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Abstract: Cotton (Gossypium hirsutum L.) is one of the most important cash crops worldwide.
Cytoplasmic male sterility (CMS) is an excellent breeding system for exploitation of heterosis, which
has great potential to increase crop yields. To understand the molecular mechanism of CMS in cotton,
we compared transcriptome, cytomorphological, physiological and bioinformatics data between the
CMS line C2P5A and its maintainer line C2P5B. By using high-throughput sequencing technology,
178,166 transcripts were assembled and 2013 differentially expression genes (DEGs) were identified at
three different stages of C2P5A anther development. In this study, we identified DEGs associated
with reactive oxygen species (ROS), peroxisomes, aldehyde dehydrogenases (ALDH), cytochrome
oxidase subunit VI, and cytochrome P450, and DEGs associated with tapetum development, Jojoba
acyl-CoA reductase-related male sterility protein, basic helix-loop-helix (bHLH) and MYB transcription
factors. The abnormal expression of one of these genes may be responsible for the CMS C2P5A
line. In gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment, DEGs were mainly related to carbohydrate metabolism, amino acid metabolism,
transport and catabolism, and signal transduction. Carbohydrate metabolism provides energy for
anther development, starch and sucrose metabolism, fatty acid biosynthesis and metabolism and
ascorbate and aldarate metabolism. These results showed that numerous genes and multiple complex
metabolic pathways regulate cotton anther development. Weighted correlation network analysis
(WGCNA) indicated that three modules, ‘turquoise,” ‘blue,” and ‘green,” were specific for the CMS
C2P5A line. The ‘turquoise’ and ‘blue’ modules were mainly related to carbohydrate metabolism,
amino acid metabolism, energy metabolism, peroxisomes, pyruvate metabolism as well as fatty acid
degradation. The ‘green” module was mainly related to energy metabolism, carbon metabolism,
translation, and lipid metabolism. RNA-sequencing and WGCNA polymerization modules were
screened for key genes and pathways related to CMS in cotton. This study presents a new perspective
for further research into the metabolic pathways of pollen abortion in the CMS C2P5A line and also
provides a theoretical basis for its breeding and production.
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1. Introduction

Cotton (Gossypium hirsutum L.) is one of the most important cash crops in the world and a
renewable source of natural fiber [1]. At present, there are four cultivated varieties of cotton, diploid
Asian cotton (G. arboreum), African cotton (G. raimondii), upland cotton (G. hirsutum), and island cotton
(G. barbadense). Upland cotton accounts for more than 90% of commercial cotton production worldwide
because of its excellent characteristics such as high fiber yields, strong adaptability, high resilience,
and good quality [2-4].

At present, heterosis is the most effective way of high yield breeding. It makes a great contribution
to the increase of agricultural yields because hybrid F1 progenies possess merit traits such as increased
adaptability, uniformity, and stronger stress tolerance [5,6]. Heterosis systems have been used to
increase yields in several crop species such as wheat [7,8], rice [9], cereals [7,10], soybeans [11],
barley [7,12], cotton [13], and rapeseed [14].

In male sterility (MS), the pistil of the bisexual flower plant develops normally, but the stamens
fail to produce a dynamic male gamete, therefore, plants can be fertilized by external pollination. MS is
widespread in flowering plants as a tool to create new hybrids for breeders, which can greatly reduce
labor, costs, and improve production efficiency [15]. According to gene composition, MS includes
genic male sterility (GMS) and cytoplasmic male sterility (CMS) [16].

GMS is a two-line breeding system, according to morphological characteristics, the fertile plants
and fake hybrids have to be removed, which results in increased labor intensity and operation
difficulty. CMS is a three-line breeding system, which can eliminate the need for hand emasculation.
CMS has been found in more than 150 species [17], including 7% of the gynodioecy angiosperms [18].
CMS confers an excellent system for hybrid breeding system, especially for monoecious crops, which
exploits crop heterosis and produces large-scale commercial F1 hybrid seeds [9,11]. Bohr et al. believed
that hybridization or heterosis is the most promising method to solve the challenge of increasing crop
yields [11].

Anther development is a complex process involving numerous genomes and multiple metabolic
pathways in cells. The carbohydrate metabolism pathway provides energy and carbohydrates for
anther development [19-22]. Lipid transport and fatty acid metabolism pathway play crucial roles in
signal transduction and sporopollenin synthesis [23-25]. Ascorbate and glutathione metabolism are
involved in anther cell development and meiosis [19,26-28]. The flavonoid biosynthesis pathway is
involved in the process of forming the pollen coat [19,29,30].

Numerous genes related to anther development have been identified in model plants like
Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). SPL/NZZ, EMS1/EXS, TPD1, SERKI,
and SERK?2 regulate the fate of somatic, germ cells and the differentiation of the anther wall during
early anther development [31-35]. BAM1/BAM?2 are important regulatory factors for early anther
development [36,37]. MPK3/MPK6 regulate anther chamber formation [38], DYT1 and 22DYT1 are
downstream transcription factors [39,40]. RPK2 [41], and TDR [42-44] regulate and control the
degradation of tapetum cells and microspore development. Defective tapetum Cell Death 1 (DTC1)
controls tapetum degeneration by regulating ROS dynamics in rice [44], MIL1 and MIL2 are required
for anther and microspore development [45,46]. UDT1, TDR, and TIP2 encoding bHLH transcription
factors regulate stamen differentiation and anther development [44,47,48]. PTC1 [49], EAT1 [50],
API5 [51], and TIP2/hHLH142 [44] regulate programmed tapetal cell death and pollen development.
WA352 gene interacts with COX11gene to cause tapetal programmed cell death (PCD) [52].

The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis
in the early anther development of cotton [53]. GEMYB24 encodes the MYB-like transcription factor
that regulates the development of tapetum [54].

With regards to the relationship between male sterility and the homeostasis of reactive oxygen
species (ROS), previous studies have shown that the accumulation of ROS is higher in male sterile
plants, for instance, in rice [52,55], wheat [56], maize [57] and cotton [27,58], indicating that ROS
accumulation may be closely related to the development and functional defects of tapetum [48,52,59].
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Previous reports have shown that the formation of CMS mainly involves the mutation or molecular
rearrangement of genes in the mitochondria or chloroplast genome [60,61]. Chen et al. believed that
CMS is a complex character [62]. Mitochondrial genes that determine male sterility have been found
in many plants, most of these genes are chimeric [63-65]. In total, 28 CMS genes have so far been
identified in 13 crops [9].

Hua and his colleagues compared mitochondrial genome differences in cotton of the male sterile
lines CMS-2074A, CMS-2074S, and maintainer and restorer lines, and identified four chimeric gene
OREFs, Aorf4, Aorf9, Aorf4-2, and Aorf28, in the male sterile lines (CMS-2074A) and restorer lines with
different transcription levels. The study revealed the cause for the formation of CMS in cotton [66].

To explore the CMS mechanism of abortion in cotton, the morphological, the physiological,
and the molecular characteristics of the CMS line C2P5A and the maintainer line C2P5B were studied.
Morphological changes and changes in the tapetum at different stages of anther development were
analyzed, pollen viability was detected by triphenyltetrazolium chloride (TTC) staining and observed
by scanning electron microscopy (SEM).

In this article, we used high-throughput sequencing technology and WGCNA polymerization
modules to screen for key genes and pathways related to CMS in cotton by comparative transcriptome
analysis. Besides, this study used quantitative Reverse-Transcription PCR (qRT-PCR) technology to
verify the expression of genes related to fertility selected from RNA-seq. The results of this study will
provide new data for further research of the metabolic pathway of cotton abortion in the CMS line
C2P5A, as well as a theoretical basis for its use in breeding and seed production.

2. Results

2.1. Morphological Characteristics of the CMS Line C2P5A and the Maintainer Line C2P5B

Comparing the morphology of CMS line C2P5A and maintainer line C2P5B revealed the abnormal
development of flower buds and the mature pollen (MP) grain stage in the CMS line C2P5A, and the
flower phenotype of C2P5A was small and wizened (Figure 1A).

e o #

Spg  PMs Tds

Figure 1. The morphological characteristics of flower buds at different development stages. a, cytoplasmic
male sterile line C2P5A; b, maintainer line C2P5B. (A) Flower buds after removing sepals and petals.
(B) Flower with sepals and petals removed. (C) Determination of pollen grain activity by TTC.
Spg, sporogenous stage; Pms, pollen mother cell stage; Tds, tetrad stage; Ms, mononuclear stage; Bin,
binucleate stage; Mps, mature pollen grain stage.

The CMS line with exposed styles and without pollen have significantly shorter filaments than
maintainer line (Figure 1B). Pollen grains of CMS line stained by 2% TTC were dry, shape and size
were nonuniformity, mostly not colored or lightly colored, and activity was significantly weaker than
that of the maintainer line (Figure 1C).

In this study, flower buds were selected from CMS line and maintainer line of anther development
at three different stages, and 1.5% (w/v) acetocarmine staining and cross-section were used to confirm
the developmental stage, pollen mother cell stage (34 mm), tetrad stage (4.1-5.0 mm), mononuclear
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(5.1-6.0 mm) development at three different stages, and flower bud length (length from nectary to bud
apex, mm).

2.2. Microstructure of Anther at Different Developmental Stages of the CMS Line C2P5A

When comparing the anther development of C2P5A with C2P5B by observing cross-sections, there
was little difference between the two lines in pollen mother cell stages (Pms). Pollen mother cells were
surrounded by four layers of cells, the innermost layer being the tapetum, followed by the middle layer,
the endothecium, and the epidermal layer (Figure 2A,D). However, during the tetrad and mononuclear
stages, there was a significant difference between the CMS line C2P5A and the maintainer line C2P5B
(Figure 2B,C,E,F). The pollen mother cells of the CMS line C2P5A were degraded, the tapetum cells
were atrophic, dense, and became a very thin layer (Figure 2B), and during the cells monocyte stage,
no monocyte microspores were produced (Figure 2C).

Figure 2. Phenotypic comparison between C2P5A and C2P5B at different development stages.
(A—C) CMS line C2P5A; (D-F) maintainer line C2P5B. (A,D) Pollen mother cell stage (Pms); (B,E) Tetrad
stage (Tds); (C,F) Mononuclear stage (Ms). PMC, pollen mother cell; E, epidermis; En, endothecium; ML,
middle layer; Msp, microspores; T, tapetum; DT, degenerated tapetum; Tds, tetrads; Mn, mononuclear;
DMsp, degenerated microspores; CDMsp, complete degenerated microspores; CT, compact tapetum;

ET, entire tapetum; StR, stomium region.
2.3. Measurements of Physiological Indices in the CMS Line C2P5A

Soluble sugar provides energy for anther development and synthesis. Soluble proteins include
a variety of amino acids that protect cell development. At different stages of anther development,
the soluble sugar and soluble protein content of the maintainer anthers was higher than that of the
male sterile anthers. During anther development, significant differences could be observed in Tds and
Ms between C2P5A and C2P5B (Figure 3A,B). Proline (Pro) is involved in the stress response in plants,
but there was little difference in proline content of Pms and Tds during anther development in C2P5A
and C2P5B. However, Pro in C2P5A was lower than in C2P5B at the Ms stage of anther development
(Figure 3C).
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Figure 3. Determination of physiological indices of anthers at different developmental stages.
(A) Determination of soluble sugar content. (B) Determination of soluble protein content. (C)
Determination of proline content. (D) Determination of POD activity. (E) Determination of CAT activity.
(F) Determination of MDA activity. PMs, pollen mother cell stage; Tds, tetrad stage; Ms, mononuclear
stage; C2P5A, CMS line; C2P5B, maintainer line. The white columns indicate male sterile line C2P5A;
red columns indicate the maintainer line C2P5B. The error bars represent SD (** p < 0.01, * p < 0.05),
three biological replicates were performed.

Antioxidase peroxidase (POD) can eliminate the toxicity of hydrogen peroxide, phenols, amines,
aldehydes, and benzene, whereas catalase (CAT) can remove hydrogen peroxide (HyO,) in the
organism. At Pms stage in anther development, before anther abortion, POD and CAT activity
increased correspondingly and reached significant levels at different stages in both lines. In the
Pms stage, POD activity was significantly higher in the male sterile line than in the maintainer line
(Figure 3D). However, CAT activity was significantly lower in C2P5A than C2P5B (Figure 3E). At Tds
and Ms stage of anther development, the POD activity of male sterile line was lower than that of
maintainer line (Figure 3D). However, the CAT activity was higher and reached a significant different
level in the male sterile line (Figure 3E). Malondialdehyde (MDA) is an indicator of ROS in organisms,
and the results showed that the MDA content in the male sterile line was higher than that in the
maintainer line during all three anthers stages (Figure 3F).

2.4. Identification of Differentially Expressed Genes (DEGs)

In this research, a total of 18 Gossypium hirsutum samples (three biological replications, three anther
stages, two lines C2P5A and C2P5B) were sequenced using the Illumina HiSeq platform. A total of
178,166 transcripts were assembled, including 74,292 novel transcripts and 103,874 known transcripts.
The number of total genes and new transcripts per sample were presented in Table 1. Clean reads
(77743) were aligned to the reference sequence with Bowtie2 [67], and then the expression levels of genes
and transcripts were calculated by RNA-Seq by Expectation Maximization (RSEM) [68] (Supplementary
Table S1). Fragments per kilobase of transcripts per million mapped reads (FPKM) is the standard
method to calculate gene expression levels by RSEM. Transcripts that were not entirely annotated to
cotton were removed [69]. In this study, analysis of the difference between groups was conducted
using the software DEGseq [70]. According to the threshold values: [logyRatio| > 2, readnum >3, p <
0.001 and the criteria of FDR < 0.01 (Supplementary Table S2a). Overall, 788, 969, and 1091 differentially
expressed genes (DEGs) were identified at the three stages (Pms, Tds, Ms), respectively, and 197 genes
were shared among the three stages. A total of 2013 DEGs were identified (Figure 4A,B, Supplementary
Table S2a—e). Analysis by log;Ratio found that the percentage of DEGs were mainly distributed from
2 to 3 and from -2 to —3 during Pms and Tds, and during Ms the percentage of DEGs was distributed
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widely (Figure 4C). The results showed that the male sterility had an effect on transcriptional changes
in the anthers of C2P5A. At different stages of anther development, DEGs were up or down-regulated
compared to C2P5B, indicating that a minimum number of DEGs occurred at the Pms stage of anther
development rather than at the Tds and Ms stage of anther development. At Pms and Tds stage of
anther development, more DEGs were found to be down-regulated than up-regulated. At Ms stage
of anther development, almost an equal number of DEGs were up-regulated and down-regulated
(Figure 4B). This may suggest that at Pms and Tds stage of anther development, the DEGs contain
critical information related to male sterility.
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Figure 4. Analysis of DEGs in the male sterile line C2P5A compared to those of the maintainer line
C2P5B from Pms to Ms stage of anther development. (A) Venn diagrams showing all DEGs shared
among the three stages. (B) Number of DEGs that were up or down-regulated in the three development
stages. (C) The distribution of the log;Ratio of DEGs in the C2P5A compaired to the C2P5B, Pms,
Pollen mother cell stage; Tds, Tetrad stage; Ms, Mononuclear stage.
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Table 1. Summary of tag numbers.

Raw Clean o o (%)of Total Total Gene Total Novel

Sample Data Data GC (%) Q300%) Mapped Number Isoforms Isoforms
MsPmsl 96339898 84112026  44.33 97.65 77.42 85012 126455 49311
MsPms2 96339060 84728466  44.43 97.84 75.51 83758 122693 48159
MsPms3 96340692 84822750  44.52 97.81 75.44 85170 125779 49293
MsTdsl 66418638 60016542  44.22 98.33 76.38 83808 122636 47699
MsTds2 96341884 84562392  43.57 97.68 77.36 86647 129005 50208
MsTds3 96340878 84830410 44 97.77 74.54 86626 126787 50096
MsMsl 70226770 62112146 45.21 98.35 78.11 82246 117948 45803
MsMs2 96340984 84269862 445 97.81 77.01 85808 124373 49192
MsMs3 75363530 68729552  44.43 98.45 79.47 85289 123996 48513
MPmsl 78357630 71140510  43.98 98.42 77.1 84009 123651 49187
MPms2 93592588 83300884  43.81 97.97 76.95 84628 124284 49724
MPms3 94122576 81326894  44.24 97.83 73.56 84969 124580 49711
MTds1 93071774 84922682 43.79 98.38 78.87 84527 124186 49781
MTds2 79502370 72818484  43.85 98.23 80.11 83170 121809 48480
MTds3 71210292 64700084  43.83 98.33 79.25 82748 120584 48031
MMs1 96340778 84992800  44.36 98.03 75.37 84192 124176 48798
MMs2 96340324 84734142  43.65 97.83 77.69 84433 124979 49064
MMs3 74569750 67998900 43.6 98.23 75.57 82250 120841 47466

MS, male sterile line C2P5A; M, maintainer line C2P5B; 1, 2, 3 represent the biological duplications; Pms, pollen
mother cell stage; Tds, tetrad stage; Ms, mononuclear stage.

2.5. Gene Ontology Annotation and Pathway Enrichment Analysis of DEGs

The results of gene ontology (GO) annotation and function enrichment of 2013 DEGs were
distributed over 41 GO terms (Figure 5, Supplementary Table S3a). Molecular function, binding,
and catalytic activity were related to the highest DEG number, followed by transporter activity.
These results suggest that anther development in CMS may be associated with different genes.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was used to identify
major biochemical and signal transduction pathways where the DEGs participated. In this experiment,
pathway enrichment analysis showed mainly enrichment in 20 pathway categories including 125 KEGG
pathways (Figure 6, Supplementary Table S3b). Global and overview maps, carbohydrate metabolism,
folding, amino acid metabolism, sorting and degradation were the four most significant pathways,
followed by transport and catabolism, signal transduction, metabolism of cofactors and vitamins,
and energy metabolism. These results indicated that multiple complex metabolic pathways were
involved in the anther development of cotton.
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Figure 5. GO function enrichment of DEGs between the C2P5A and the C2P5B from the Pms to Ms
stage of anther development. Pms, pollen mother cell stage; Tds, tetrad stage; Ms, mononuclear stage.
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Figure 6. KEGG pathway enrichment analysis of 2,013 DEGs.

2.6. Correlation Network Analysis with WGCNA

The weighted correlation network (WGCNA) is an alternative tool to explore target genes at
a network-level, instead of individual genes [15,71,72]. In WGCNA, a module refers to a highly
interconnected gene cluster, and within the same cluster the correlation coefficient is higher in the same
tissue. To identify genes associated with CMS, seven modules were identified from the transcriptome
data (Figure 7A).
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Figure 7. WGCNA analysis of CMSrelated genes. (A) Hierarchical clustering tree showing co-expression
modules. In the tree, each leaf represents one gene. The major tree branches constitute seven modules,
labeled by different colors. (B) Module-trait relationship. High correlation between a specific module
and the sample is shown in dark red or dark blue. M, maintainer line C2P5B; CMS, cytoplasmic male
sterile line C2P5A.

Different samples were correlated with seven distinct modules, module ‘turquoise’ (r=1,p =9 X
10718), module "blue’ (r = 0.84, p = 1 x 107°), and module "green’ (r = 0.8, p = 8 x 107°) were highly
correlated with the CMS line (Figure 7B).

The ‘turquoise” module contained 3670 genes that were mainly related to genetic information
processing, carbohydrate metabolism, amino acid metabolism, and energy metabolism (Supplementary
Table S4a). The ‘blue” module contained 1415 genes that were mainly involved in protein folding,
sorting and degradation, amino acid metabolism, glycolysis/gluconeogenesis, peroxisomes, pyruvate
metabolism, and fatty acid degradation (Supplementary Table S4b). The 359 genes in the 'green’ module
were connected with metabolism, energy metabolism, and oxidative phosphorylation (Supplementary
Table S4c).
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To further study the molecular mechanism of CMS, the unigenes of the three modules were
analyzed by GO enrichment and KEGG pathway. In GO analysis, the unigenes were mainly enriched
in metabolic process (GO: 0030163), cellular process (GO: 0009765), cell (GO: 0005737), catalytic
activity (GO: 0008171), and binding (GO: 0008270) (Supplementary Figure S1). In KEGG pathway
analysis, the "turquoise” and ‘blue’ modules were similar and mainly involved in translation (ko03010),
carbohydrate metabolism (ko01200), folding, sorting, and degradation (ko04141), signal transduction
(ko04075), and amino acid metabolism (ko01230) (Supplementary Figures S2 and S3). Genes in the
'green’ module were mainly related to energy metabolism (ko00910), carbon metabolism (ko01200),
translation (ko03010), lipid metabolism (ko00071), and plant hormone signal transduction (ko040750)
(Supplementary Figure S4).

2.7. Major Pathways and Genes Associated with CMS

It was found that numerous DEGs were involved in the metabolic pathways of male sterility
in cotton C2P5A. Carbohydrate metabolism provides energy for anther development, four DEGs
were involved in pentose and glucuronate interconversions (ko00040); 67 DEGs in starch and sucrose
metabolism (ko00500); 42 DEGs in galactose metabolism (ko00052); 32 DEGs in fatty acid biosynthesis
and metabolism (ko00061, ko01212); 17 DEGs in ascorbate and aldarate metabolism (ko00053); and
28 DEGs in glutathione metabolism (ko00480) (Supplementary Table S5a—f).

A number of genes were associated with ROS detoxification. We identified 18 peroxisome (ko04146)
genes encoding POD (peroxidase), CAT (catalase), and XOT (alternative oxidase) (Supplement Table
S6a). In addition, nine aldehyde dehydrogenase family (ALDH) DEGs were identified (Supplement
Table S6b). Of these genes, Ghir_A12G015390.1 was down-regulated in three developmental stages
(Figure 8A). Cytochrome ¢ oxidase subunit VI mutations are associated with the male sterility of
certain plants, we identified three associated DEGs (Supplement Table Sé6c). Ghir_D04G009060.1
encoding cytochrome c oxidase subunit VI was down-regulated at Pms and Tds stage of anther
development, then up-regulated at Ms stage (Figure 8B). We identified 13 DEGs which encoded
cytochrome P450 (Supplement Table S6d). The expression of Ghir_A07G012860.1 was up-regulated at
three different stages of the C2P5A anther development (Figure 8C). We identified seven DEGs that
encoded acyl-CoA synthetase (ACS1) (Supplement Table S6e) and the expression of Ghir_A07G013740.1
was down-regulated at three different stages of the C2P5A anther development (Figure 8D).
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Figure 8. Expression patterns of DEGs in anther development. (A), (B), (C) and (D) The ROS
detoxification related genes. (E) and (F) The tapetum development genes. PMs, pollen mother cell stage;
Tds, tetrad stage; Ms, mononuclear stage. C2P5A, cytoplasmic male sterile line; C2P5B, maintainer line.
The black columns indicate the male sterile line C2P5A, and the white columns indicate the maintainer
line C2P5B. The error bars represent SD (Student’s t-test), *** p < 0.001, * p < 0.05, and absolute value of
logyRatio > 2, p =0in (C), p = 0in (E), p = 8.57921E-05 in (F), three biological replicates were performed.
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Several genes associated with tapetum development were identified in the CMS line C2P5A.
Two genes encoded the Jojoba acyl-CoA reductase-related male sterility protein (Ghir_A08G000910.1,
Ghir_D09G013360.1). We identified nine up-regulated genes that encoded basic helix-loop-helix ((HLH)
DNA-binding family proteins (Supplement Table S6f). Ghir_D08G011870.1 was up-regulated at three
stages of C2P5A anther development (Figure 8E), the abnormal expression of these genes may be
responsible for the male sterile line C2P5A. We identified 55 genes that were MYB domain proteins
that regulate tapetum development (supplement Table S6g). Ghir_A03G007860.1 was up-regulated at
three stages of C2P5A anther development (Figure 8F).

2.8. Validation of DEGs by Quantitative Reverse-Transcription PCR (qRT-PCR)

qRT-PCR was used to verify the expression levels of DEGs identified. We identified seven
genes associated with fertility at three different stages of anther development, choline/ethanolamine
kinase (Ghir_A10G019450.1), ALDH involved in the glyoxylate cycle (Ghir_A12G015390.1),
cytochrome ¢ oxidase subunit VI (Ghir_D04G009060.1), cytochrome P450 (Ghir_A07G012860.1),
ACS1(Ghir_A07G013740.1), and two transcription factors involved in tapetal development
(Ghir_D08G011870.1, Ghir_A03G007860.1) (Table 2). Each gene underwent three biological replicates
and each biological replicates was three times. Pearson’s correlation was used to evaluate the qRT-PCR
and RNA-sequencing data. Overall, the expression levels of the seven DEGs were consistent with
RNA-sequencing data (Supplementary Figure S5A; correlation coefficient = 0.68). The coefficients for
Pms, Tds and Ms stage of anther development were 0.74, 0.83, 0.54, respectively (Supplementary Figure
S5B-D). The results showed that our RNA-seq data were reliable and conducive to the identification of
DEGs in anther development.

Table 2. gRT-PCR confirmation of DEG expression profiles.

. . Pms(Fold Change) Tds(Fold Change) Ms(Fold Change)
Gene ID Protein Identity
qRT-PCR RNA-seq qRT-PCR RNA-seq qRT-PCR RNA-seq

Ghir_A10G019450.1  Cell wall/membrane/envelope biogenesis -5.41 -2.68 4.51 3.15 3.47 2.37
Ghir_A07G013740.1 Long chain acyl-CoA synthetase -1.59 -2.56 -3.52 -2.64 -0.16 —2.88
Ghir_A12G015390.1 Aldehyde dehydrogenase family -3.88 -6.73 —-6.10 -9.37 -1.05 —6.86
Ghir_D08G011870.1 bHLH-MYC transcription factors 2.87 2.13 2.00 2.16 4.67 2.52
Ghir_A07G012860.1 Cytochrome P450 0.98 2.12 0.23 2.50 0.98 2.44
Ghir_D04G009060.1 Cytochrome oxidase ¢ subunit VIb —4.53 -3.49 -0.29 -2.37 1.87 3.11
Ghir_A03G007860.1 Myb-like DNA-binding domain 1.61 2.56 3.70 223 5.73 219

Fold change refers to the expression in the male sterile line C2P5A when compared to the maintainer line C2P5B.
A negative and positive value refers to down- and up-regulation, respectively in the male sterile line C2P5A.

3. Discussion

The sequencing of several polyploid cotton plants has been completed, promoting the development
of the cotton genome [69,73,74]. With these reference sequences, it was more convenient to use
high-throughput sequencing technology to explore the molecular mechanism of CMS. RNA-sequencing
techniques were used in cotton CMS-D8, CMS line H276A, CMS line zhong41A, and GMS line
1355A [25,27,61,75]. Except for the CMS line zhong41A, the selected samples are a mixture of anthers,
ovaries and stigmas [27]. We selected samples similar to those in the CMS line zhong41A; flower buds
of coincident length were selected, sepals and petals were peeled off, pure anthers were collected,
and stigmas and ovaries were discarded. To obtain accurate and repeatable RNA-sequencing data,
three biological replicates for each sample were used, and a high correlation coefficient (0.99-1)
between replicates per sample were obtained, indicating sequencing results were credible and that the
consistency of anthers collection was maintained.

3.1. The Crucial Period of Abortion in the CMS Line C2P5A

Normal development of anthers is required for the breeding and reproduction of flowering plants.
Male sterility is a common phenomenon and often used to produce seeds by heterosis. It has been
reported that flowering plants abort at different periods. In the photosensitive male sterility in cotton,
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there is no difference between the mutant and the wild type of anthers in pollen mother cells and
tetrad stages. The tapetum of the mutant plant is degraded at the microspore stage, but the released
microspore is empty and shriveled, so the abortion period of the photosensitive male sterile mutant
occurs at the microspore stage [76]. In the GMS 1355A line, anther abortion occurs during the release
of microspores (stage 8), microspores are shrunken and the exine lacks spines [25]. In CMS H267A,
zhong41A male sterile lines, the pollen mother cell is gradually dissolved at the tetrad stage [27,75].
In their study, Rao and colleagues studied 36 male sterile lines from 14 cytoplasmic sources, but six
without cytological material on male sterility. The results showed that in dicotyledonous plants, 27%
of abortions occurred at the early stage of meiosis, 58% at the tetrad stage, and 15% at the microspore
development stage [77].

In this research, C2P5A anthers do not form tetrads in the tetrad period, indicating that abortion
may occur at the tetrad stage. According to previous reports, this period of abortion is called non-pollen
male sterility [78], which is appropriate for studying the molecular mechanism of CMS.

3.2. Major Genes Regulate Anther Development in Cotton

Anther development is regulated by numerous genes, approximately 3500 genes are explicitly
expressed in Arabidopsis anthers [79]. In the cotton (G. hirsutum) 21A GMS line and its maintainer line,
1742 genes were found to have differential expression [22]. 2446 DEGs were identified in the anthers of
1355AB line [25]. And a comparison of H276A and H276B anthers yielded 3603 DEGs [75]. In this study,
we analyzed the transcript profiles of the cotton CMS line C2P5A and the maintainer line C2P5B. A total of
2013 genes were found to have differential expression by DEGseq. GO annotation and KEGG enriched
pathway analysis showed that male sterility resulted in the differential expression of many genes.

CMS is associated with recombinant proteins encoded by mitochondria [58,80-82].
Aerobic respiration takes place in the mitochondrion and provides energy for various activities
within the cell. The mitochondrion is the main source of ROS and thereby triggers or inhibits
apoptosis [27,48,83].

ROS homeostasis is crucial for normal anther development [27]. A subtle ROS concentration
is necessary for cell metabolism of various plant growth processes, such as root cell expansion and
abiotic stress [27,84,85]. However, when there is an over-accumulation of ROS, which cannot be
rapidly removed from cells, a ROS burst occurs and induces cell apoptosis and anther abortion [58,86].
MDA is an indicator of ROS in organisms and results from the enhancement of membrane lipid
peroxidation, which damages the cell membrane and disturbs physiological metabolism inside the
cell [87]. In the present study, MDA levels in C2P5A male sterile line were higher than those of the
C2P5B maintainer line (Figure 3F). This proved that the C2P5A male sterile line accumulate excessive
ROS during anther development. The results in cotton are consistent with U87B1-706A (wheat) [88]
and 9704A (pepper) [87].

To better resist oxidative stress, plants form an efficient antioxidant defense system in the cell and
reduce the impact of ROS on a variety of biological molecules, thus maintaining homeostasis [89]. SOD,
POD, and CAT are necessary antioxidant enzymes that scavenge excess ROS [90]. In our study, at Pms
stage of anther development and before anther abortion in C2P5A, a maximum increase of MDA content
indicated excessive ROS accumulation, as the antioxidant defense system is activated, antioxidant
POD and CAT levels increased (Figure 3D,E). Studies have shown that excessive accumulation of ROS
may induce an antagonism oxidation system in biological organisms [58]. According to the enzymatic
mechanism of ROS scavenging, we identified 18 peroxisome genes encoding POD, CAT, and XOT,
at Pms stage of anther development. Seven genes are up-regulated and five down-regulated when
ROS levels are highest.

The ALDH family plays an important role in mitochondria, which down-regulates and causes the
cytotoxicity of excess acetaldehyde and ethanol in cells, contributes to ROS bursts and inhibits progress
of the tricarboxylic acid cycle [91,92]. Nine genes encoding ALDHs were identified (Supplementary
Table S6b). In previous study, cytochrome c oxidase subunit VI mutations were associated with male
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sterility in certain plants [75], for instance, in Beet G-CMS, cox2 expression decreased cytochrome c
oxidase activity [93], and in the pepper CMS line, the cox2 gene was inserted into the orf456 chimeric
gene [94].

Cytochrome c release and excessive ROS function are mostly retrograde signals that trigger plant
PCD and lead to male sterility [95]. COX11 is the nuclear coding assembly factor of cytochrome c
oxidase and is highly conserved in eukaryotes [96], for example, yeast COX11 (ScCOX11) [97] and
rice COX11 (OsCOX11) [52]. In our research, three genes encoding cytochrome oxidase have been
identified and C2P5A male sterility may be associated with them.

Cytochrome P450 is an oxidase involved in many biosynthetic pathways. In tapetum, fatty
acid-CoA enters the endoplasmic reticulum and under the catalysis of cytochrome P450 family proteins
performed hydroxylation. This process is essential for the formation of both cuticle and exine [98].
In this study, we identified 13 DEGs that encoded cytochrome P450. The expression of these genes in
male sterile line was abnormal compared with the maintainer line, which may be related to pollen
abortion in C2P5A.

Transcription factors are associated with anther development. The tapetum is an important
structure for anther development. The tapetum and its function are regulated by numerous genes
and transcription factors [99]. Basic helix-loop-helix (bHLH) domain transcription factors are mainly
involved in the regulation of plant growth and development [100]. Most reported bHLH transcription
factors related to tapetum cell and microspore development, abnormal function of bHLH transcription
factors cause male sterility mutations, which often have similar characteristics and show precocious or
delayed degradation of tapetum cells, resulting in blocked pollen formation and abortion. In Arabidopsis,
the mutation that causes aborted microspores, DYT1, leads to the abnormal development of tapetum
and premature degradation of microspores [40,101]. AtbHLH10, AtbHLH89, and AtbHLH91 interact
with each other, and double or triple mutations show male sterility [47]. JAM1, JAM2, and JAM3, three
bHLH transcription factors involved in jasmonic acid signal transduction, play a negative regulatory
role of JA-mediated male sterility [102]. In rice, UDT1, TDR, ETA1, and bHLH142/TIP2 encode bHLH
transcription factors. The UDT1 mutant has highly vacuolated tapetum cells during meiosis, the pollen
mother cells do not divide into microspores, and there is no gradual degradation [103]. TDR, ETA1,
and bHLH142/TIP2 regulate delayed tapetal degradation and aborted pollen formation [42,44,50,104].
OsbHLH138 regulates thermosensitive GMS in rice [105]. In cotton, Yang and colleagues identified
four bHLH DEGs and two MYB130 DEGs that may be involved in abnormal tapetum development
in zhong41A [27]. In this research, we identified nine up-regulated genes that coded for bHLH
DNA-binding family proteins, the up-regulated expression of these genes may be responsible for male
sterility of C2P5A.

MYB is an important transcription factor family that regulates anther development.
AtMYB103 regulates the development of the tapetum and its abnormal expression causes male
sterility [106]. AtMYB33 and AtMYB65 regulate the development of tapetum, and the double mutant has
excessive vacuolation, swelling, and hypertrophy in tapetum cells [107]. TDF1 encodes the R2R3 MYB
transcription factor mostly involved in transcriptional regulation of tapetum cells and pollen mother
cells [108]. AtMYB21 mutant or overexpression of AtMYB24 exhibit shorter anther filaments, delayed or
no anther dehiscence, and fewer viable pollen grains [109]. Similarly, the GhMYB24 transcription factor
is specifically expressed in pollen and involved in the regulation of late anther/pollen development [54].
In this study, 55 MYB transcription factors were identified. Their abnormal expression in male sterile
line compared with maintainer line may be the cause of male sterility.

ACS1 encodes acetyl-coenzyme A. In previous studies, it has been reported that ACS proteins
may be localized in the outer membrane of pea chloroplasts and maturing safflower seeds, and its
activity is associated with fatty acids and microsomes [110,111]. It was found that ACS proteins are
essential for normal cuticle development and are involved in peroxisomal and fatty acid (3-oxidation
in Arabidopsis [22,112-114]. However, GHACS1 gene plays an important role in the formation of
microspores in the early anther development of cotton and is highly expressed in sporogenous cells,
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pollen mother cells, microspores, and tapetum cells. Inhibition of GHACS1 seriously affected the
development of tapetum cells and the formation of normal microspores [53]. In cotton anthers, the genes
were involved in fatty acid metabolism and peroxisome. Abnormal expression was identified in two
genes in the male sterile line, which encoded Jojoba acyl-CoA reductase-related male sterility protein.

3.3. Major Metabolic Pathways Regulating Anther Development in Cotton

Carbohydrate metabolism, which provides carbon sources and energy for plant growth and
development, is the most basic pathway of plant metabolism [115,116]. Carbohydrates provide energy
and nutrients for anther development. The period of anther and pollen development are intensively
energy-demanding [81,117]. Perturbed carbohydrate metabolism can significantly damage pollen
development and cause male sterility [118,119].

It was recently reported that glycolysis was activated in the anthers of 1355A, which caused a
decrease of soluble sugars, such as fructose and glucose, and accumulation of acetyl-CoA, which led to
significant increases of c14:0 and c18:1 free fatty acids. The genes involved in fatty acid synthesis are
crucial to regulate normal pollen hydration and plant fertility. High rates of glucose metabolism may
promote fatty acid synthesis to enable anther growth [120].

Previous studies have shown that 1165 genes associated with flavonoid and ascorbate-glutathione
cycle, starch and sucrose metabolism are important during anther development in cotton [19].
Using cotton anthers from wild type and GMS lines analyzed by digital gene expression (DGE),
identified many of the essential genes required for cotton anther development. The genes were
mainly associated with sucrose and starch metabolism, the pentose phosphate pathway, glycolysis,
and flavonoid metabolism [20].

Some researchers identified 1742 significant DEGs between anthers of GMS line (B) and its
maintainer line (K) in cotton plants by the DGE approach showed that sugar metabolism such as the
interconversion of pentose and glucuronate, starch and sucrose metabolism, galactose metabolism
were required for the development of cotton anthers [22].

In the present study, we identified 2013 genes that were differentially expressed between the
male sterile line C2P5A and the maintainer line C2P5B using a DEG seq approach. These DEGs were
analyzed by GO enrichment and KEGG pathways and were found to be associated with starch and
sucrose metabolism, galactose metabolism, ascorbate and aldarate metabolism, glutathione metabolism,
and pyruvate metabolism, pentose and glucuronate interconversions, and fatty acid biosynthesis
and metabolism.

Proline interacts with carbohydrates to provide nutrients, promoting pollen development and
pollen tube elongation. Proline also accompanies the development of microspores [121].

Soluble proteins contain enzymes involved in plant growth and development which play crucial
roles in the development of anthers and microspores. However, soluble protein in the anther of male
sterile line were deficient, resulting in abnormal protein synthesis in the anther [122].

In our research, biochemical determination of soluble sugar and soluble protein content of the CMS
line C2P5A was lower than that of the maintainer line C2P5B at the three stages of anther development
(Figure 3A—C), which as well as, lack of energy and nutrition may lead to pollen abortion in C2P5A.

4. Materials and Methods

4.1. Plant Materials

The cotton (Gossypium hirsutum L.) plants C2P5A (CMS line) and C2P5B (maintainer line) used in
these experiments were cultivated in the experimental field in Henan Institute of Science and Technology,
Henan, China. 2018-2019, April 27 sowing, line spacing 1 meter, plant spacing 40 centimeter, field
watering was irrigated at the seedling stage, flowering stage and flower bud stage respectively.
Organic fertilizer and compound fertilizers were used as field base fertilizers. During anthesis, both
lines were identified according to flower apparatus morphology, the anther vigor with 2% TTC staining,
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and anther development stage with 1.5% (w/v) acetocarmine staining. Plant lines were photographed
under a microscope and SEM (Epson Expression 12000XL, Nagoya, Japan).

Flower buds had lengths of 3-4 mm (pollen mother cell stage), 4.1-5.0 mm (tetrad stage), 5.1-6.0 mm
(mononuclear stage), and flower bud length (length nectary to bud apex, mm). Anthers were collected
from three different periods of the CMS line and maintainer line. Sepals and petals were peeled off,
pure anthers were collected, and stigmas and ovaries were discarded. The anthers were carefully and
quickly isolated and frozen in liquid nitrogen and stored at —80 °C until use.

4.2. Histological Analysis

To identify the anther abortion period of the male sterile line C2P5A, flower buds of different
periods were collected and fixed in FAA [10% formalin, 5% acetic acid, and 50% ethanol (v/v)].

Samples were sectioned in paraffin and fixed, washed, dyed-saffron, dehydrated, hyalinized,
infiltrated, embedded, sectioned, exhibited, re-dyed-solid green, and sealed according to a previous
report [75].

4.3. Measurement of Physiological Indices

Buds were collected from three different periods of the CMS line C2P5A and the maintainer line
C2P5B, and sepals and petals were removed. Soluble sugar was measured by anthrone [123], pure
glucose was used as standard; Soluble protein was measured according to Lowry et al. [124], bovine
serum albumin (BSA) was used as standard. Determination of MDA content was by thiobarbituric
acid-reactive-substances (TBARS) assay [125], antioxidative enzymes (POD, CAT) were measured
using quantificationally by ELISA instrument (TECAN, Tech Spark 10M, Zurich, Switzerland) [126].
There were three biological replicates per sample.

4.4. Screening of DEGs and Co-expression Network Analysis of Unigenes

Total RNA was isolated from harvested anthers using an RNAprep pure PlantKit (Tiangen,
Beijing, China); with three biological replicates per sample. The RNA concentration was assessed by
NanoDrop (Waltham, MA, USA). The RNA quality was tested using an Agilent 2100 instrument (Santa
Clara, CA, USA) with 285/18S rRNA ratio > 1.6 (Agilent 2100) per sample for library construction
on the BGISEQ-500 platform (BGI, Wuhan, China). SOAP [127], the short oligonucleotide alignment
tool, matched raw reads to the ribosome database, a maximum of five mismatches were allowed.
Reads with low-quality rRNA, containing adapters, joint contamination, and high levels of unknown
bases (“N”) were filtered to produce clean reads. Clean reads were matched to the reference genome
(http://cotton.hzau.edu.cn/EN/download.php) and Cotton Gene database (https://www.cottongen.org/)
by HISAT [69,128]. The transcriptional assembly was performed by StringTie [129] and Bowtie2 [67].
FPKM was used to calculate gene expression levels by RSEM [68]. DEGs were identified using
DEGseq [70] in accordance with the threshold values: |log,Ratio| > 2, readnum >3, p < 0.001 and the
criteria of FDR < 0.01. GO annotation and KEGG pathway analyses were performed for the DEGs.

The correlation network of the WGCNA R package is often used for correlation analysis between
highly correlated DEG modules and samples to find modules of high specific expression in samples [130].
Module Eigengenes (ME) values were used to estimate associations between modules and the
CMS phenotype.

4.5. RT-PCR Analysis for Gene Expression

Total RNA was extracted using an RNA prep pure PlantKit (Aidlab Biotech, Beijing, China),
according to the manufacturer’s instructions. RNA was reverse transcribed using a TransScript®
One-Step gDNA Removal kit and a cDNA Synthesis SuperMix kit (TransGen, Beijing, China).
Quantification PCR (qRT-PCR) was used to confirm the RNA-seq data. Genes related to C2P5A male
sterility of the transcriptome were selected. The specific primers for RI-PCR were designed using Primer
Premier 6.0 software (http://www.premierbiosoft.com/crm/jsp/com/pbi/crm/clientside/ProductList.jsp)
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and synthesized by Sangon Biotech (Shanghai, China) (Supplementary Table S7a,b). The reactions for
RT-PCR were performed using cDNA as a template, using a qPCR SuperMix Kit (TransGen, Beijing,
China). Each reaction was performed in three biological and three technical replicates on a QuantStudio
6 Flex instrument (Applied Biosystems, Foster city, CA, United States). RT-PCR analysis was performed
according to the protocol of the TransStart® Top Green qPCR SuperMix with Two-Step kit (TransGen,
Beijing, China).

The PCR circulation conditions included denaturation at 95 °C for 30 s, followed by 45 cycles
of denaturation at 94 °C for 5 s, annealing and extension at 60 °C for 30 s. The melting curve was
determined for each sample. Relative expression was calculated for every sample using the cycle
threshold (Ct)2-2ACt method [131].

5. Conclusions

In this study, we compared the cytology, the physiological characteristics and the transcriptome of
the cotton CMS line C2P5A and its maintainer line C2P5B. Cytology and physiological characteristics
results indicated that pollen abortion in C2P5A occurred at the tetrad stage. The transcriptome results
revealed 2013 DEGs between C2P5A and C2P5B. Bioinformatic analyses showed that DEGs were
mainly related to encoding ROS detoxification enzymes, tapetum proteins or transcription factors,
vital metabolic pathways including starch and sucrose metabolism, galactose metabolism, ascorbate
and aldarate metabolism, glutathione metabolism, and pyruvate metabolism. This research results
provide a basic theory and molecular mechanism for CMS research and will accelerate research on
CMS in cotton.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/20/
5120/s1.
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Abbreviations

CMS Cytoplasmic male sterility

GMS Genic male sterility

MS Male sterility

DEG Differentially expressed genes

GO Gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
RSEM RNA-Seq by Expectation Maximization

RNA-seq RNA-sequencing
gRT-PCR  Quantitative Reverse-Transcription PCR

DGE Digital gene expression
WGCNA  Weighted correlation network
TTC Triphenyltetrazolium chloride
SEM Scanning electron microscopy
PCD Programmed cell death
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