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Today, a growing number of computational aids and simulations are shaping

model-informed drug development. Artificial intelligence, a family of self-learning

algorithms, is only the latest emerging trend applied by academic researchers and the

pharmaceutical industry. Nanomedicine successfully conquered several niche markets

and offers a wide variety of innovative drug delivery strategies. Still, only a small number

of patients benefit from these advanced treatments, and the number of data sources

is very limited. As a consequence, “big data” approaches are not always feasible and

smart combinations of human and artificial intelligence define the research landscape.

These methodologies will potentially transform the future of nanomedicine and define

new challenges and limitations of machine learning in their development. In our review, we

present an overview of modeling and artificial intelligence applications in the development

and manufacture of nanomedicines. Also, we elucidate the role of each method as a

facilitator of breakthroughs and highlight important limitations.

Keywords: nanomedicine, liposomes, nanoparticles, artificial intelligence - AI, design of experiment - DoE,

machine learning - ML, PBPK/PKPD modeling and simulations, drug delivery

INTRODUCTION

In ancient theater, the Latin calque “deus ex machina”, the “god from the machine”, referred to
a crane or trapdoor used to suspend objects on stage. Not unlike the unexpected developments
in a play, computational aids have the potential to transform the healthcare industry with a
strong impact on biomedical research. Model-informed drug development (MIDD) refers to the
application of a wide variety of quantitative models derived from preclinical and clinical data
to facilitate early decision-making in drug development (1). They were formally recognized by
the US-FDA in 2017 as part of their performance goals and procedures commitment letter and
involve exposure-based, biological, and statistical models which can give support to establish more
successful therapeutic regimens of drug products and increase the chances of approval by regulatory
agencies (2).

In drug development, the identification of suitable candidates often begins with a
mathematical model establishing relationships between material or product attributes and the
in vivo response (3). This can be followed by a computer-based simulation of the human
population to determine different aspects of the pharmacokinetic and pharmacodynamic
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responses. Modeling and simulation are often used to support
commercial decisions, evaluate risks, and streamline regulatory
filings (4). They provide a platform to integrate patient
characteristics, easing the experiments by optimizing study
parameters, selecting dosage forms, and identifying supportive
evidence (1, 5).

Another evolving area is the formulation and manufacture
of drug products. The rise of systems thinking and quality-by-
design (QbD) strategies in production led to the evolution of
“computational pharmaceutics.”Multi-scale modeling techniques
and artificial intelligence (AI) together change the face of
pharmaceutical sciences by creating virtual process environments
and reducing the number of experiments in process optimization
(6, 7). By compiling process parameters and quality attributes
of drug products in real-time (Figure 1), excipient compositions
and manufacturing processes can be optimized (7).

Modeling techniques often contribute to improved process
understanding. The integration of critical process parameters
(CPPs), In-Process Controls (IPCs), and Critical Quality
Attributes (CQAs) enable the quality of the drug product to be
controlled. In this context, machine learning (ML) algorithms
can play a key role in the identification and prediction of
unexpected events and patterns affecting production processes or
product performance (Figure 1).

One potential application of computational aids is the
development of nanomedicines. They can be broadly defined as
products using nanotechnology in the diagnosis, monitoring, and
treatment of diseases (8). Among other examples, nanoparticles
can be used for diagnostic purposes when they are engineered
to target specific tissues and enable anatomical or functional
imaging. They may act as contrast agents in computer
tomography, magnetic resonance (MR) imaging, positron
emission tomography (PET), and other imaging techniques
(9). In drug therapy, nanoparticle formulations allow the
delivery of one or more drugs (e.g., polymer and lipid-based
nanoparticles, micelles) or act themselves as therapeutic agents
(e.g., extracellular vesicles, inorganic nanoparticles). Surface-
functionalized and stimuli-responsive therapeutics respond
to specific stimuli such as a change in pH, enzymes, or
exposure to light and may further enhance selectivity (9–11).
Recent applications of nanomedicine involve combinations of
chemotherapeutic agents encapsulated into the same carrier.
They resulted in a considerable improvement of the overall
survival and efficacy as compared to free drug control, e.g., in the
treatment of acute myeloid leukemia (12–14).

The unique characteristics of nanomedicines including size,
morphology, chemical compositions, and surface properties have
a strong impact on drug absorption, cell uptake, or the capability
to target drug substances to a specific site of action (10, 11).
Despite all advantages and the great number of studies on the
development of nanomedicines being published every year, only
a few nanopharmaceuticals reached the market so far (3, 15, 16).
One major reason is their complexity. While most therapeutics
mainly affect the absorption rate, nanomedicines may lead to
different biodistribution patterns and, hence, to different organ-
specific (side) effects. Consequently, the risks associated with
a critical failure are a strong incentive for the application of

modern technologies, modeling, and simulation in their design
and evaluation. With regard to their in vivo behavior, while many
other formulation approaches can rely on a rich knowledge base,
the small market share together with poor accessibility of data
requires smart extrapolations and model designs to make their
preclinical and clinical outcomes more predictable (3).

In our review, we discuss recent trends and methodologies
applied in the production and evaluation of nanomedicines.
Further, we will highlight the challenges associated with these
modern technologies and outline the opportunities for their
future in drug delivery.

MODELING TECHNIQUES AND MACHINE
LEARNING

The statistical and analytical methods applied in nanomedicine
have evolved continuously. While pharmacometrics has a long
history in the preclinical and clinical sciences, the digitalization
of the 1980s and 1990s had a strong impact on drug development.
Harmonization of the computational frameworks, as well as the
definition of key requirements for drug approval by EMA and
US-FDA, is one of the latest developments in this area (17, 18).

Early research on AI dates back to the 1950s, realizing
that machines could be “trained to learn” and create new
problem-solving strategies instead of following a pre-defined
model structure. AI has seen several hypes, often sparked
by promising approaches that ultimately failed to live up to
the expectations. The most important parallel between the
established AI approaches is their limited ability to solve a
complex problem without a predefined procedure or program.
These problems include perception of abstract similarities, rules,
and patterns, reasoning, and decision making. ML is one of many
concepts in AI research and describes strategies that generate
knowledge from experience (e.g., to cluster or classify elements).
In nanomedicine development, the existing formulation or test
strategy often provides a predefined theoretical framework for
data interpretation while experience is gained in production or
during the later stages of in vitro and in vivo testing.

Recent applications of AI involve artificial neural networks
(ANNs) and Deep Learning. ANNs were originally inspired by
information processing in nature. They are based on independent
neurons that fire when an input signal exceeds a certain
threshold. Each neuron has an individual activation function and
weighted connections to other neurons. The core approach dates
back to the early days of ML but remained a theoretical concept
for a long time due to limited data availability, storage capacity,
and (parallel) computing power. The rebirth of this concept
is directly related to mass data acquisition and the processing
on large (virtualized) cloud infrastructures based on multicore
processors. Recent developments are supported by the design of
hardware supporting ML applications. Selected studies involving
AI methods in the development of nanomedicine have been
summarized in Table 1.

In the simplest version, the activation function is binary with
only two possible responses, the network itself is unidirectional,
and consists of only two layers of nodes (neurons). The input
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FIGURE 1 | Machine learning and modeling in nanomedicine development include a wide variety of data sources that can be compiled by several algorithms.

Machine learning and artificial neuronal networks often require larger data volumes than a conventional modeling approach. Created with www.Biorender.com.

layer and the output layer. The input nodes correspond to the
properties of the input data, and the output nodes to those of
the output. The size of the ANN is dictated by the problem
itself. The “knowledge” in neural networks is mainly captured by
the weights of the edges connecting the nodes. During training,
ANNs use test data to systematically adjust probabilities for the
output of each node. Supervised training uses pairs of input and
output data to learn the relationship and probability between
those two data clusters. They have been used, for example, to
estimate the impact of protein corona formation on carrier half-
life (22) or nanomaterial-cell interactions (31). Unsupervised
methods commonly use input data for regression or clustering
to detect outliers and anomalies. In a hybrid model analyzing
the structure of nanofibers, they were used to translate and
compress electron micrographs of nanofibers into a code that

was further analyzed using ML in a supervised setting (24). Deep
Learning describes neural networks that contain hidden layers of
neurons. Hidden layers do not influence the operational behavior
of the network. Still, the underlying structure of the nodes reveals
more information on the way this knowledge was obtained.
Deep Learning stores partial patterns in a structured way, to
form hierarchies, and to apply them to new tasks. Especially in
tasks that require a high degree of transfer, they are superior to
primitive ANNs. Deep learning has been used for the analysis of
complex spectroscopic data (32). One of the major challenges in
AI research is the limited availability of information.

As previously indicated, AI training methods still require
"big data” to obtain adequate results. The combination between
modeling and AI may solve this problem as prior modeling
can help to split the overall problem into several subproblems
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TABLE 1 | Selection of studies involving the application of AI in the development of nanomedicines.

Area of application Methodology Reference

Formulation and production ANN associated with the central composite design and genetic algorithm to predict

particle size and loading efficiency

Li et al. (19)

ANN to identify CQAs and optimize the formulation Amasya et al. (20)

ANN to predict particle size and identify the variables with higher impact on this parameter Youshia et al. (10)

ML algorithms to predict particle size and PDI and to compare different techniques to

prepare nanocrystals

He et al. (21)

Pharmacokinetic and

pharmacodynamic analysis

Supervised neural networks and in vivo protein corona formation data to predict the

half-life, accumulation in organs, and size of nanoparticles

Lazarovits et al. (22)

AI to establish the optimal drug-dose ratio of a combination of unmodified and

nanodiamond derivatives of anticancer drugs

Wang et al. (23)

Image analysis ML to analyze SEM images of nanofibers and identify manufacturing process defects Ieracitano et al. (24)

Genetic algorithm to analyze the morphological characteristics of nanoparticles from

electron microscopy images and to identify the presence of impurities

Lee et al. (25)

ML and histologic slides images of tumors and organs to predict the biodistribution and

toxicity of contrast agents- based nanoparticles

Kimm et al. (26)

Deep learning to accelerate and increase the accuracy in the visualization of gold

nanoparticles acting as labeling agents for protein identification and tracking in the cells

Jerez et al. (27)

ANN to evaluate temporal cellular responses of RNA-liposomes and predict transfection

efficiency

Harrison et al. (28)

ANN to predict internalization of nanoparticles in different cancer cells to classify cancer

cell types

Alafeef e al. (29)

ML, tissue clearing and 3D microscopy to evaluate the distribution of nanoparticles within

tumor and micrometastases and predict the nanoparticle delivery according to the

pathophysiology of micromestatases

Kingston et al. (30)

of lower complexity and thereby reduce the demand for
training data. Today, modeling plays a key role in the
planning and execution of manufacturing processes as well as
in pharmacokinetic (PK) and pharmacodynamic (PD) analysis.
When data is a limited resource, theoretical frameworks
(computer models) can be used for knowledge generation by
using smart extrapolations (3, 33). Although AI is often discussed
in a similar context, its role in data sciences is complementary.
ML algorithms use a purely “data-driven” approach without
providing any theoretical framework. The recognition of patterns
is unbiased and therefore not necessarily connected to any prior
knowledge. In the following, we will discuss the application of
model-informed strategies and ML in nanomedicine.

APPLICATIONS IN FORMULATION AND
PRODUCTION

In the production of nanomedicines, a systematic investigation
of the process variables with impact on the quality features of the
drug product contributes to improved predictability and reduces
the risk of quality-related failure (7, 34, 35). In this context,
pharmaceutical development widely follows the principles of
QbD. After the definition of the quality target product profile
(QTPP) including the dosage form, administration route,
and technical features of the drug product, CQAs must be
identified. To aid in the selection of excipients, quantitative
structure-property-relationship (QSPR) models can be used.
They predict structure-based relationships between compounds

and excipients. Among others, the Vlife MDS 4.2 builder
module can be used (36). These models provide a mechanistic
approach in the selection of formulation compositions with
desired characteristics and predict mechanisms of drug release
by correlating physicochemical properties of polymers (material
attributes) with the CQAs of the formulation (37). These
parameters are continuously monitored and must remain within
pre-defined limits to ensure reliable therapeutic performance.
Among other parameters, particle size, encapsulation efficiency,
immunogenicity, and zeta potential play an important role (3, 15,
38). As a next step, critical material attributes (CMAs) such as the
purity of the drug substances or raw materials used to produce
nanomedicines are being defined. Together with selected CPPs
such as the number of extrusion cycles in vesicle production, they
are the foundation of the control strategy.

To monitor CPP and CMAs, process analytical technologies
are used. Various sensors provide the data for process simulation
and control (39). A change in the CPPs, CMAs, or CQAs is
reported to the process control unit and leads to changes in the
production process (40, 41). A recent review article discusses
some of the most common CQAs, CPPs, and CMAs in the
development of nanopharmaceuticals (41).

During process validation Design of Experiments (DoE)
represents an important tool of QbD strategies. It involves
mathematical models correlating the process variables (CPPs
and CMAs) with the measured responses (CQAs). This facilitates
predictions and process adjustments during production.
The control strategy ensures that the product matches the
characteristics described by the QTPP (42). The designs applied
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in DoE studies can be divided into screening designs, such as
Plackett-Burman and fractional factorial designs. These are used
to compile many process variables (CPPs and CMAs) with an
impact on the product characteristics in parallel. For comparison,
the response surface methodology includes the central composite
and Box-Behnken design. These two examples operate with a
smaller number of process variables but explore each parameter
at a higher resolution (43), for example, by including the testing
of multiple incubation temperatures or carrying out multiple
extrusion cycles. An illustration of the manufacturing process
of biohybrid vesicles, together with potential CPPs, CMAs, and
CQAs is presented in Figure 2.

Three-dimensional plots illustrate the responses obtained
from the mathematical models and visualize the relationships
between variables and responses. Many studies can be found
in the literature using DoE techniques for optimization of
nanoformulations (44–50). The accuracy of these predictions as
well as the safety levels achieved with superior process controls
have attracted the attention of Big Tech companies as well as
regulatory agencies (7).

In recent years, ML has been used in product design as well
(35, 51). It is a branch of AI that focuses on algorithms and
statistical models that recognize, analyze and draw inferences
from complex data patterns. The algorithm evolves through
undirected evolution and is solely driven by the data. The ANNs,
large clusters of computing units, imitate human learning and
gradually improve accuracy by repeated analysis of data. They
are mainly applied for the prediction of nanoparticle properties
(35). When compared to the response surface methodologies
using a pre-defined statistical model, better predictions were
obtained by ANNs (11). Li et al. (19) combined an ANN with
a central composite design and a continuous genetic algorithm
to predict particle size and loading efficiency of polymer-lipid
nanoparticles containing verapamil hydrochloride. The ANN
considerably improved the data fit as compared to the central
composite design (19). Another study investigated solid lipid
nanoparticles and nanostructured lipid carriers loaded with 5-
fluorouracil. After an initial set of experiments, the data was
used to train different ANNs and to identify specific CQAs
for optimized transdermal delivery (20). The ANN model was
successfully used to predict optimal formulation properties (20).
Youshia et al. used an ANN to predict the particle size of
nanoparticles prepared with commonly used polymers, such as
polylactide-co-glycolide (PLGA), polycaprolactone (PCL), ethyl
cellulose (EC), and polylactic acid (PLA). The model was able to
predict the particle size with a percentage bias of 2, 4, and 6%, for
the training, validation, and testing data, respectively. Moreover,
it identified input parameters with the strongest impact on the
particle size (10).

Going beyond these individual case studies, a systematic
investigation was carried out for nanocrystal manufacture
including top-down and bottom-up production (21). A total
of 910 data sets reporting the particle size and 341 data
sets reporting PDI were obtained from different studies. They
included nanoparticle preparation methods such as wet bead
milling, high-pressure homogenization, and solvent deposition.
These data sets were analyzed using eight different ML

algorithms. Among them, the light gradient boosting machine
(LightGBM) presented a high predictive power with regards
to size and PDI for milling and high-pressure homogenization
methods. Factors with higher influence on these methods were
the milling time and cycle index (21).

On the one hand, these computational models have great
potential and will decrease the time and costs of drug
development (52). On the other hand, it is not very surprising
that highly flexible and adaptive algorithms often achieve
improved data fits for well-studied and well-understood process
parameters and relationships. Also, the observations widely
rely on the quality of the data obtained from the production
process. Therefore, ML algorithms are not a replacement for
efficient process monitoring. The pressure sensors and responses
obtained from the manufacturing site are the eyes and ears of
the ANN.

APPLICATIONS IN PHARMACOMETRICS

The term “pharmacometrics” first appeared in the 1970s (53)
and describes a branch of biomedical research concerned with
mathematical models of biology, pharmacology, disease, and
physiology used to describe and quantify interactions between
xenobiotics and patients (54). In this context, the model structure
reflects mechanistic relationships between the drug and the
living system. Multiple data sources are compiled by human or
artificial intelligence.

PHARMACOKINETIC ANALYSIS

Although a rising number of nanomedicines have been tested in
phase-I clinical trials, the number of patients and drug products is
relatively limited as compared to other research areas (3). Today,
modeling techniques play an important role in the description of
physiological processes involved in drug absorption, distribution,
metabolism, and elimination (ADME). While traditional PK
analysis using population modeling techniques provides a
mathematical framework primarily describing the clinical data
(Figure 3), physiologically based pharmacokinetic modeling
(PBPK), and physiologically based biopharmaceutics modeling
(PBBM) include knowledge on physiological processes such as
blood flow, lymphatic drainage, or transport mechanisms.

On the one hand, many PK studies have been carried out in
nanomedicine and were analyzed by conventional means (55–
59). A common method is non-linear mixed effects (NLME)
modeling describing non-linear relationships using a limited
number of population parameters and parameter variability. On
the other hand, there are many PKmodels and software solutions
offered for the analysis of drug products. These computational
aids were used to define relationships between CMAs and CQAs
of nanomedicines and the plasma concentration-time profile. In
this context, the concentration of the drug in the blood plasma
serves as a surrogate for bioavailability (3). An illustration of the
different model structures found in PK modeling is presented in
Figure 3.
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FIGURE 2 | Illustration of nanomedicine production of a drug-loaded extracellular vesicle preparation using a design of experiments approach. Potential CPPs, CMAs,

and CQAs are highlighted. Created with www.Biorender.com.

Various software packages are offered for modeling and
simulation. Among others, they include Monolix R© Suite
(www.lixoft.com) for NLME models. Monolix R© provides a
widely non-physiological modeling framework describing the
measured drug concentrations of drugs based on random
effects including the interindividual differences and fixed
effects such as the population-related average and distribution
parameters. The operator can include physiological parameters
but there is no predefined database of well-characterized
physiological processes provided. For example, Monolix has
been used to model the PK of the clinical formulation candidates
NanoCore-6.4 and NanoCore-7.4 based on a preclinical
PK study in Wistar rats. The hybrid model combined the
physiological plasma volume with a conventional NMLE model
to describe the PK of these PLGA-based carriers (60). Monolix
requires the operator to define the transport processes and
model structure using the programming language Mlxtran.
Alternatively, the visual programming language Systems
Thinking, Experimental Learning Laboratory with Animation
(STELLA R©) can be used. STELLA offers a structured user
interface for the description of transport processes. The software
can be used to simulate manufacturing environments as
well as pharmacokinetic processes. First applications using
STELLA for the simulation of nanoparticle delivery include
the physiologically based nanocarrier biopharmaceutics
model (33, 61). The model identifies an important CQA,

the drug release rate from clinical data and establishes a
relationship between the in vitro and the in vivo data. An
accurate model fit was confirmed including a wide variety of
nanomedicines. Later the model was used to establish in vitro-in
vivo correlations for liposomal nanocarrier formulations (61).
Earlier model designs were applied to nanocrystal formulations
and liposomes as well (62, 63). A PBPK-based alternative
is offered by GastroPlusTM (www.simulations-plus.com),
PK-SIM R© (www.systemsbiology.com), and Simcyp R©

(www.simcyp.com). GastroPlusTM was applied to simulate
PK profiles of nanoformulations in silico (64). PK-Sim R© has
been developed by Bayer Technology Services GmbH before it
was made open-source. It is designed for users with minimum
mathematical andmodeling experience through the use of several
in-built whole-body PBPK model structures (65). The software
was applied in several PBPK modeling approaches to describe
the biodistribution and elimination of liposomes (66, 67). So far,
combinations with ML or AI have not been reported. Simcyp R©

traces its roots from a drug-drug interaction tool and has
evolved into a sophisticated population-based in silico ADME
simulator (68). Simcyp R© provides users with a comprehensive
database of system parameters and pre-coded PBPK model
structures (69). There are selected physiologically-based models
for nanomedicines available (70).

While the majority of clinical studies are analyzed using
conventional PK models, PBPK approaches are published more
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FIGURE 3 | Illustration of the evaluation of pharmacokinetic data using NLME and PBPK models as well as ANNs. Created with www.Biorender.com.

rarely. The examples reported for liposomes often rely on
animal data due to the limited accessibility of biodistribution
studies in humans (71–73). Whole-body distribution models
are often validated by comparing the observed and the
simulated blood plasma concentration only. This leads to a
high uncertainty with regards to the accumulation, elimination
and, release of nanomedicines and makes accurate predictions
more challenging. Hybrid models integrate physiological with
non-physiological compartments and often provide useful
information without overestimating in vitro effects. They are
particularly useful when exploring the interplay between CQAs
and PK of nanomedicines (3). Also, the application of ML and
ANNs is limited by the quantity of the PK data. Consequently,
smart model designs and extrapolations dominate current
research and can be applied more successfully.

PHARMACODYNAMIC ANALYSIS

While PK studies provide continuous time-resolved data of drug
concentrations in various compartments of a living organism,
PD studies comprise in vitro and in vivo data. On the one hand,
pharmacological assays include an investigation of the effect of

drugs on target tissues, cells, or biochemical cascades. These
assays sometimes come with a high level of sophistication but
may also qualify for robust approaches such as high-throughput
screening. Many of these methods have been established in the
drug discovery pipeline for many years. Their application to
nanomedicines is another application of compound screening
techniques using drug delivery system libraries instead of drug
libraries (74). However, they create a significant volume of data,
offering new opportunities for the training of ANNs (74).

Vyxeos R© is a dual-drug liposomal product comprising
daunorubicin and cytarabine at a fixed molar ratio. This molar
ratio was found in vitro using a screening approach (75, 76).
Nanomedicines play a key role in achieving this exact molar
ratio at the target site by providing a suitable tool for co-
delivery of multiple compounds in fixed combinations using one
drug delivery system (75, 76). Another important area with an
impact on nanomedicine is their toxicological characterization.
Quantitative structure-activity relationship (QSAR) models
are regression models capable of predicting biological or
toxicological properties of drugs and drug delivery systems
based on their chemical structure. They have been tested for
nanoparticles as well (77). In vitro and in vivo toxicity studies
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together are essential to comprehend the mechanisms involved
in their toxicity. However, chemical characterization and in
vitro screening tools can be used for the characterization of
pharmacological and toxicological responses. Again, the data
quantity generated by these methods enables the application of
ML algorithms (78).

In the in vivo setting, PK and PD data are gathered together,
thus quantitative PK/PD relationships may be established and
enable assessing the clinical efficacy and/or safety of drug
products (79, 80). The clinical efficacy of nanomedicines depends
on specific physicochemical characteristics that alter the PK
parameters of the drug as well as the interactions with the
biological system (77, 81). This highlights the importance
of combined in vitro and in vivo evaluation. While the in
vivo system is characterized by a wide variety of overlapping
processes and allows an estimate of the variability and robustness
of the pharmacological effects, in vitro studies often provide
mechanistic insights at high resolution. Some authors believe
that a better understanding of the molecular mechanisms in
the body will facilitate the development of more sophisticated
modeling and simulation tools for nanomedicines (67). However,
this evolution must include both, in vitro and in vivomethods. At
present, the vast majority of studies focus on the development
of more complex multidimensional in vitro models and tissue
engineering without establishing in vitro-in vivo relationships.
These approaches often fail to represent the clinical realities. In
fact, many simple PK/PD models (e.g., standard Emax models)
encounter difficulties in estimating the complexity of the in vivo
responses observed with nanomedicines (82).

The evolution of nanomedicines began with the development
of anticancer treatments. As a consequence, patient stratification
plays an important role in the design of efficacy studies.
Today, improved connections between physiology and disease
progressing, along with the effects of the drug on both
may be achieved with the use of “omics” data. These
approaches integrate the identification and quantification of
molecules in biological systems on multiple levels. They
include genomics, transcriptomics, proteomics, lipidomics,
metabolomics, glycomics, metagenomics, microbiomics (83).
Important for the development of computational aids is the
quantity of data generated. On the one hand, “omics” enables
the integration of more information on the physiological or
pathophysiological state of individuals and patient populations
(84). On the other hand, “big data” qualify for the application
of ML algorithms and ANNs (85). Huang et al. discuss the
application of ML using genomic data sets. Synergistic responses
to drug combinations in a specific subset of patients may enable
a better selection of patients in the clinical trials and, hence,
provide patients with more personalized treatments (86).

In summary, PD characterization of nanomedicines enables
the integration of modeling and ML tools to a much larger
extent. While PK profiles are the result of multiple overlapping
processes and require a living organism for data collection, in
vitro profiling tools generate “big data” on the interactions of
nanocarriers with cellular or non-cellular assays. Hence, they can
be analyzed using ML or ANNs. However, the limitations of the
generated data sets are reflected by data analysis as well. Without
integration of considerable in vivo data, in vitro screening often

overestimates or underestimates relevant pharmacological or
toxicological effects.

IMAGE ANALYSIS

Another interesting application of ML and ANNs in drug
development is the computation of complex images. Imaging
methods are widely applied in early research to study
material properties of nanomedicines or investigate their
biodistribution in cells, tissues, animals, or humans. For example,
a genetic algorithm was able to analyze the morphological
characteristics (shape, structure, and size) of more than 150,000
nanoparticles from TEM images with high accuracy (>99%)
and, in addition, to separate them into subgroups with the
same morphological properties, allowing the identification of
impurities and/or misrecognized structures (25). Another study
evaluated functionalized gold nanoparticles as contrast agents
for tumor imaging and employed ML algorithms to better
evaluate and predict the biodistribution and toxicity of the
nanoparticles in mice using the histological section images of
tumors and some organs (26). Gold nanoparticles can also
be used as immunolabeling in electron microscopy analysis
to help in the identification of proteins and to observe their
localization and density in the cells. A deep learning-based free
software (Gold Digger), recently developed by Jerez and co-
workers, permits to speed up and decrease annotating errors
due to manual analysis of images for a more accurate outcome
(27). Also, they are routinely used to screen for diseases in
asymptomatic patients and to monitor the therapeutic progress
(87). Advancements in technological infrastructures have given
rise to the extensive use of computing in medical imaging.
Today, computer-aided diagnosis and interventions support the
identification of pathophysiological processes (88). For example,
a study using tissue microarray technology coupled with
optimized image analysis algorithms has successfully quantified
89% of tissue samples into breast malignancy and benign breast
tissues respectively (89). To address the limitations in data
evaluation, ML can be applied to provide new opportunities
in image analysis. However, such investigations still require
the preparation of a large number of tissue samples and are
sometimes not available in early drug development (90).

Another aspect is the data density obtained with imaging
methods. Each image is composed of millions of pixels
organized in defined clusters. In this context, ML and AI
can be used to identify patterns that are impervious to
the operator (91). Incorporation of ML with an automated
feature extraction classification algorithm into white blood
cells detection models yields 95% classification accuracy.
This provides an efficient workflow in medical diagnostics
(92). In nanomedicine, modeling tools and ANNs have been
successfully used to support cell response studies using time-
lapse microscopy (28). The temporal cellular responses to RNA-
based liposomes were measured using automated microscopy
systems. The ANN was successfully trained to trace single
cells and predict transfection efficiency (28). Another study
evaluated cell internalization of nanoparticles as a diagnostic
tool for the identification of breast cancer (29). Most cancer
deaths arise from the formation of metastases. An ML-based

Frontiers in Digital Health | www.frontiersin.org 8 February 2022 | Volume 4 | Article 799341

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Villa Nova et al. Nanomedicine Ex Machina

image analysis associated with tissue clearing and 3Dmicroscopy
enabled the uptake of nanoparticles into micrometastases to
be compared to primary tumors. Moreover, ML allowed an
accurate prediction of the influence of the pathophysiology of
micrometastases on nanoparticle delivery. This contributes to the
identification of patient responses to specific treatments (30). The
convolutional neural network U-Net was used to analyze videos
obtained by liquid-phase transmission electron microscopy (93).
Investigations of biodistribution processes using in vivo imaging
techniques are often described in the literature and can be used
formodel validation and in vitro-in vivo correlation (94). Inmany
cases, they often rely on conventional modeling approaches.
However, more recent work reported the integration of near-
infrared images for the investigation of nanoparticle penetration
using a deep learning approach (32).

ADVANTAGES AND LIMITATIONS OF
COMPUTATIONAL AIDS

Today, computational aids are integrated into drug development
at multiple levels. Their application in a modern production
environment is widely based on the principles of QbD. Data
collection using analytical sensors enables the process to be
precisely controlled with a strong impact on the quality of the
drug product. Also, excipient selection is often supported by
complex statistical models and the data quantity even allows
the use of ML algorithms and ANNs (6). With regard to
nanomedicines, data quality plays a dominant role. At the
nanoscale, some characteristics and differences between drug
formulations are more difficult to measure. However, with the
integration of more sophisticated analytical techniques for the
determination of particle size or encapsulation efficiency as part
of the IPCs, the control strategy becomes more effective. ML
algorithms and ANNs provide an unbiased evaluation of process
variables and can be used to determine their impact on the quality
of the product as well as to predict functional and structural
properties (e.g., drug release, cellular uptake, drug loading) and
the degree of toxicity (95). In addition, computational aids can
give support for the automatic production of nanoformulations,
providing a quick process and increased yield (96). Still many
studies emphasize well-understood processes and come with
very similar conclusions compared to a conventional modeling
approach. Another area of investigation is the in vitro and
in vivo evaluation of nanomedicines including PK and PD
studies. While PK studies often come with limited availability
of data and smaller data sets, PD studies can rely on a number
of in vitro screening methodologies. As a consequence, smart
modeling approaches and simulations based on human-made
computational frameworks are applied in PK analysis more
successfully. By using a supervised neural network and in vivo
protein corona formation data, Lazarovits et al. could predict
with an accuracy up to 94% the half-life, liver and spleen
accumulation, and size of PEGylated gold nanoparticles injected
in rats. The biological fate of polymeric nanoparticles was also
predicted, demonstrating the generalizable characteristic of the
model (22). On the contrary, high-throughput screening and

the automated analysis of biomolecules enabled the integration
of effect-based screening and improved stratification into the
characterization of PD. In this context, ML algorithms as well
as ANNs sometimes support the identification of relevant effects.
Among other examples, synergistic drug effects often depend on
the exact concentration ratio at the target site and could be co-
delivered by nanomedicines. A recent study demonstrated the
advantage of using AI for identifying suitable drug combinations.
The four anticancer drugs paclitaxel, nanodiamond-modified
derivatives of doxorubicin, bleomycin, and mitoxantrone were
used. The optimized drug-dose ratio simultaneously considered
efficacy and safety of the combination treatment (23). With
such synergisms depending on time, dose and patient, AI will
have a pivotal role in optimizing drug combination therapies
(97). In the future, they may even provide the only successful
strategy in dealing with nanomedicine-related omics’ data or
information obtained from electronic sensors. AI will select the
best targets as well as more personalized and precise treatments.
Importantly, rapid computer-based analysis of large quantities
of data is a unique feature of ML strategies. Consequently,
recent developments in the early selection of drug delivery
systems by high-throughput screening and the identification of
efficacies depending on the interindividual differences between
patient populations (as obtained from genomic, proteomic, or
lipidomic analysis) would not have been possible without these
new computational aids.

Although gifted with a considerable knowledge base, image
analysis mainly focuses on cell interactions of nanomedicines.
Only a few studies include more biodistribution data as well.
One reason could be the complexity of in vivo images. Unbiased
pattern recognition is likely to result in “hard-to-interpret”
outcomes and is therefore limited to single cells and processes
with a well-understood mechanism.

CONCLUSION

In recent years, a rising number of computational aids has been
applied in drug development. While the technical methods and
algorithms are in place, their application in nanomedicine is
widely driven by the availability of data. For drug products
with a larger market share, preclinical and clinical studies
are well-organized and study designs are widely comparable.
Nanomedicines are characterized by a high complexity with
regards to in vitro and in vivo performances (3). Therefore,
the evolution of human-made computational models often leads
to better understanding and, hence, significant progress in
their development.

Whenever data is available in considerable quantity, e.g., due
to the use of robotic in vitro platforms, automated analytical
methods, or sensors, ML algorithms, and ANNs enable an
unbiased evaluation. One critical component in the application of
computational methods is the mechanistic understanding gained
during data evaluation. In this context, the outcomes provided
by ML sometimes do not comply with the established theoretical
frameworks. As a consequence, whenever data sets come with
high complexity, the outcomes may be very hard to interpret.
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Applications of AI in in vivo imaging are only one example where
even small studies come with a high data volume, but the actual
content of meaningful information is relatively low.

In conclusion, ML as well as modeling and simulation,
both have their respective applications in nanomedicine
development. “Big data” often leads to impressive insights
identified by supervised ML algorithms. Whenever data
sources are not accessible, computational frameworks and
models may provide better answers. However, with more data
becoming available a variety of evolving computational methods
will support planning, design, process control, monitoring,
and predictions, that lead to significant cost reduction and
streamlined development processes. From a longer perspective,
this will improve clinical translation and the availability of smart
therapeutics such as nanomedicines.
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