).

Table 1. Ingenuity pathway analysis (IPA) of the 228 perilymph proteins from patients with normal hearing. The three top ranking canonical pathways, p-values, per-

cent overlap, category definition, and associated function and diseases are shown.

Top canonical pathways p value Overlap

(%)

Category Top Function and Diseases

1. Acute Phase Response Signaling 3.19E-

47

21.6% Cytokine Signaling Cellular Movement; Hematological System Development and

Function; Immune Cell Trafficking

2. Liver X receptor (LXR) / retinoid X receptors

(RXR) Activation

7.55E-

43

26.4% Nuclear Receptor

Signaling

Lipid Metabolism; Molecular Transport; Small Molecule

Biochemistry

3. Farnesoid X receptor (FXR) / retinoid X

receptors (RXR) Activation

1.25E-

38

23.8% Nuclear Receptor

Signaling

Lipid Metabolism; Molecular Transport; Small Molecule

Biochemistry

https://doi.org/10.1371/journal.pone.0218292.t001
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Expression of AACT protein in the cochlea

Among 228 proteins constituting the core perilymph proteome, four proteins were selected as

candidates for further validation: alpha-1 antichymotrypsin (AACT), hepatocyte growth factor

activator (HGFAC), EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1),

and transforming growth factor beta induced (TGFBI). These proteins were selected because

a) their roles in inner ear physiology are still unknown; b) related proteins (i.e. epidermal

growth factor [EGF], hepatocyte growth factor [HGF] and transforming growth factor beta

[TGFβ]) are known to be crucial for hearing [20–22]; and c) mutations in the encoding genes

are associated with human disease. Accordingly, immunofluorescence studies were performed

to localize these proteins in the inner ear. Only AACT displayed intensive immunoreactivity

throughout the cochlear cross sections, including stria vascularis, spiral ligament, the organ of

Corti and spiral ganglion neurons (SGNs) (Fig 4). In the organ of Corti, substantial immuno-

reactivity of AACT was observed in inner hair cells (IHCs), outer hair cells (OHCs), the

adjoining supporting cells and the tectorial membrane. There was no gradient in AACT

expression between the cochlear base and apex.

In situ hybridization of Hgfac, Efemp1, Tgfbi genes in the cochlea

Because antibodies targeting HGFAC, EFEMP1 (also known as Fibulin-3) and TGFBI did not

produce a reliable signal using immunohistochemistry, we defined tissue localization of the

corresponding mRNA transcripts using fluorescence in situ hybridization (FISH) applied to

murine cochlear cross sections. Control sense RNA probes did not show appreciable hybrid-

ization in any part of the cochlea (Fig 5A–5C exemplifies this for the Hgfac sense probe).

Table 2. Patient demographics. VD1-3, vestibular dysfunction samples 1–3; NL1-3, normal samples 1–3; M/F, male/female; PTA, pure tone average in decibels (dB);

WR, word recognition; IT, intratympanic; Ipsi, ipsilateral; Contra, contralateral.

Ipsi. ear Contra. ear

ID AGE M/F R/L PTA (dB) WR (%) PTA (dB) WR (%) Pathology Tumor size

(mm)

Duration (yrs)

VD1 63 F L 56 64 14 100 Intractable Meniere’s disease w/ drop attacks, failed IT

gentamicin

N/A 4

VD2 76 M L 69 40 9 92 Intractable Meniere’s disease w/ drop attacks, failed IT

gentamicin

N/A > 5

VD3 61 M R 68 14 4 100 Intractable Meniere’s disease w/ drop attacks, failed IT

gentamicin

N/A 12

NL1 60 F R 16 100 18 98 Petroclival atypical meningioma 41 x 29 x 37 N/A

NL2 35 F R 6 96 2 100 Petroclival atypical meningioma 43 x 41 x 40 N/A

NL3 64 F R 10 100 8 100 CPA and intracanalicular secretory meningioma 18 x 11 x 29 N/A

https://doi.org/10.1371/journal.pone.0218292.t002

Table 3. Ingenuity pathway analysis (IPA) of the 38 perilymph proteins differentially expressed between patients

with normal hearing and those with severe vestibular dysfunction. The three top ranking networks, associated net-

work functions, p-values and the nodal molecule with the highest number of connections are shown.

Associated Network Functions p value Nodal Molecule (Number of

connections)

1. Organismal Injury and Abnormalities, Respiratory Disease,

Inflammatory Disease

1.0E-48 ERK1/2 (19)

2. Energy Production, Small Molecule Biochemistry, Developmental

Disorder

1.0E-13 HSP (18)

3. Cell-To-Cell Signaling and Interaction, Cellular Assembly and

Organization, Nervous System Development and Function

1.0E-11 APP (20)

https://doi.org/10.1371/journal.pone.0218292.t003
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Sections hybridized with antisense probes targeting Hgfac revealed signals distributed mainly

within the organ of Corti and spiral ganglion (Fig 5D). A high-magnification view of the organ

of Corti revealed strong signal in IHCs, OHCs, and adjacent supporting cells including pillar

cells and phalangeal cells (Fig 5E). A high-magnification view of the spiral ganglion revealed

cytoplasmic expression of Hgfac mRNA in neurons with DAPI-stained nuclei (Fig 5F).

By contrast, both Efemp1 and Tgfbi probes demonstrated more intense hybridization sig-

nals within the spiral ganglion and the spiral ligament compared to that of Hgfac (Fig 5G–5L).

Similar patterns were seen in the organ of Corti: both Efemp1 and Tgfbi probes readily hybrid-

ized to inner and outer hair cells as marked by Myosin VIIa, as well as supporting cell popula-

tions including Deiter’s cells and pillar cells (Fig 5H–5K). There was no observed apical-to-

basal gradient in the pattern of RNA probe hybridization for Efemp1 and Tgfbi.

Discussion

Amongst the existing diagnostic armamentarium for patients with hearing and vestibular dis-

orders, there are few tests that shed light on the underlying molecular pathophysiology. The

perilymph fluid represents a promising resource for biomarker discovery and ultimately, the

development of new diagnostic and prognostic tools, largely because it is much more highly

enriched for molecules secreted by inner ear cells than plasma or CSF. Nevertheless, a

Fig 4. Immunohistochemical validation of AACT protein expression in the murine cochlea. (A-C) Negative controls were carried out without primary

antibodies for AACT. Panel B shows a magnified view of panel A focusing on the organ of Corti including inner and outer cell cells. Panel C shows a magnified

view of spiral ganglion cells. (D-F) Immunofluorescent staining of AACT protein (pseudocolored red) demonstrated widespread expression in the cochlea,

including spiral ligament and stria vascularis. Panel E shows a magnified view of panel D focusing on the organ of Corti. Panel F demonstrates a magnified

view of spiral ganglion cells. Cell nuclei were counterstained with DAPI (pseudocolored blue). Scale bars, 25 μm.

https://doi.org/10.1371/journal.pone.0218292.g004
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systematic comparative analysis between the perilymph proteome in patients with loss of

audiovestibular function and those with normal hearing have not been performed. This is

largely due to the rare ability to instrument the inner ear with normal hearing, and partly due

to inherent technical difficulties in extracting sufficient samples during surgical procedures, as

well as limitations in post-hoc analysis techniques to quantitatively assess the composition of

perilymph.

Fig 5. Fluorescence in situ hybridization (FISH) of Hgfac, Efemp1, Tgfbi genes in murine cochlear cross sections. (A-C) Negative

controls for each target gene, hybridized with corresponding antisense probes, revealed no signal. (D, G, J) Hgfac, Efemp1 and Tgfbi
were all localized in the organ of Corti and spiral ganglion, while Efemp1 and Tgfbi were also found in the spiral ligament (E, H, K). A

magnified view of the organ of Corti revealed that Hgfac, Efemp1, and Tgfbi RNA probes hybridized with IHCs, OHCs and adjacent

supporting cells. SGNs were intensely hybridized with Efemp1 and Tgfbi RNA probes (I, L), while the signal from Hgfac RNA probe

was much weaker in the spiral ganglion (F). Myosin VIIa was used as a marker of hair cells (green) along with the marker of nuclei,

DAPI (blue). Scale bars, 100 μm in the first column; 20 μm in the second and third columns.

https://doi.org/10.1371/journal.pone.0218292.g005
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Our identification of AACT expression in the cochlea is interesting because AACT is a

member of the Serpin family of protease inhibitors, and serpins are most abundant proteins in

mouse perilymph [19]. Protease inhibitors are major regulators or enzymatic activity and they

reduce protease-induced tissue injury. Aberrant protease activation has been associated with

inner ear damage and hearing impairment [23]. AACT is one of the most potent inhibitors of

leukocyte-derived chymotrypsin-like proteases [24], and it shares approximately 42% sequence

homology with α1-antitrypsin [25]. As a circulating plasma glycoprotein encoded by SER-
PINA3, AACT irreversibly binds and thereby inactivates classical chymotrypsin-like target

proteases such as neutrophil cathepsin G and mast cell chymase. In multiple models of degen-

erative diseases including cirrhosis and emphysema, AACT appear to regulate protease-medi-

ated tissue damage and homeostasis [26,27]. Recently, AACT has been identified as a part of

the biomarker signature that distinguished between healing and non-healing skin wounds and

plays a pivotal role in skin repair [28] [29].

While it is plausible that protease inhibitors play an important role in regulating protease

activity in the inner ear, the precise physiological role of AACT in the hearing and balance

function has not been reported previously. In a genetically-engineered mouse model carrying

mutations in TMPRSS3, a serine protease in which mutations are associated with non-syndro-

mic autosomal recessive deafness (DFNB8/10), inactivation of the protease shortly after birth

led to severe and rapid degeneration of the organ of Corti and cochlear and saccular hair cells

[30]. These results suggest TMPRSS3 may be important for cochlear hair cell survival at the

onset of hearing in mice. In situ hybridization studies revealed Tmprss3 expression in cochlear

and vestibular hair cells, supporting cells of the organ of Corti, epithelial cells of the spiral sul-

cus, and interdental cells [31]. Interestingly in our study, AACT was found to be expressed in

similar cell types. Further work is needed to elucidate the mechanism by which AACT regu-

lates protease activity, particularly as it relates to TMPRSS3.

Hepatocyte growth factor (HGF) is important for human hearing because mutations in the

genes encoding this protein and its receptor, MET, are associated with hearing loss. Specifi-

cally, non-coding mutations of HGF are associated with non-syndromic hearing loss, autoso-

mal recessive deafness-39 (DFNB39) [20], while a mutation in MET is associated with human

DFNB97 hearing loss [32]. Moreover, HGF levels appear to be tightly regulated as too much or

too little of it can cause hearing loss [20]. We have therefore focused on validation of HGF acti-

vator (HGFAC) expression in the cochlea because HGF is secreted as an inactive precursor

and is converted to its active form in response to injury by a family of proteases including

HGFAC [33]. HGFAC is known to be generated in liver and circulates as an inactive zymogen,

and is activated within the injured tissue which releases activated HGFAC [33]. HGF is a

potent factor for cellular regeneration with versatile roles, including mitogenic, angiogenic

and morphogenic activities [34,35]. Overexpression of HGF in the spiral ganglion cells in rats

via viral-mediated intrathecal delivery of human HGF gene led to prevention of kanamycin-

induced degeneration of hair cells and SGNs [36]. Elsewhere, exogenous HGF had protective

effects on auditory hair cells against aminoglycoside-induced ototoxicity, possibly via coupling

with signaling through the c-MET pathway and by reducing levels of reactive oxygen species

[37]. Furthermore, application of HGF directly on the round window protected outer hair

cells from noise damage in guinea pigs [35]. Our finding of Hgfac expression in cochlear cell

types that benefit from exogenous HGF application in animal models provides an insight into

the mechanism of this therapeutic effect.

EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1), also known as Fibu-

lin-3 (FBLN-3), belongs to a family of six proteins associated with the extracellular matrix elas-

tic fibers and basement membranes [38]. We focused on validation of EFEMP1 expression in

the cochlea because a gene encoding an effector of EGF-mediated cell signaling causes
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progressive hearing loss [21], and single mutations in the EFEMP1 gene cause two inherited

forms of macular degeneration [39]. EFEMP1 is widely expressed in tissue rich in elastic fibers,

such as the cardiovascular system and small capillaries, where it mediates cell-to-cell and cell-

to-matrix interactions and provides structural support for the extracellular matrix [40]. Previ-

ous experiments have also shown strong interactions between EFEMP1 and TIMP-3, an inhib-

itor of metalloproteinases, in the setting of tissue injury to potentially reduce proteolysis and

remodeling of the extracellular matrix [41]. Our finding of Efemp1 RNA expression in the spi-

ral ganglion, spiral ligament, and sensory and supporting cells of the organ of Corti overlaps

with the cochlear expression pattern of EGF receptor [42,43]. While the definitive role of

EFEMP1 in cochlear function remains to be elucidated, the strong association between

EFEMP1 and protease activation and regulation suggests that EFEMP1 may antagonize prote-

ase activity to prevent cellular injury in the inner ear.

Transforming growth factor beta induced (TGFBI), a structural homolog of periostin, is an

extracellular matrix protein induced by TGF-β and normally expressed in fibroblasts, kerati-

nocytes, and muscle cells [44,45]. The precise function of TGFBI remains to be established.

We elected to validate TGFBI expression in the cochlea because mutations in TGF-β are asso-

ciated with human hearing loss [46], while missense mutations in TGFBI underlie several

types of corneal dystrophies where abnormal deposits of misfolded proteins and amyloid in

the corneal stroma lead to visual impairment [47]. TGFBI is secreted into extracellular space

and is predicted to bind fibronectin, collagen and integrins to mediate a multitude of physio-

logic and pathologic processes [48], including cell adhesion and migration [44], wound healing

and response to injury [49], inflammation in osteoarthritis [50], tumorigenesis [51,52], and

metastasis [53].

Although no prior studies have linked TGFBI expression with the pathophysiology that

underlies disorders of hearing or balance, Tgfb1 expression was reported in the embryonic

cochlea in the cells of the inner (fibrocyte) compartment of the periotic mesenchyme, whose

differentiation and expansion is subsequently regulated by the canonical Wnt signaling path-

way [54]. Our localization of Tgfbi in specific cell types of the adult cochlea validates TGFBI

detection in adult human perilymph, and motivates future studies to decipher the role of this

protein in cochlear function.

A comprehensive network and pathway analysis of the proteome of normal human peri-

lymph highlighted several pathways of interest. The core proteome consisted of largely immu-

noglobulins, proteases, and protease inhibitors, suggesting that the perilymph is a tightly-

controlled, well-balanced system in regulating inner ear function. The acute phase response is

a rapid, protective, inflammatory mechanism triggered by a variety of factors. Regulation of

inner ear inflammation is likely a critical function of perilymph proteins, as increased inflam-

matory cytokine production is associated with SNHL in meningitis, otitis media and bone dis-

eases characterized by pathologic remodeling of the otic capsule, including otosclerosis and

Paget’s disease [55,56]. The Nuclear transcription factor κB (NFκB) has fundamental roles in

the regulation of this response in many types of cells, including the degeneration of SGNs as

well as hearing loss in mice. Animals lacking the p50 subunit of NFκB demonstrated acceler-

ated loss of SGNs and age-related hearing loss[57]. Our finding of retinoic acid signaling as the

second top-ranking pathway in normal human perilymph further highlights the importance of

this pathway, which was previously recognized in metabolomic analysis of metabolites

reported to alleviate SNHL [58]. Retinoid acid levels are likely tightly controlled in the inner

ear as either excess or deficiency in retinoid acid can lead to dysmorphogenesis of the inner

ear [59].

Analysis of the differentially expressed genes in perilymph from patients with normal hear-

ing compared to those with VD yielded two significant networks of interest: one involved in
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tissue injury and inflammation, and the other associated with energy production. These net-

works, along with the relative overabundance of enzymes in VD perilymph compared to nor-

mal perilymph, may reflect primary etiology or secondary damage to inner ear cells resulting

in release of intracellular contents into perilymph. Several bodies of evidence in the literature

support the link between inflammation, cellular degeneration and the pathogenesis of MD.

Arenberg et al. theorized that inflammation associated with viral infection could affect the

stria vascularis, dark cells, and endolymphatic sac in Meniere’s patients [60]. Furthermore, the

etiology of Meniere’s disease has also been linked to otitis media where inflammatory products

and toxins could infiltrate the perilymphatic space [61]. Additionally, there is a significant

increase in the level of circulating immune complexes in Meniere’s patients, which may lead to

increased vascular permeability in the stria vascularis or endolymphatic sac [62]. Finally,

degenerative and hypoplastic changes in the endolympahtic sac of patients with Meniere’s dis-

ease have been recently linked to mineralocorticoid-controlled sodium transport in the inner

ear [63], and mineralocorticoid receptor activation is known to play an important role in

inflammation [64]. The dark cells in the cristae ampullaris of semicircular canals, cells in the

stria vascularis and select cells of the endolymphatic sac harbor high levels of mitochondria

and are associated with regulation of electrolyte transport within endolymph, inner ear energy

production and energy homeostasis [65]. When temporal bone histopathology between

patients with or without labyrinthitis are compared, there is a significant decrease in the num-

ber of dark cells in the lateral and posterior semicircular canals in patients with vestibular dys-

function [66]. Furthermore, there is abnormal appearance and decreased density of dark cells

and evidence of stria vascularis atrophy in the temporal bones of Meniere’s patients when

compared to those with non-Meniere’s hydrops or otherwise normal controls [67–69]. With

recent evidence supporting the role of aquaporins [70], and specifically aquaporins 2, 4 and 5

in the pathogenesis of MD, it is relevant that aquaporin 5 is regulated by cyclic adenosine

monophosphate (cAMP); other derivatives of adenosine, including adenosine triphosphate

(ATP) play important roles in energy transfer. Together, these findings suggest putative roles

of mitochondrial-rich cells of the inner ear in contributing to the proteomic landscape of peri-

lymph in patients with vestibular dysfunction.

Our patients with skull base meningiomas had normal or near-normal hearing. Unlike ves-

tibular schwannomas where hearing is often impaired due to a combination of mechanical

nerve compression and tumor-secreted factors, and hearing does not typically improve after

tumor removal, hearing improvements have been observed after removal of intracananicular

meningiomas. A recent histopathological study on human temporal bones with meningiomas

of the IAC showed that cochlear damage is uncommon and hair cell loss is rarely detected

[71]. Therefore, it is not surprising that the perilymph proteomic profile of patients with IAC

meningiomas clustered closely with each other.

Recently, Shew et al. reported the microRNA (miRNA) profile of human perilymph isolated

from patients undergoing cochlear implantation, stapedectomy, or labyrinthectomy [72]. A

total of 108 miRNAs, corresponding to 405 unique genes, were identified across all three pro-

cedures. However, the heterogeneity of the disease processes may directly impact the expres-

sion patterns of the miRNAs within the perilymph. Further, a proteomic map of normal

perilymph in patients with normal hearing has not yet been accomplished. By contrast, our

analysis represents the largest comparative study to date of normal human perilymph prote-

ome, as well as the systematic identification of candidate proteins differentially expressed in

the perilymph of patients with disabling peripheral audiovestibular dysfunction relative to nor-

mal controls.
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Conclusion

In this report, we have assembled the first proteome of normal human perilymph, collected

from people with intact hearing, and performed comparative proteomic analysis of perilymph

from patients undergoing labyrinthectomies for disabling vestibular dysfunction due to MD

with drop attacks. Using tandem LC-MS/MS, we have significantly expanded the landscape of

the known perilymph proteome to over 200 proteins, more than doubling candidate proteins

found in previous efforts. We further validated 4 novel protein candidates that had not been

previously described in the adult inner ear. We analyzed and defined their precise spatial dis-

tribution in the adult murine cochlea by immunohistochemistry (AACT) or fluorescent in-

situ hybridization (Efemp1, Hgfac, Tgfbi). Findings from this work will motivate the future

development of diagnostic and prognostic assays for hearing loss and vestibular dysfunction

based on proteomic markers from inner ear fluids.
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