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Abstract

Objective: Recently, numerous research studies have concentrated on employing hybrid metaheuristic approaches for the
analysis and diagnosis of breast cancer which motivated us to devise a computer-driven diagnostic tool that could aid in
improving the precision of clinical decision-making.

Methods: In the present study, an integrated metaheuristic machine learning approach-based predictive model was devel-
oped that can classify breast cancer into subgroups using clinicopathological data acquired from tertiary care hospitals or
oncological institutes.

Results: Monkey king evolution (MKE) was utilized to refine the hyperparameters of the support vector machine to achieve
optimal settings, and genetic algorithm (GA) was used to choose the pertinent clinical and pathological attributes involved in
classification before being applied to the support vector machine (SVM) classifier for prediction. A comparison was con-
ducted between the results of the integrated MKE-GA-SVM model and those derived from conventional feature selection
and hyperparameter tuning models such as GA-SVM, grid search-SVM, and SVM-recursive feature elimination (RFE). The
effectiveness of the results was evaluated by applying the 10-fold cross-validation technique to the three multicentre datasets
across all models. The integrated machine learning (ML) model achieved classification accuracies of 91.4%, 86.6%, and
75.5% across three clinicopathological breast cancer datasets, outperforming the existing models. The generated model per-
formance was also assessed with notable metrics, namely F1-score, precision–recall curve, area under the ROC curve, mean
square error and logarithmic loss.

Conclusion: Thus, the newly developed bio-inspired integrated metaheuristic model may be deployed as a surrogate diag-
nostic tool that allows clinicians to offer patients with better therapeutic outcomes.
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Introduction
Breast cancer (BC), a prominently diagnosed cancer in
women, originates from mutations in breast cells, causing
irregular growth and the development of tissue masses
referred to as tumours. According to breast cancer statistics
2022,1 around 287,850 cases were diagnosed with invasive
breast cancer in the USA while there were 51,400 new cases
that underwent treatment for ductal carcinoma in situ
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(DCIS) and 43,250 women lost their lives due to breast
cancer. The diverse biological characteristics of breast
cancer contribute to a range of histopathological features
and clinical behaviours. Early detection of breast cancer
and the implementation of intensive multimodal therapy
have contributed to a notable decrease in the mortality
rate associated with the disease.2 Prognosis in breast
cancer is influenced by clinicopathological characteristics,
including lymph node status and tumor size, as well as
molecular biological aspects such as hormone receptors,
human epidermal growth factor receptor 2 (HER2), and
molecular subtype.3 Hormone receptor testing is a well-
established approach in standard clinical settings for man-
aging breast cancer patients.4

The categorization of breast cancer involves the use of
immunohistochemistry staining for human epidermal growth
factor receptor type 2 (HER2), progesterone receptor (PR),
and oestrogen receptor (ER), which is widely known as a
standard and accepted procedure.

Breast cancer is categorized into four primary subtypes –
luminal A, luminal B, HER2-positive, and triple-negative
breast cancer (TNBC) – determined by the expression
levels of three hormone receptors. Luminal A subtype is
characterized by low grade tumour, less likely to relapse,
better prognosis and greater survival rate when compared
with other breast cancer subtypes. It exhibits a favourable
response to hormone therapy, especially tamoxifen and/or
aromatase inhibitors, while offering limited advantages
from chemotherapy.5 Luminal B, when compared with
luminal A grows more quickly, has a higher grade of
tumour and a worse prognosis. Hormone therapy along
with higher percentage of chemotherapy are the treatment
modalities available for luminal B.6 Herceptin or targeted
therapy is effective in treating Her2-positive breast cancer
that slows down the abnormal growth of HER2 protein
and also has a greater response to chemotherapy
schemes.7 TNBC is an invasive subtype that possesses a
high tumour grade, a poor prognosis, early recurrence
development, distant metastases, and minimal therapy
options. TNBCs exhibit distinctive morphological, molecu-
lar, and clinical characteristics.8,9 Hormonal therapy and/or
trastuzumab are ineffective for TNBC patients. However,
the nature of these tumours makes them chemo sensitive.
Surgery followed by chemotherapy is usually the treatment
regimen supported for this particular kind of breast cancer.
As of now, the US Food and Drug Administration (FDA)
has not approved any particular therapy specifically target-
ing this devastating disease.10 Thus, the clinical outcome,
therapeutic responses, and patient survival rates of each
of these subtypes are distinct. This entails the subgrouping
of breast cancer into specific categories in order to plan
effective treatments and offer accurate therapeutic options.

The support vector machine (SVM) serves as a robust
machine learning (ML) method, particularly effective for
categorization tasks, as it demonstrates proficiency in

handling diverse medical datasets and revealing intricate
relationships among them. Vapnik carried out the first
research into the concept of a linear support vector
machine in 1963.11 Finding the ideal hyperplane that lin-
early splits all the data points in two distinct areas is the
primary goal of SVM, and this is done by maximizing the
margin. Support vectors are points of data that are closest
on both sides of the decision boundary, and the imaginary
lines that run through them are referred to as margins.
Margins are actually the regions where no data points lie.
As a result, maximization of the margin width will
produce the ideal hyperplane. When the ideal hyperplane
is close to the data points, the margin will be smaller and
the model will generalize well when used with training
data, but not with unseen data. There are two types of
margins: soft margin and hard margin. When the data can
be separated into two distinct sets to avoid misclassification,
SVM are trained with hard margins. When the data cannot
be segregated exactly into two separate groups or when
required a greater generality from the classifier, opting for
a soft margin is preferred thereby allowing some misclassi-
fication. SVMs differ from other classification algorithms in
that they maximize the distance between the closest points
of data for all classes when selecting the decision boundary.
SVMs can handle high-dimensional data and work well
with small datasets, which is one of its main benefits. By
employing a strategy referred to as the kernel trick, SVMs
can also be utilized for non-linear classification. The input
data undergo mapping through the kernel method, transi-
tioning into a higher-dimensional space and enabling
them to be linearly separated. The selection of the kernel,
however, can affect SVM performance, and large datasets
can make them computationally expensive. Successful
application of SVM has been reported in numerous litera-
ture studies, including breast cancer prognosis, cancer gen-
omics, developing recurrence predictive model, breast
cancer classification and survival analysis. Ferroni et al.12

constructed a prognostic predictive model by integrating
random optimization (RO) with SVM. This approach
aimed to extract prognostic information from the demo-
graphic, clinical, and biochemical data routinely collected
from breast cancer patients. Huang et al.’s13 investigation
on the categorization capability of SVMs concerning
cancer genomics had led to the evolution of new biomar-
kers, targeted treatments, and significant understanding of
cancer-driver genes. Kim et al.14 established a unique prog-
nostic model utilizing SVM for predicting BC recurrence
rate 5 years post surgery in a cohort of Korean individuals.
The predictive performance of the model was additionally
assessed and compared with other pre-existing models in
use. Wu et al.15 highlight the efficacy of SVM in discrimin-
ating triple-negative breast cancer from non-TNBC. They
achieved this by analysing RNA-sequence data gathered
from two distinct patient datasets, showcasing SVM’s
potential in this diagnostic context. Leveraging clinical
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factors centred on tumours, such as size, age at diagnosis,
and stage, Mihaylov et al.16 estimated the breast cancer
patient’s survival duration. The outcomes demonstrated
the merits of linear SVM as well as other models in survival
analysis. Bai et al.17 elucidated the contribution of periph-
eral lymphocytes in identifying prognostic biomarkers.
Furthermore, their goal is to establish SVM as a robust pre-
dictor of prognosis for patients with breast cancer. A set of
SVM parameters influence the behaviour of a ML model
that are not used during the model training phase. These
parameters, also referred to as hyperparameters, must be
changed beforehand, prior to the training phase. A learning
algorithm determines the model parameters for the current
data set, then keeps updating these values as it learns.
These parameters are incorporated into the model once
learning is complete. The hyperparameters are algorithm
specific and used to calculate the model parameters. The
hyperparameter tuning procedure comprises discovering a
set of ideal hyperparameter values for the learning algo-
rithm and then using this improved algorithm on each
given data set. The kernel is the primary hyperparameter
for the SVM. The partitioning of the classes in classification
and the effectiveness of the method are significantly influ-
enced by the kernel choice and their hyperparameters.
The concept of a soft margin, which focuses on maximizing
the correct classification of data points during training,
delineates the decision boundary in an optimization
problem by increasing the separation between the decision
border and the support vectors. The C parameter manages
this trade-off. The C parameter imposes a penalty to each
incorrectly categorized data point. A lower value of C
entails choosing a decision boundary with a broader
margin, but this decision comes with the trade-off of
increased misclassifications since the penalty for inaccur-
ately classified points is kept minimal. With a large value
for C, SVM generates a decision boundary featuring a nar-
rower margin, as it endeavours to minimize the number of
misclassified samples by imposing a substantial penalty.
In the setting of SVM with radial basis function (RBF),
the RBF’s gamma value governs the scope of influence
caused by a single training point. Low gamma values
suggest a wide similarity radius, which causes more
points to be grouped together. The points must be relatively
close to one another for high gamma values for them to be
included in the same class. Due to this, models with
extremely high gamma values tend to be overfit. As a
result, determining the hyperparameters’ optimal value
remains always challenging. In this paper, MKE algorithm
has been deployed to optimize the SVM hyperparameter’s
values for SVM classifier to be used for prediction.

The practice of selecting a subset of pertinent features
(predictors and variables) to be used in the creation of a
model is known as feature selection in ML. If the proper
subset of features is selected, feature selection can minimize
the ML model’s complexity and simultaneously increase

the model’s accuracy. Further, it makes the ML algorithm’s
training process faster and decreases overfitting. Feature
selection also decreases the dimensionality and enhances
the output attribute vector’s quality by deleting extraneous
and inaccurate features.18–20 Feature selection has been uti-
lized for many applications, namely cancer classification,
specifically to help with breast cancer and diabetes diagno-
sis,21 gait analysis,22 text mining,23 gene prediction,24 glau-
coma prediction,25,26 speech recognition,27 etc. From a
taxonomic viewpoint, feature selection methods can be
classified into filter, wrapper, and embedded
approaches,28,29 each representing distinct strategies in the
selection process. Usually, filter methods are utilized as
an initial preprocessing step. The filter method chooses fea-
tures using statistical measures and is suitable for datasets
with a smaller number of features. Additionally, it generally
demands low computational skills for performance.
Filtering techniques frequently fail to appropriately recog-
nize the samples during the learning phase as the link
between classifiers and characteristics is not taken into
account. It is computationally more efficient to employ
filter methods while working with high-dimensional data.
A filtering strategy inhibits data overfitting and is devoid
of any ML algorithm. Wrappers necessitate a process of
exploring all conceivable feature subsets, assessing the
quality of each subset through training, and the perform-
ance of the classifier is evaluated utilizing each subset. It
employs a greedy search strategy by comparing every
potential feature combination to the evaluation criterion.
Wrappers strive to train a suitable ML algorithm using
only a subset of the necessary features to gauge the effect-
iveness of the training model. Evaluating the accuracy
achieved in each of the preceding stages, a wrapper algo-
rithm contemplates whether to include or exclude a
feature from the chosen set of features. Wrapper methods
are commonly more resource intensive and computationally
demanding in comparison to the majority of the filtering
approaches. The drawbacks in traditional wrapper
approaches30 include the recursive evaluation of the
chosen feature vector, which leaves out some features
from the initial assessment. Additionally, because the user
specifies the arguments, some feature combinations may
not be considered even with more exactness. These pro-
blems could lead to overfitting and overhead in the search
process. Evolutionary wrapper methods have effectively
overcome the drawbacks associated with traditional
wrapper techniques, gaining prominence, particularly in
situations characterized by expansive search areas.
Multiple potential solutions to a problem can be solved
using evolutionary optimization approaches, which are
population-based metaheuristic methods described by a
group of people. The feature vector is represented by each
entity of the feature selection tasks. Every candidate solu-
tion is evaluated and assessed for consistency using an
objective or target function. To generate new entities
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capable of producing the next generation,31 the selected
individuals are exposed to genetic operators’ involvement.
In the broad field of evolutionary algorithms, genetic algo-
rithms (GAs) exemplify evolutionary heuristic search
methods, drawing inspiration from Darwin’s theory of
selection and genetics as their foundational principles.
Gas32–35 carry out search in complicated, vast, and multi-
modal settings, yielding solutions that closely approximate
optimality for the objective or fitness function in optimiza-
tion problems. An individual’s identity is defined by a set of
characteristics referred to as genes, which collectively con-
stitute a sequence, giving rise to chromosomes. The collec-
tion of all such chromosomes forms a population. The
fitness function aids in determining the population’s
overall level of fitness. Every individual is provided with
a fitness score, which also impacts their likelihood of
being selected for reproduction. The probability of being
considered for reproduction increases with increasing
fitness scores. During the selection phase, individuals are
chosen to produce offspring through reproduction. The
entire group of individuals selected is subsequently set in
pairs of two to maximize reproduction. To produce new off-
spring, the genetic algorithm utilizes two variation opera-
tors – namely crossover and mutation – applied to the
parent population. The steps of selection, crossover, and
mutation endure for a predetermined number of iterations
or until the termination criterion is fulfilled. This study uti-
lizes the GA’s feature selection capabilities to the SVM
model to choose potential features for model training.

This research presents a hybridized monkey king evolu-
tion (MKE)-GA-SVM model for breast cancer classifica-
tion employing clinical, pathological, and demographic
data gathered across three specialized cancer care hospi-
tals/oncological centres. A more robust and improved iter-
ation of the ebb-tide-fish algorithm, known as the monkey
king evolutionary (MKE) algorithm,36 was initially intro-
duced in 2016 for global optimization. Due to its faster con-
vergence and accuracy along with identical time complexity
as compared to PSO variations, the MKE method has been
employed in this paper to identify the optimal settings of
SVM hyperparameters. The values of the SVM hyperpara-
meters kernel, C, and gamma are taken into account for
optimal conditions. Various kernel functions like radial
basis, sigmoid, linear, and polynomial, and an array of
evenly spaced range of C and gamma values in the logarith-
mic scale have been presented as options in this study and
implemented in Python with MKE algorithm to achieve the
optimal SVM hyperparameter combination. As a result, the
most suitable kernel function and optimized C, gamma
values can be automatically evolved into an SVM hyper-
parameter combination. The concepts of natural genetics
and evolution serve as the foundation for GA, which are
stochastic search and optimization approaches with signifi-
cant latent parallelism. Search is carried out by GAs in com-
plicated, vast, and multimodal landscapes and they get

improved over time. GAs demonstrate their ability to iden-
tify the most pertinent features for classification tasks by
selecting a specific subset from the feature pool. This
chosen subgroup, characterized by higher fitness scores, is
then incorporated into the model training process. But
before applying GA to the SVM estimator, it is crucial to
figure out the number of chromosomes required for the
initial population, maximum feature subset size, crossover
and mutation rate, and number of generations to recur
genetic selection. Thereafter, the tuned SVM estimators
are used for the training phase and subsequent classification
of breast cancer patients into two different classes. The
results obtained from the integrated MKE-GA-SVM
model underwent analysis and were compared with out-
comes of traditional feature selection and hyperparameter
tuning methods, such as GA-SVM, grid search-SVM, and
the SVM-recursive feature elimination (RFE) model. To
validate the results across three multi-centre datasets, all
models underwent a 10-fold cross-validation technique.
The integrated ML model produced classification results
that were superior to those of the other conventional
models when implemented on three clinicopathological
datasets pertaining to breast cancer. The generated model
performance was also assessed with notable metrics,
namely mean square error (MSE), logarithmic loss (Log
Loss), F1-score, area under the ROC Curve (AUROC),
and the precision–recall curve (PR curve).

The rest of the sections of this article are structured as
follows: The next section focuses on the datasets utilized
in this analysis, along with conventional ML feature selec-
tion and hyperparameter tuning models and the proposed
model. We then explore the performance of the integrated
MKE-GA-SVM model, drawing comparisons with estab-
lished feature selection and hyperparameter tuning techni-
ques. It also encompasses a statistical analysis illustrating
how clinicopathological factors influence the identification
of TNBC/non-TNBC cases and recurrence/no-recurrence
events. This is followed by an in-depth discussion, while
the last section concludes the paper.

Methods

Datasets

The BioStudies database,37 developed by the European
Bioinformatics Institute (EMBL-EBI), is designed to store
data from a diverse array of biological studies.
Researchers utilize BioStudies to deposit data associated
with publications or projects, ensuring a stable and access-
ible repository. It serves as a valuable resource for ensuring
that data are available for future reference and for use by
other researchers in the scientific community. The current
analysis involves three datasets: two datasets of patients
with breast cancer diagnosis from African nations were
retrieved from the Biostudies database, while the third
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breast cancer dataset was sourced from the UC Irvine
Machine Learning Repository. The two African datasets col-
lected from the biostudies were made publicly available as a
CSV file since anonymous patient identities were supplied by
the authors of the original research as a supplementary file,
along with their respective publications in Biostudies.
Thus, the freely available datasets sourced from the original
research has been utilized for conducting this secondary ana-
lysis. The first study of the original research was conducted
retrospectively, involved a cohort of 905 patients who had
undergone treatment for breast cancer. This research initia-
tive commenced in 2009 at the National Institute of
Oncology in Rahat, Morocco, and extended its duration
until 2014.38 Every patient’s medical file was thoroughly
examined to gain insights about their clinical, pathological,
and therapeutic aspects. 405 cases in total were eliminated
owing to insufficient data, foreign nationals, and male
patients. Rest of the 500 malignancy cases were separated
into two groups: 85 cases of TNBC and 415 cases of
non-TNBC based on their molecular subtypes.39

Additionally, the clinicopathological characteristics, the
pathogenic data needed for SBR grading, the prognosis,
and therapy of TNBC patients were examined. Another pro-
spective, non-interventional investigation40 of 251 patients
histologically confirmed with tumour staging was carried
out at the radiotherapy department of the Lagos University
Teaching hospital in Nigeria. This original study encom-
passed female patients over the age of 18 who had received
treatment between July 2017 and July 2019 at the outpatient
clinic. The individual patients were interviewed about their
socio-demographics and complications by means of a struc-
tured proforma. The patients were allocated into two groups
based on their molecular subtypes: 119 individuals, that is,
47.4% were categorized with TNBC, with the rest 43.2%
classified as non-TNBC. The hospital dataset is easily
accessible at Biostudies.41 The third breast cancer dataset42

was accumulated from the University Medical Centre,
Institute of Oncology, Ljubljana, Yugoslavia, consisting of
clinicopathological factors that influence the occurrence of
recurrence/non-recurrence events. The dataset bears multi-
variate characteristics and comprises 286 cases that are indi-
vidually described by nine clinical, pathological, and
demographic factors, most of which are categorical. The per-
tinent authors of the primary research were consulted for
ethical clearance to conduct this current secondary analysis.
Given that the initial research was previously completed and
published, repeated ethical approval was not essential.

Traditional feature selection and hyperparameter
tuning ML models

Feature selection deals with choosing a selected number of
pertinent features by eliminating unnecessary, irrelevant, or
noisy features from the original set. To develop a predictive

model, the feature selection procedure involves minimizing
the amount of input variables. In other words, the main
objective is to determine which features have the greatest
influence on the predictive model. Furthermore, deleting
less significant features that undermine the model to antici-
pate the targeted variables can lower overfitting and
improve the model’s generalization capabilities.

Recursive feature elimination,43 often known as RFE
feature selection, a wrapper approach to feature selection
lowers the model complexity by selecting important fea-
tures and eliminating the less important ones. Recursive
feature elimination works by ranking each feature’s import-
ance using the selected RFE ML technique, eliminating the
lowest relevant feature, and then creating a model with the
remaining attributes until the targeted number of features is
reached. The algorithm updates the model using the remain-
ing features after removing the least significant features in
each iteration. RFE can be deployed in combination with
any supervised learning technique, although SVM is the
most common pairing. SVM-RFE is an SVM-based
feature selection technique that utilizes SVM’s classifica-
tion power at its core and RFE wrapped around it to offer
the most desirable combination of features for the best
model performance. RFE is better suited for complicated
data sets than other feature selection techniques because it
takes feature interactions into account. The details about
GA and SVM were covered in the preceding section. In
classification setting, the feature selection capabilities of
GAs can be employed to identify a subset of features
with the highest fitness score, which can then be utilized
in model training. GA has been used to determine the poten-
tial features for the SVM model in the training phase. But
before using GA on the SVM estimator, it is crucial to set
the size of chromosomes for the initial population, cross-
over rate, mutation rate, tournament size, and iterations.
To obtain a more credible performance of the suggested
model, 10-fold cross-validation procedures were applied.
The benefit of using GA is that it performs an exhaustive
search of the feature space using different sets of solutions
that can improve over time. Because of the evolutionary
approach, the subsets of variables identified by GAs are
often more efficient than other feature selection approaches.
The prediction accuracy as well as different model perform-
ance indicators may be enhanced by using the GA-SVM
hybrid model to categorize various breast cancer variants.
Grid search44 is a popular method of hyperparameter
tuning that can make it easier to create and assess models
for all possible combinations of algorithmic parameters
per grid. Grid search involves creating discrete grids out
of the hyperparameter domain. Cross-validation metrics
are used to assess each set of grid values. The grid point
is the best hyperparametric value combination that maxi-
mizes the cross-validation mean value. Grid-search is
used to fine-tune the SVM hyperparameter values in the
Grid-search SVM model. The hyperparameter settings are
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used to build the model, and prediction accuracy is assessed.
The set of hyperparameter values that yields the highest
model accuracy is then chosen for the training phase.
The fine-tuned SVM estimator is then used to classify
multiple variants of breast cancer. The suggested
model was compared with the hybrid Grid search-SVM
model.

The proposed model

The actions of the Monkey King, a character in the well-
known Chinese legendary classic Journey to the West,
served as the model for the MKE algorithm. The story
follows the incredible exploits of the monk Sanzang
and his three disciples as they journey to the west in
quest of Buddhist sutras, with the Monkey King stand-
ing out as the most adept disciple. When the king of
monkeys is in crisis, he may turn to several small
monkeys to handle the difficult challenge, and every
small monkey can provide feedback on a solution for
the monkey king to choose from. Analogous to the
ebb-tide-fish algorithm,45 the MKE algorithm comprises
only a limited number of particles designated as monkey
king particles.

To ascertain the quantity of monkey king particles
within the population, we utilize a population rate
denoted as R. The population size is indicated by
PopSize, and the monkey king identities get initialized
randomly with a sum equal to R*PopSize. Every
monkey king particle within the population undergoes a
transformation into a small cluster of monkeys to facili-
tate exploitation, while the remaining particles are
employed for exploration as part of the evolutionary
process. The R*PopSize particles in the population are
then randomly chosen to have their labels changed to
represent the fresh monkey king particles once every
monkey king particle has been exploited. In the MKE
technique, a monkey king particle turns into C×D
smaller monkeys, where C acts as a constant and D
denotes dimensionality. Although it often increases com-
puting complexity, a higher C value indicates that the
monkey king particle exploits the local area more and
demonstrates superior performance on multimodal func-
tions. The i-th small monkey particle within the group
of C×D small monkeys is denoted as Xsm(i) in equation
(2). All of these ‘small monkey’ elements possess identi-
cal values as XMK,G (a monkey king particle of the Gth
generation). The ‘small monkey’ components follow the
evolution shown in equation (1) to search the area
around XMK,G, and XMK,G changes to XMK,G+1, when
the chosen optimal value is derived from C×D ‘small
monkey’ particles. The ordinary particle evolves accord-
ing to equation (3). The term ‘Xk,p best’ refers to the his-
torical best of the kth particle in the population, and ‘F’
stands for the direction vector’s fluctuation coefficient,

that is, the vector connecting the current location to the
global best position.

Xsm(i) = {x1 , x2, . . . ., ..x j , . . . .., xD}

xj � xj ± 0.2 ∗ rand () ∗ xj, j ∈ D (1)

XMK,G+1 = opt
i ∈ C × D

{Xsm(1), . . . . . . . . . ., Xsm(i), . . . . . . ., Xsm (C × D)}

(2)

Xk,G+1 = Xk,pbest + F ∗ rand()

∗ (Xgbest − Xk, G) (3)

The proportional rate R is relatively small since the monkey
king population particles serves as the perturbing components
to improve optimization outcomes in less time. The key
advantage of theMKE algorithm lies in its ability to incorpor-
ate a large-scale optimization feature, allowing for the effect-
ive resolution of challenges associated with large-scale
optimization. It is easily parallelizable on distributed comput-
ing systems, enhancing computational speed. In the
population-based differential evolutionary method known as
MKE, the control parameter and the single evolution strategy
have an impact on convergence and the exploration–exploit-
ation ratio. This compelled us to apply the MKE approach
to identify the most appropriate SVM hyperparameter set-
tings. The values of the SVM hyperparameters kernel, C,
and gamma are taken into account for optimal conditions.
Various kernel functions like radial basis, sigmoid, linear,
and polynomial, and an array of evenly spaced range of C
and gamma values in the logarithmic scale have been pre-
sented as options in this study and implemented in Python
3.9.12 with the MKE algorithm to achieve the optimal SVM
hyperparameter combination. As a result, the most suitable
kernel function and optimize C, gamma values can be auto-
matically evolved into an SVM hyperparameter combina-
tions. However, it is essential to set the parameter values for
population size, fluctuation coefficient, population rate, the
quantity of new particles generated by the monkey king par-
ticle, and the scaling factor for monkey king particles before
fitting MKE for SVM hyperparameter tuning.

population size = 40

fluctuation coeff = 0.7

population rate = 0.3

c = 3

fc = 0.5

where population_size= the population size of the particles,
fluctuation_coeff stands for the direction vector’s fluctuation
coefficient, population_rate= percentage of new particles
that monkey king particles produce and its value lies
between 0 and1, c represents the number of newparticles gen-
erated by the monkey king particle, and fc denotes the scaling
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factor for monkey king particles.
The capability of GA to identify themost relevant features

for classification problems is performed by choosing a spe-
cific subgroup of features from the feature pool that exhibits
higherfitness scores. Thefitness function analyses every indi-
vidual’s fitness score and uses that information to determine
which individuals have the best chance of being selected for
the next generation. Search is carried out by GAs in compli-
cated, vast, and multimodal landscapes, and they get
improved over time. GA has been used in this study to
select potential features of SVM model that can take part in
the training phase. But before applying GA to SVM estima-
tor, it is crucial to figure out the number of chromosomes
required for initial population, maximum feature subset
size, crossover and mutation rate, and number of generations
to recur genetic selection. The entire genetic procedure was
carried out using statistical packages included in the Python
3.9.12 programming language.

estimator = SVC

cv = 10,

verbose = 1,

scoring = accuracy.

max features = 5,

n population = 20,

crossover proba = 0.5,

mutation proba = 0.2,

n generations = 20,

crossover independent proba = 0.5,

mutation independent proba = 0.05,

tournament size = 3,

n gen no change = 10,

caching = True,

n jobs = -1

where SVC=SVM classifier, cv=10 signifies 10-fold cross-
validation, verbose= controls the output’s verbosity, scoring
= ‘accuracy’ implies that every individual of the initial popula-
tion is assigned a score in accordance of the targeted metrics,
max_features=maximumfeatures chosen for the startingpopu-
lation, n_population=population size employed by the genetic
algorithm, crossover_proba= the chance of genetic material
being transferred from one generation to the next through
parent–child cross-over, mutation_proba= the likelihood that
a random mutation will occur within the features, n_genera-
tions=how many generations must be repeated for genetic

selection, crossover_independent_proba= the possibility that
an individual trait will be picked for cross-over and create a
child in the next generation, mutation_independent_proba=
the chance that an independent feature will be mutated for the
next genetic evolution, tournament_size= the number of top-
performing individuals selected based on scoring metrics for
participation in the tournament, n_gen_no_change= the termin-
ation of optimization occurs after a specified number of itera-
tions if there is no change in the value of the best individual,
caching= for True value, the scores of best individual in
every generation is cached, and n_jobs=number of parallel-
running cores. The default value is 1, and if it is set to −1, the
number of jobs equals the number of cores.

Pandas, a freely available Python toolkit, is utilized for
efficiently and easily managing relational or labelled data.
It provides a variety of data structures and processes for
working with both numerical and time series data.
Pandas’ data frame resembles a feature matrix, with rows
denoting the anonymous identity of patients and columns
signifying the sociodemographic, clinical, and pathological
parameters of corresponding patients.

The open-source Python library, Numeric Python
(NumPy), was imported to perform computations and
process elements of multidimensional and linear arrays.
Scikit-Learn,46 a built-in python toolkit for ML, has been
employed to deliver a range of data analysis components
like data preprocessing, model fitting, model selection,
model evaluation, cross validation, and visualization.
Importing libraries, loading data into Pandas, managing
missing value and categorial features, feature scaling, nor-
malizing the data set, and lastly dividing the data set into
training and test sets were the steps that were carried out
for data processing in Python. The SimpleImputer function
was used to impute missing data using multiple imputation
approaches such as mean, median, most_frequent across
each column, or by assigning a constant value. A function
named StandardScaler was utilized for data standardization,
aiming to resize the distribution of values. This process
ensures that the observed values have a mean of zero and
a variance of one. The division of datasets into training
and test sets was performed randomly using the train_-
test_split function. In this unified model, the train_test_split
method randomly partitions the datasets in a 7:3 ratio, allo-
cating 70% of the dataset for training and using the remain-
ing 30% as a test set. The training dataset was employed to
train the model, enabling it to learn from known data.
Following the model’s training on the training dataset, it
is necessary to evaluate its performance using the test
dataset. This dataset evaluates the model’s performance
and ensures that it can properly generalize to new or
unseen data. A particular subset of the training set,
denoted as the validation set, was utilized to evaluate the
model’s performance and fine-tune its hyperparameters.
The SVM hyperparameters that has been taken into
account for optimal setting are kernel, C, and gamma
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values. Various kernel functions like radial basis, sigmoid,
linear, and polynomial, and an array of evenly spaced range
of C and gamma values in the logarithmic scale have been
presented as a sequence of parameter values in the form of a
dictionary with parameters kernel, C, and Gamma so as to
create a grid of parameters from which the MKE algorithm
has to select the right combination. The hyperparameter
tuned SVM model was then employed with GA to choose
prospective clinicopathological features for model training.
Feature selection is the process of selecting the most rele-
vant features and eliminating the superfluous or irrelevant
ones in order to improve the ML model’s predicting abil-
ities. Svclassifier is an estimator object that can fit the
model with training data and perform classification from
new data. Thus, the integrated model has been developed
by considering two crucial steps of the model-building
process – hyperparameter tuning and feature selection so
as to enhance the model’s interpretability and performance.
A flowchart of the MKE-GA-SVM integrated model devel-
opment method is delineated in Table 1.

The following are the necessary algorithm stages for the
proposed MKE-GA-SVM prediction model whose actual
implementation was performed in python:

Step1: Import the dataset as a data frame in pandas with
rows= patient identity and the columns= the related
patients’ sociodemographic, clinical and pathological
parameters.
Step 2: Data standardization and missing value manipula-
tion with SimpleImputer and StandardScaler functions.
Step 3: Class labels as (m× 1) targeted array.
Step 4: train_test_split () function for training and test data-
sets in the ratio of 7 : 3.
Step 5: Import MKE algorithm with set_parameters
Step 6: Choose the best kernel= : [“rbf,” “sigmoid,”
“linear”, “poly”], C and gamma values using MKE
algorithm.
Step 7: Print best_params_
Step 8: Genetic selection with estimator= SVC and
best_params_
Step 9: Display feature selector support_.
Step 10: Calculate scoring= “accuracy.”

Research ethics and patient consent

The present analysis includes three datasets: two datasets of
individuals with breast cancer from African countries
namely Morocco and Nigeria were obtained from
Biostudies, and a third breast cancer-related dataset
sourced from the UC Irvine Machine Learning
Repository. The datasets analysed in this paper comprises
of retrospective data from patients treated for breast
cancer. Each of these original studies obtained ethical
approval from their respective institutional ethics board,

and the authors have provided anonymous patient datasets
as a supplementary material. The corresponding authors
of the original research were informed for conducting this
secondary analysis. Ethical clearance was not required
since the original research had already been conducted
and published in 2020. For investigations involving the
same publicly accessible data, recurrent ethical consent
was not necessary. Furthermore, human participants were
not directly involved in this secondary study.
Accordingly, the patients’ informed consent was not
required to conduct the present research. The third dataset
has been gathered from UCI ML repository that maintains
several datasets to serve the ML community publicly. For
the sake of conducting the current investigation, the data-
sets acquired were carefully examined and validated with
the clinical partners.

Results
This study examines datasets from three tertiary care hospi-
tals or oncological facilities that include patients who pre-
sented with breast cancer and bears certain
clinicopathological characteristics. The first dataset encom-
passed 905 individuals who had received medical care for
breast cancer at the National Institute of Oncology in
Morocco. Eventually, 500 cases were taken into account
for study after excluding patients with missing medical
data, international and male patients. The second dataset
included assessments conducted on 251 breast cancer
patients who were registered at the Lagos University
Teaching Hospital in Nigeria. The University Medical
Centre, Institute of Oncology, Ljubljana, Yugoslavia, pro-
vided the third breast cancer dataset of 286 cases, which
included clinicopathological variables influencing the like-
lihood of recurrence/non-recurrence events.

Performance evaluation of MKE-GA-SVM
integrated model

The MKE-GA-SVM model underwent performance evalu-
ation using noteworthy metrics, namely mean square error
(MSE), logarithmic loss (Log Loss), F1-score, area under
the ROC curve (AUROC), and precision–recall curve (PR
curve). A tabular matrix of size N×N, known as a confu-
sion matrix, is employed to gauge the efficacy of a predict-
ive model, where N is the total number of classes to be
classified. A confusion matrix presents the counts of
correct and incorrect predictions made by a classifier. The
efficiency of the integrated model is assessed by the confu-
sion matrix, which calculates performance metrics includ-
ing accuracy, precision, recall, and F1-score. For the sake
of simplicity, the datasets from the Lagos University
Teaching Hospital in Nigeria, National Institute of
Oncology in Morocco, and the University Medical Centre
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in Yugoslavia were labelled as datasets 1, 2, and 3, respect-
ively. Instances of TNBC and non-TNBCwere labelled as 1
and 0, respectively. Figure 1 displays the classification
report of the MKE-GA-SVM model on datasets 1, 2, and
3. This report illustrates the precision, recall, F1-score,

and support metrics for the trained integrated
MKE-GA-SVM model. The integrated model identifies
TNBC and non-TNBC participants with higher accuracy
rate, as seen by higher values of key performance criterions
across the three datasets. The efficiency of the binary

Table 1. Flowchart of the proposed MKE-GA-SVM integrated model.
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classification model is graphically depicted by the
AUC-ROC curve, an assessment tool for classification
across various threshold levels. AUC, which stands for
the degree or measure of separability, is represented by
ROC (receiver operator characteristic), which illustrates a
probability curve. The ROC curve is visually depicted, plot-
ting the false-positive rate (FPR) on the X-axis and the true
positive rate (TPR) on the Y-axis, encompassing various
threshold values ranging from 0 to 1. A higher X-axis
value on a ROC curve denotes more false-positive cases
as compared to true negatives. A higher value on the
Y-axis, however, signifies a greater proportion of true posi-
tives relative to false negatives. The ability to strike a
balance between false-positives and false-negatives will
thus play a pivotal role in determining the choice of the
threshold. An AUC of 1 indicates the classifier’s ability to
accurately distinguish all classes, while an AUC of 0 sug-
gests that it will assign either a specific class or a random

class to each instance. There is a good possibility that
the classifier will separate all the instances of the two
classes when 0.5 <AUC< 1. This is because the classifier
can recognize a higher number of true positives and true
negatives compared to false negatives and false positives.
By analogy, with elevated AUC values, the model demon-
strates increased effectiveness in distinguishing between
patients with TNBC and those without TNBC. In the
ROC curve, the point (0.5, 0.5) represents a model with
no skill. A line slanting from the bottom left to the top
right of the plot represents a model with no skill at each
threshold and has an AUC value of 0.5. A model is consid-
ered to have perfect skill when it is plotted with a line that
runs from the bottom left to the top left to the top right of
the curve and lies between (0, 1).47 The integrated model’s
ROC curve on three different datasets is displayed in
Figure 2. With an FPR value of 0.1, the ROC curve of
dataset 1 achieved sensitivity= 1 and covers a substantial

Figure 1. Classification report of MKE-GA-SVM integrated model on three datasets. 0 stands for non-TNBC cases and 1 represents TNBC
cases.

10 DIGITAL HEALTH



area prior to crossing the no-skill line. The ROC from
dataset 2 reached the highest sensitivity value of 0.9
with a corresponding fall-out of 0.5 before touching the
no-skill line. However, dataset 3’s ROC curve occupies
certain area above the diagonal line within a fall out
value= 0.4 and then moves below the no-skill line up to
FPR of 0.9 before finally moving upwards to collide
with (1,1).

The widely used loss function, known as the MSE, com-
putes the sum of the squares of the variations between the
estimated and actual values produced by the model,
divided by the overall count of patients included in the
dataset as test cases.

MSE = 1
N

∑N

I=1
(yi − ŷi)

2 (4)

where yi represents the model estimated value, ŷi denotes
the actual value, and N represents the total count of patients
across the three datasets utilized as test cases. The MSE is
zero if the model is error free. As the model error increases,

so does its value. Lower MSE values suggest that the pre-
dicted and actual values are close. The error squares
prevent MSE from being negative. The MKE-GA-SVM
model exhibited MSE values of 0.065, 0.133, and 0.31
for datasets 1, 2, and 3, respectively. These outcomes dem-
onstrate decreased MSE values and a high degree of inte-
grated model classification performance.

In assessing the efficacy of the classification model that
relies on the probability concept, logarithmic loss, com-
monly known as Log Loss, is employed as a pertinent
evaluation metric. It establishes how effective a model is
by measuring the variation between the expected probabil-
ity and the actual values. Log Loss quantifies the range to
which the prediction probability matches with the asso-
ciated actual or true value and thereby increasing the
penalty value for incorrect predictions. When comparing
models, Log Loss statistics can be a valuable tool even
though they are hard to understand. A lower Log Loss
value corresponds to better model predictions. The compu-
tation of Log Loss is performed by multiplying the negative

Figure 2. Area under the ROC curve (AUROC) of MKE-GA-SVM integrated model on three datasets. AUROC is plotted graphically with false
positive rate on the X-axis and true positive rate on the Y-axis. The blue dashed line denotes the no-skill line. The orange colour line
represents the model skill before reaching (1,1).
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average with the sum of the logarithmic estimated probabil-
ities for every patient.

Loglossi = −[yi lnpi + (1− yi) ln(1− pi)] (5)

where i refers for a specific patient, yi represents the actual
value, pi denotes the predicted probability, and log stands
for the number’s logarithmic value. The Log Loss value
obtained from dataset 1, 2, and 3 were 0.85, 0.38, and
0.69 respectively.

The effectiveness of a classifier at several probabilistic
thresholds is depicted graphically by precision–recall
curves. At varying probability thresholds, the precision–
recall curve identifies the balance between the TPR
(recall) and positive predictive value (precision), providing
valuable insights into the model’s performance. The func-
tionality of binary classification methods is assessed using
the precision–recall curve, particularly when classes are
highly imbalanced and provide more information than the
ROC plots. Precision–recall curves are plotted with recall
and precision on the X- and Y-axes, respectively, at
various threshold settings. A low FPR corresponds to
high precision, and a low false negative rate implies high
recall. A wide AUC indicates high recall and precision.
When plotted, it frequently takes a zigzag route that
moves up and down. Typically, a precision–recall curve
with no overlapping output denotes a higher degree of per-
formance than one near the baseline. Figure 3 shows the
integrated model’s precision–recall curve for three datasets.
The precision–recall curve for dataset 1 is significantly
higher than the baseline, with no overlapping regions.
The dataset 2’s precision–recall curve initially falls below
the baseline with recall value 0.0 and then moves upward
to follow zigzag route before coinciding with the baseline.
Dataset 3’s curve was initially high, but it eventually des-
cended below the baseline from recall value 0.5 and
finally touched it at recall value 1.

Convergence is the stopping criterion for an optimiza-
tion ML algorithm when the algorithm reaches a stable
point after which subsequent iterations fails to significantly
enhance the results. Learning curves are used to quantify
and empirically investigate the convergence of an optimiza-
tion process. Learning curves are an often-used diagnostic
tool in ML for algorithms that gain knowledge incremen-
tally from a training dataset. To fit our model with an
optimal bias-variance trade-off, the learning curve can be
helpful in determining the quantity of training data to use.
Learning curve plots indicate how learning performance
with respect to experience changes over time. One can iden-
tify an underfit, well-fit, or overfit model employing learn-
ing curves on training and validation datasets for model
performance.

Figure 4 illustrates the learning curves for datasets 1, 2,
and 3 by plotting the training set size on the X-axis and the
corresponding accuracy score on the Y-axis. The cross-
validation score in dataset 1’s learning curve began low

and gradually increased as the size of the training set
became larger, whereas the training score was initially
high and became almost steady with a training set size
above 175. For dataset 2, the cross-validation score
nearly stays constant as the training sample size increases,
but the training score rapidly drops between 100 and 275
training sizes before increasing above 350 training
samples. When the training size is increased for dataset
3, the training score drops off quickly and eventually
approaches the cross-validation score at the end. The
time needed to fit an estimator using the training data
determines the scalability of the model. Scalability is
demonstrated by plotting the training dataset on the
X-axis and the fit_times on the Y-axis. Fit_times quantifies
the duration it takes for the model to fit the estimator to the
training set before performing cross-validation. The train-
ing examples cause the curves of datasets 1 and 2 to pro-
gressively rise until they peak at fit_times of 0.07 and 0.10,
respectively, and dataset 3’s curve peaks at fit_times of
0.03. The model’s performance was further examined
using fit_times vs test score. Stability was achieved by
the model’s performance on dataset 1 with fit_times=
0.02 and test score of 0.90. The model performance of
dataset 2 fluctuated around test score 0.83 and finally
increased above fit_times 0.08 while in dataset 3, the
test score remained almost stable around 0.7. The inte-
grated model’s scalability and performance were dis-
played in Figures 5 and 6 for three datasets.

Comparison with other standard models

The results of the newly created integrated model
MKE-GA-SVM were compared to those of existing
models that incorporate feature selection and hyperpara-
meter tuning. These models include GA-SVM, Grid
search-SVM, and the SVM-recursive feature elimination
(RFE) model. The previous section has covered some of
the fundamental information regarding these models.
Table 2 displays the classification accuracy outcomes for
the existing models and the MKE-GA-SVM integrated
model on three datasets. The classification accuracies of
the MKE-GA-SVM model on datasets 1, 2, and 3 were
91.4, 86.6, and 75.5, respectively, outperforming the out-
comes of all other standard models in a convincing
manner. Table 3 displays a comparison of the outcomes
derived from assessing the respective models across three
datasets, employing established evaluation metrics such as
MSE, Log loss, AUC, and F1-score.

The MKE-GA-SVM model showcases substantial clas-
sification potential across all datasets, highlighted by its
superior AUC and F1 scores, coupled with lower MSE
and Log loss values.

The assessment of results for all models involved the
application of the 10-fold cross-validation method to
ensure robustness across three multi-centre datasets.
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Various kernel functions like radial basis, sigmoid, linear,
and polynomial, and an array of evenly spaced range of C
and gamma values in the logarithmic scale have been pre-
sented as options in this study and implemented in
Python with the MKE algorithm to achieve the optimal
SVM hyperparameter combination. As a result, the most
suitable kernel function and optimize C, gamma values
can be automatically evolved into an SVM hyperparameter
combinations. Following the application of the MKE
approach to datasets 1, 2, and 3, Table 4 presents the opti-
mized values for SVM hyperparameters such kernel, C, and
gamma. In dataset 1, a higher C parameter value shows that
the MKE technique aims to minimize the misclassified
samples at the expense of significant penalty value,
whereas a smaller gamma value indicates significant simi-
larity radius, enabling the inclusion of extra points to a spe-
cific class. The higher classification accuracy of dataset 1,
which is 91.4%, lends more credence to this. Smaller C
values for datasets 2 and 3 indicate that there is a significant
margin for the SVM decision limit to accept greater mis-
classification. Consequently, datasets 2 and 3 have lower
classification accuracy of 86.6% and 75.5% respectively.
Therefore, the recently created bio-inspired integrated

metaheuristic model may be used as a surrogate diagnostic
tool to help the medical professionals offer patients with
enhanced treatment outcomes.

Statistical analysis

The correlation between categorical clinical and patho-
logical attributes was determined using a heatmap in
order to comprehend the relevance of clinicopathological
parameters associated to breast cancer classification.
Heatmaps, which are represented by colors of varied inten-
sities, are produced to show the degree to which the clinico-
pathological factors are dependent on one another. Blue and
red highlights were applied to the clinicopathological com-
ponents in the heatmap based on the positive and negative
correlations between them. Stronger shades of color are
associated with larger correlation magnitudes. Dark blue
shading along the diagonal of the heatmap denotes a correl-
ation between the same variable and itself. The seaborn
library in Python is used to create heatmaps. Figures 7, 8,
and 9 illustrate the correlation heatmaps for datasets 1, 2,
and 3, respectively. Age is positively correlated with meno-
pausal status, nutritional status, hypertension, and

Figure 3. Precision–recall curves of MKE-GA-SVM integrated model on three datasets. It is plotted graphically with recall on the X-axis and
precision on the Y-axis. The blue dashed line denotes the no-skill line just above the base and the orange colour line represents the model
skill before touching the baseline.
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comorbidity, according to the heatmap generated from
dataset 1. Furthermore, correlation also exists between the
histological type, disease stage, and metastasis. Age, meno-
pause, the number of full-time pregnancies, hormone
therapy, lymph nodes, tumor size with surgical type, and
tumor advancement are factors in dataset 2 that have a posi-
tive correlation. Strong positive association lies between
age and menopause, invading nodes and node-caps on
dataset 3. Additionally, there prevails strength of associ-
ation between tumor-size with invading nodes, node-caps
and degenerative malignant. Irradiation and class are also
positively correlated with each other.

Pearson’s chi-square test provides an alternative statis-
tical method for examining the relationship between the
clinicopathological characteristics of breast cancer patients.
The chi-square statistic is calculated as the square of the dif-
ference between the actual and expected values for each

categorical parameter, divided by the parameter’s expected
value.

χ2 = (O11 − E11)2

E11
+ (O12 − E12)2

E12
+ . . .

+ (Omn − Emn)2

Emn
=

∑m

i=1

∑n

j=1

(Oij − Eij)2

Eij

(6)

Here, τ stands for chi-square value, Oij= observed value
and Eij= expected value of the categorical parameter. The
aim of this test is to discern whether the difference
between actual and expected values is attributable to
chance or if there exists a meaningful relationship
between the variables under investigation. The update of
chi-square statistics takes into account the degree of
freedom, which varies with the count of feature labels and

Figure 4. Learning curve of MKE-GA-SVM integrated model on three datasets. The learning curve is plotted with training set size on the
X-axis and accuracy score on the Y-axis respectively.
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class labels. The chi-square test was performed with Python
version 3.11.2. The chi-square score, chi-square p-value,
F-score, F-score p-value, and mutual information between
the clinicopathological parameters are among the values
that are produced as output. In dataset 1, clinicopathological
characteristics, including patient height, BMI, family
history of breast cancer, comorbidities, allergies, and
hormone receptor status, were found to be statistically sig-
nificant (p < .05) in distinguishing between TNBC cases
and non-TNBC cases. Within dataset 2, hormone therapy
and progression (metastasis/relapse) emerged as statistic-
ally significant clinicopathological variables (p< .05). In
dataset 3, the clinicopathological variables that were statis-
tically significant (p< .05) included tumor-size, invading
nodes, node caps, degenerative malignant, and irradiation.
These findings show that hormone therapy, metastasis/
relapse, and hormone receptor status are among the risk
variables associated with breast cancer’s lethal effects.
For more details, the original studies38,40,42 presented a

comprehensive statistical assessment of clinicopathological
factors among TNBC and non-TNBC subgroups.

Discussion
Evaluation metrics, such as the area under the ROC curve
(AUROC), MSE, logarithmic loss, PR curve, F1-score, and
learning curves, were employed to assess and quantify the per-
formance of the MKE-GA-SVM integrated model. Better
classification accuracy was noted when comparing the out-
comes with the feature selection and hyperparameter setting
models of GA-SVM, Grid search-SVM, and SVM-RFE
model. The major risk factors favouring the severity of
breast cancer were also shown by the statistical analysis.
This vindicated the overall potency of integratedmodel in seg-
regating the patient groups with TNBC /non-TNBC and also
its pivotal role in identifying the risk factors that influence the
occurrence of recurrence/non-recurrence events. Few studies
that combine MKE with other hybrid evolutionary strategies

Figure 5. Scalability and performance of MKE-GA-SVM integrated model on dataset 1 and 2. The scalability of the model denotes the time
required by the model to fit the estimator with the training dataset. The blue shaded region in the scalability graph indicates the region of
fit_times mean +&− fit_times standard deviation. The performance of the model represents the test score with respect to fit_times. The blue
shaded region indicates the region of test scores mean +&− test scores standard deviation.
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have been reported in the literature. A combination of canon-
ical MKE technique and multi-trial vector strategy known as
MMKE was suggested by Nadimi-Shahraki et al.48 to address
a range of real-world optimization issues with diverse uncer-
tainty. Li Zuoyong et al.49 employed an immune evolutionary
algorithm to iteratively optimize the Monkey-king point,
resulting in theMonkey-king immune evolutionary algorithm.
This algorithm showcased improved searching capability and
enhanced stability. In addition to these, several variants of the
monkey king evolutionary algorithm have been developed
and adopted in a variety of domains, including target-based
wireless sensor networks (WSN),50 energy broadcast in
WSN,51 and vehicle navigation in a WSN environment.52

However, the present study introduced a novel integrated
model where the MKE method has been employed to identify
the optimal settings of SVM hyperparameters, and GA was
used to choose the pertinent clinical and pathological attri-
butes involved in classification before being applied to the
SVM classifier for prediction. While many studies53,54

employ radial basis kernel functions as a baseline for SVM
hyperparameter tuning, our present work in MKE explores
a variety of alternative kernel functions. This approach is
aimed at determining the best kernel function without being
restricted to a specific choice. Our study likely represents
the first reported instance of utilizing the MKE-GA-SVM
integrated model for the automatic development of SVM
hyperparameters in the categorization of patient groups:
TNBC/non-TNBC based on clinicopathological criteria. But
it is needless to mention that several models encompassing
GA-SVM hybridization55–59 are available in the literature
for the diagnosis, classification, and prediction of breast
cancer. The benefit of utilizing a hybrid model is that it
unifies the complementing parameters of all the included
models, which lessens the weaknesses that the separate classi-
fiers experience.60 The study of medical datasets requires the
use of ML techniques due to their extreme heterogeneity and
complexity. In the literature, integrated ML models have
started to appear as a remedy for this kind of complexity. In
order to investigate breast cancer using an integrated ML
approach (HMLA), Taghizadeh et al.61 employed classifiers,
a feature extraction strategy, and feature selection techniques
in addition to comprehensive search for the best HMLAs. The
medical sciences often use immunohistochemical staining,
imaging, and radiomics to categorize breast cancer

Figure 6. Scalability and performance of MKE-GA-SVM integrated model on dataset 3. The scalability of the model denotes the time
required by the model to fit the estimator with the training dataset. The blue shaded region in the scalability graph indicates the region of
fit_times mean +&− fit_times standard deviation. The performance of the model represents the test score with respect to fit_times. The blue
shaded region indicates the region of test scores mean +&− test scores standard deviation.

Table 2. Classification accuracy MKE-GA-SVM and other compared
models on three datasets.

Classification Accuracy

Models Dataset 1 Dataset 2 Dataset 3

MKE-GA-SVM 91.4 86.6 75.5

GA-SVM 84.2 83.3 68.6

Grid-SVM 90.3 82.3 74.5

SVM-RFE 90.4 84 71.4

Note. Dataset 1= Lagos university, Nigeria breast cancer dataset; Dataset 2=
National Institute of Oncology, Rabat, Morocco breast cancer dataset; Dataset
3=University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia.
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subtypes.62–65 However, the application of ML integrated
models, which have improved classification accuracy, pro-
vides a framework for effectively identifying tumours that
are TNBC and those that are not, and it can be accepted as
an addition to or replacement for medical procedures.

As per GLOBOCAN 2020,66 Africa has recorded
186,598 new instances of breast cancer, 85,787 instances
with high mortality, and 429,220 cases per 100,000 of
5-year prevalence (across all age groups) rate. In addition,
breast cancer ranks higher in Africa than cervix uteri
cancer in terms of prevalence. The estimated incidence of
breast cancer in females was 531,086 cases, or 74.3 cases
per 100,000 women, but the number of deaths was 19.4
cases per 100,000, indicating a high breast cancer load in
Africa. Researchers predict67 that by 2040, there would
be 1.4 million cancer-related fatalities and 2.1 million
new cases of cancer in Africa. The researchers observed
that environmental risk factors and behavioural, in addition
to food and lifestyle modifications, might be a cause of the
increase. The researchers also emphasize that these
increases will probably exceed the capacity of health care

provider levels, postpone cancer screenings, and restrict
patient treatment options unless measures are taken to
raise awareness, enhance preventive, and minimize risk
factors. This forces us to categorize breast cancer patients
of African nations into TNBC versus non-TNBC subtypes.
Destructive breast cancer TNBC, is typified by an aggres-
sive tumour, a high occurrence in younger premenopausal
women, an elevated risk of recurrence within the initial 3
years, and a diminished survival rate following metastasis.
Due to their chemosensitivity, surgery combined with
chemotherapy is frequently regarded as the accessible treat-
ment methods, even though the FDA has not approved any
particular targeted medications. In this study, statistical ana-
lysis reveals the relationship among the various clinico-
pathological traits and their degree of association.
Chi-square statistic discloses the statistically significant
clinicopathological traits that plays a pivotal role in identi-
fication of breast cancer patients into subtypes: TNBC and
non/TNBC. These findings showcased the deadly impact of
breast cancer and identified multiple risk factors, aiding
clinicians in developing suitable treatment plans for both
TNBC and non-TNBC categories of patients.

Artificial intelligence (AI), especially ML and deep
learning, has found extensive applications in clinical
cancer research in recent years. As a result, the accuracy
of cancer prediction has significantly increased. Complex
medical datasets may be analysed using ML approaches
to find patterns and relationships, and they can also be
used to accurately predict how a particular cancer subtype
will progress in the future. Moreover, the prognosis of
breast cancer patients can also be predicted using ML,
which can be used as a resource for surgical selection tech-
nique, clinical patient evaluation, and adjuvant medication
development. When medical data need to be evaluated
more thoroughly and quickly, ML algorithms may be able
to lessen the likelihood of human errors brought on by

Table 3. Several evaluation metrics comparative analyses of all models on dataset 1, 2 and 3.

Dataset 1 Dataset 2 Dataset 3

Models

Mean
square
error
(MSE)

Log
loss

AUC
score F1-score

Mean
square
error
(MSE)

Log
loss

AUC
score F1-score

Mean
square
error
(MSE)

Log
loss

AUC
score F1-score

MKE-GA-SVM 0.06 0.85 0.94 0.93 0.13 0.38 0.73 0.80 0.31 0.69 0.44 0.55

GA-SVM 0.42 1.11 0.94 0.84 0.1 0.31 0.84 0.87 0.31 0.67 0.43 0.56

Grid-SVM 0.06 0.19 0.96 0.93 0.12 0.29 0.91 0.87 0.26 0.57 0.74 0.67

SVM-RFE 0.05 0.83 0.96 0.95 0.13 0.39 0.74 0.87 0.26 0.62 0.70 0.70

Note. Dataset 1= Lagos university, Nigeria breast cancer dataset; Dataset 2=National Institute of Oncology, Rabat, Morocco breast cancer dataset; Dataset 3=
University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia.

Table 4. Optimized hyperparameters values like kernel, C, and
gamma of SVM generated by MKE technique on datasets 1, 2, and 3.

MKE-GA-SVM Model Kernel C Gamma

Dataset 1 rbf 177.82 0.000177

Dataset 2 Rbf 3.83 0.21

Dataset 3 rbf 0.90 0.31

Note. Dataset 1= Lagos Teaching university, Nigeria breast cancer dataset;
Dataset 2=National Institute of Oncology, Rabat, Morocco breast cancer
dataset; Dataset 3=University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia.

Sarkar and Mali 17



professionals who are drained or inexperienced. ML techni-
ques have been used for breast cancer outcome prediction
using tumour tissue imaging,68 ultrasonography imaging
for TNBC patient diagnosis,69 and breast cancer survival
prediction.70 Further, ML can produce positive outcomes
with respect to the clinical care of patients.71,72 The appli-
cation of ML to the molecular classification of tumours
has drawn more interest recently. Understanding the
many molecular kinds of breast cancer can assist medical
professionals in determining the optimal course of treat-
ment for each patient, saving the health care system
money and preventing undesirable side effects.73

However, before implementing any ML technique in clin-
ical settings, privacy concerns pertaining to digital elec-
tronic health record (her) data must be effectively
managed. Over the years, microarray-based method for
BC categorization has been known as the gold standard.74

However, this method’s primary drawback is that it fails

to consistently classify samples into particular molecular
subtypes.75–77 Another significant issue is that individual’s
gene expression can change over time, which could lead to
inaccurate classification results. The most popular screen-
ing technique for early-stage breast cancer is mammog-
raphy.78,79 The two prevailing constraints in adolescent
women with thick breasts are low specificity and deteriorat-
ing sensitivity. Additionally, mammography’s use of radi-
ation is harmful for patient health and dramatically
increases their risk of developing breast cancer.80

Ultrasonography has grown in popularity as a substitute
for mammography in clinical use.81–83 In contrast, uneven
textural characteristics of low-quality ultrasound images
frequently lead to inconsistent performance on new test
instances. Moreover, diagnostic performance outperforms
conventional visual imaging evaluations. These motivate
us to come up with an ML model with integrated features
for identifying breast cancer based on clinicopathological

Figure 7. The correlation heat map of dataset 1. The higher correlation value among the clinicopathological parameters was indicated with
the stronger colour shades. The dark clue colour heatmap diagonal signifies the correlation of the same variable with itself.
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Figure 8. The correlation heat map of dataset 2. The higher correlation value among the clinicopathological parameters was indicated with
the stronger colour shades. The dark clue colour heatmap diagonal signifies the correlation of the same variable with itself.

Figure 9. The correlation heat map of dataset 3. The higher correlation value among the clinicopathological parameters was indicated with
the stronger colour shades. The dark blue colour heatmap diagonal signifies the correlation of the same variable with itself.

Sarkar and Mali 19



characteristics of patients in oncology or tertiary care facil-
ities. Therefore, computer-aided diagnosis (CAD) systems
have significant research value in aiding physicians to
enhance the accuracy of breast tumour diagnosis.

Several literature reviews84–88 have employed clinico-
pathological features and IHC staining for classifying
patients into TNBC and non-TNBC groups. Notably,
these studies have opted for statistical analysis using
SPSS or other established software, rather than leveraging
machine learning techniques for the automated diagnosis
and treatment of breast cancer. The current study,
however, presented a novel integrated model in which the
evolutionary method of the monkey king was utilized to
determine the ideal settings of the SVM hyperparameters.
The single evolution approach and control parameter used
by MKE have an impact on convergence and the ratio of
exploration to exploitation. Given that evolution techniques
greatly influence algorithm performance, combining several
strategies can greatly improve algorithmic capabilities. To
prevent MKE from prematurely convergent in local
optima, optimization technique known as GA has been
applied to enhance randomized searching capability and
better stability. Prior to integrating GA with the SVM clas-
sifier for prediction, the relevant clinical and pathological
factors that influence the classification process were selected.
Such type of study with an MKE-GA-SVM integrated model
was the first to be reported in the literature. In addition to pre-
cisely identifying breast cancer subtypes, our current research
employs an integrated MKE-GA-SVM model to play a
crucial role in pinpointing severe variants of TNBC. This
identification is instrumental in determining targeted and
improved treatment regimens for such cases. The validation
of the current work with multicentre datasets from different
geographic locations is particularly significant as it may be
seen as a gap in earlier research findings. Finally, the inte-
grated MKE-GA-SVM model has produced a data-driven
diagnostic system that can help doctors to diagnose patients
and plan appropriate courses of therapy.

Our ML integrated model underwent testing and evalu-
ation, being benchmarked against the performance of
three well-known hybrid approaches that involve both
feature selection and hyperparameter tuning in the realm
of ML. It’s worth noting, however, that there are numerous
other ML strategies that were not explored or taken into
account in the scope of this study. This study did not inves-
tigate all types of breast cancer; there are various subtypes
beyond TNBC. One potential limitation of this study could
be the reduced dataset size derived from hospital-collected
datasets with clinicopathological traits. To get around this
problem, each dataset was subjected to a 10-fold cross-
validation procedure, which produced 10 distinct models
and allowed for prediction using all of the available data.
The class imbalance issue that arises from the imbalanced
design of TNBC and occurrence of recurrence events in
datasets 2 and 3 can be resolved by using the SMOTE

technique, which adds synthetic data to the k-nearest neigh-
bors of the minority samples. Furthermore, the conse-
quences on the diverse demographics of the patient
populations were not considered. This highlights the poten-
tial limitation in the study.

Conclusion
The MKE-GA-SVM predictive model provides an alterna-
tive method for precise classification of breast cancer into
TNBC and non-TNBC variants. Additionally, it can be uti-
lized to detect recurrence events, helping the healthcare
practitioners to deliver the most effective treatment and
diagnostic results for patients. The findings indicated that
the suggested MKE-GA-SVM classification model outper-
formed other existing models in terms of accuracy in pre-
dicting clinicopathological feature selection. Combining
numerous breast cancer prognosis models predicting risk
factors might improve disease detection and the formulation
of critical treatment regimens. Predictive models are crucial
for personalized medicine because they can easily identify
high-risk people based on established clinical and patho-
logical risks. More predictive methods should be investi-
gated for improved prediction and accuracy in order to
develop tailored treatment for the awful variety of breast
cancer-TNBC.
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