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Autophagy is an evolutionarily conserved pathway in which cytoplasmic contents are

degradedand recycled. This study found that submicromolar concentrationsof urolithin

A, amajor polyphenolmetabolite, induced autophagy in SW620 colorectal cancer (CRC)

cells. Exposure to urolithin A also dose-dependently decreased cell proliferation,

delayed cell migration, and decreased matrix metalloproteinas-9 (MMP-9) activity. In

addition, inhibition of autophagy by Atg5-siRNA, caspases by Z-VAD-FMK suppressed

urolithin A-stimulated cell death and anti-metastatic effects. Micromolar urolithin A

concentrations inducedbothautophagy and apoptosis.UrolithinA suppressed cell cycle

progression and inhibited DNA synthesis. These results suggest that dietary

consumption of urolithin A could induce autophagy and inhibit human CRC cell

metastasis. Urolithinsmay thus contribute to CRC treatment and offer an alternative or

adjunct chemotherapeutic agent to combat this disease.

K E YWORD S

autophagy, colorectal cancer, matrix metallo proteinases, metastasis, urolithin A

1 | INTRODUCTION

Colorectal cancer (CRC) is the second most common gastrointestinal

cancer worldwide,1 and preventing tumor cell metastasis is

important for prolonging patient survival.2 In recent years, the

relationship between cancer and autophagy has been extensively

studied,3–7 and autophagy can promote or inhibit tumor metastasis

under different circumstance. Autophagy may exert an inhibitory

effect in early stage tumors, reducing invasion, and metastasis.

During later stages, autophagy promotes metastasis by supporting

cell survival following ECM detachment and preventing cell

dormancy upon ECM reattachment.8,9 Autophagy is already known

to play an important role in CRC progression.10 Another key step in

the process of metastasis is basement membrane and extracellular

matrix degradation.11 Matrix metalloproteinase (MMPs) upregula-

tion also promotes metastasis.12–14

Polyphenols provide a wide range of anti-carcinogenic health

benefits.15–22 However, polyphenol absorption is reportedly very low.

Urolithins are themajormetabolites of polyphenols in the gut.23–25We

isolated and purified urolithins from the intestinal metabolites of

pomegranate ellagitannins by high-speed counter-current chromatog-

raphy.26 Urolithins can be absorbed by multiple tissue types and can

suppress tumorigenesis,27 oxidation,28 inflammation,29–31 and micro-

bial32 activity in vitro. Urolithins are reported to have antiproliferative

effects on prostate,33,34 colon,35,36 bladder,37 breast,38 pancreatic,

epidermal, ovarian, and neuroblastoma cancers39 at a range of five and

500 µM. In vitro studies conducted in colon cancer cells are of great

relevance since it is in the GI tract where urolithins are produced and

can reach bioactive concentrations. However, the exact mechanisms

involved in urolithin activity are not yet fully elucidated. Of note,

whether urolithins suppress cancer growth by regulating autophagy is

still unknown.
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In this study, we used SW620CRC cells to test the hypothesis that

urolithin A promotes autophagy. Our findings suggest that submicro-

molar urolithin A induces autophagy, thereby inhibiting SW620 cell

survival and metastasis. Hence, urolithin A therapy may be efficacious

against CRC in patients.

2 | MATERIALS AND METHODS

2.1 | Cell culture and treatment

Human SW620 cells were maintained in 75 cm2 Falcon flasks in L-15

medium supplemented with 25mM glucose, 10% heat-inactivated

(56°C) fetal bovine serum (FBS), 100µg/mL streptomycin, 100U/mL

penicillin, and 1%non-essential amino acids (InvitrogenCorp., France) in

a humidified atmosphere at 37°C with 5% CO2. Cells were subcultured

after trypsinization (0.5% trypsin/2.6mMEDTA). For experiments, cells

(1 × 106) were seeded in 10 cm culture dishes, with medium replace-

ment every 48 h. At 24 h, SW620 cells were exposed to urolithin A

dissolved in dimethylsulfoxide (DMSO, Sigma-Aldrich, Germany). The

final DMSO concentration in L-15 culturemedium did not exceed 0.1%.

2.2 | Chamber migration assay

Transwell polycarbonate membrane inserts (8 µm poresize, 10mm

diameter; Corning Costar, MA) were utilized for chamber migration

assays. SW620 cells with or without urolithin A were suspended in

serum-free medium (5 × 105 cells/mL) and added to the upper

compartment, while L-15 medium containing 10% FBS was added

to the lower compartment. After 4 h, non-invaded cells on the upper

side of the Transwell polycarbonate membrane were removed with a

cotton tip applicator. Invaded cells on the bottom surface of the

membrane were fixed with methanol and stained with 0.5% crystal

violet (Beyotime Institute of Biotechnology, Shanghai, China).

2.3 | Measurement of MMP-9 activation

MMP-9 activationwas determined by colorimetric assay (Sigma-Aldrich for

MMP-9, abcam, ab100610) according to the manufacturer's instructions.

Briefly, SW620 cells were washed with ice-cold PBS and lysed; proteins

were obtained and stored at −80°C. Twenty µL of cell lysate was added to

buffer for 100µL total reaction volume. Supernatants were incubated at

roomtemperature.ReleasedMMPconcentrationswerecalculatedfromthe

absorbance values at 405nm and compared to protein concentrations as

determinedusing theBradfordmethod.MMP-9activitywas shownas fold-

increase compared to untreated SW620 cells.

2.4 | Western blot

SW620 cells were incubated with or without 1.5 µM urolithin A,

harvested, washed with ice-cold PBS and lysed for 30min. Protein

concentrations were determined using a BCA assay kit and 50µg of

protein per sample was used forWestern blot analysis with the following

antibodies: LC3-I/II (1:250; Merck-Millipore Transduction Laboratories,

Billerica, MA) and anti-mouse HRP-conjugated IgG secondary antibody

(1:2000). All samples were normalized to β-actin.

2.5 | Flow cytometry

SW620 cells were labeled with propidium iodide (PI) for cell cycle

analysis. Cells were harvested by trypsinization after 24, 48, or 72 h

treatment with urolithin A and were suspended in PBS (0.1M, pH 7.4).

Cells were fixed in 70% ethanol for at least 30min at −20°C. Before

analysis, cells were washed twice in cold PBS and re-suspended in

200 µL PBS (0.25mg/mL RNase A, 0.1 mg/mL PI). After incubation in

darkness for 30min at 37°C, samples were analyzed via flow

cytometry and histograms were calculated by Cell Quest software

(FACScan, BD Biosciences, San Jose, CA).

2.6 | Detection of apoptosis

Apoptosis was evaluated using a flow cytometer with Annexin V-FITC

and PI staining. Briefly, SW620 cells were cultivated in six-well plates.

At the end of the incubation, cells were suspended in PBS three times,

then resuspended in 195 µL binding buffer containing 5 µL Annexin

V-FITC and incubated for 10min at room temperature. Cells were

centrifuged at 1000 g for 5 min and resuspended in 190 µL of binding

buffer containing 10 µL of PI working solution. After filtration, samples

were analyzed on a flow cytometer FACSVantage flow cytometer. At

least 10 000 events were analyzed.

2.7 | Measurement of autophagy

Autophagy was monitored using the Cyto-ID TM Autophagy Detec-

tion Kit (Enzo Life Sciences, France, ENZ-51031-K200) following the

manufacturer's instructions. Briefly, for flow cytometric analysis,

SW620 cells were harvested, washed with Assay Buffer, and stained

with Cyto-ID TM Green Detection Reagent at room temperature for

30min in the dark. SW620 cell suspensions were then immediately

analyzed by flow cytometry using Cell Quest software (FACScan, BD

Bioscienc

2.8 | Transmission electron microscopy

SW620 cells were first fixed at 4°C in solution containing 2%

cacodylate-buffered (0.1 M; pH 7.2) glutaraldehyde with 0.1 M

sucrose, then fixed in 0.15M cacodylate buffer containing 1%

osmium tetroxide at room temperature, stained with 50% ethanol

containing 2% uranyl acetate, dehydrated in a gradient of ethanol,

and embedded in Epon. Thin sections were cut with a diamond knife,

stained with lead citrate, and viewed with a 1200-EX electron

microscope.

2.9 | Statistical analysis

All experiments were repeated at least three times. Data are reported

as means ± SD. Statistical differences between groups were analyzed

using the Student's t-test or the Student-Neuman-Keuls multiple

comparison test. Differences were considered statistically significant

at P < 0.05.

194 | ZHAO ET AL.



3 | RESULTS

3.1 | Urolithin A inhibits SW620 cell proliferation
and metastasis

To examine the effects of urolithin A on SW620 colon cancer cell

proliferation, exponentially growing cells were exposed to various

concentrations of urolithin A for 24 h, and proliferation was measured

viaMTT assay. A dose-dependent proliferation decreasewas observed

in treated cells (Figure 1A, B). Exposure to high urolithin A

concentrations (≥15 µM) produced the strongest anti-proliferative

effects, probably by promoting cell death.

We next examined the effects of urolithin A on SW620 cell

mobility via the chamber migration assay. The number of cells that

migrated across the wound decreased by 35.2% (n = 3, P < 0.01)

following treatment with 0.05 µM urolithin A for 48 h (Figure 1C),

and cell migration was delayed up to 21.3% (n = 3, P < 0.05) (Figure

1D).

MMP-9, which degrades the basement membrane and extracellu-

lar matrix, is enhanced in various malignant tumors and promotes

invasion and metastasis. Treatment of SW620 cells with urolithin A

(0.05 µM) strongly decreased MMP-9 activity in these cells (reduced

by 29.8%, n = 3, P < 0.01) (Figure 1E).

3.2 | Submicromolar urolithin A triggers autophagy

Morphological features of autophagy in SW620 cells treated with

1.5-15 µM urolithin A were examined by TEM. Submicromolar

urolithin A concentrations resulted in the appearance of numerous

vacuoles (Figure 2A) containing organelles and cellular fragments,

indicating that they were autolysosomes (Figure 2Ab, c, e, f, h, i).

Urolithin A caused the redistribution of GFP-microtubule-associated

protein 1 light chain 3 (LC3) from a faint, diffused pattern to visible

cytoplasmic puncta fluorescence, suggesting that urolithin A

stimulates autophagic vacuolization (Figure 2B). These data demon-

strate that dietary submicromolar urolithin A triggers autophagy in

SW620 cells.

We then treated SW620 colon cancer cells with low (1.5 µM) and

high (30 µM) urolithin A doses. We observed that urolithin A induced

LC3 (GFP-LC3) accumulation in cells 24 h after treatment (Figures 2Bb,

c, f, g and 2C). Furthermore, submicromolar urolithin A treatment

FIGURE 1 Effect of urolithin A on cell proliferation, metastasis, and MMP-9 activity. SW620 cells were treated with 0 (a) 0.15 (b) 1.5 (c) or
15 (d) µM urolithin A for 24 h (A) and cell proliferation was measured using MTT assay (B). Photographs (×100 magnification) are
representative of three independent experiments. Cell monolayers were wounded using 200 µL pipette tips, treated with 0 (a) 0.05 (b) µM
urolithin A for 48 h and photographs were taken (×100 magnification) to measure cell migration (C). After treatment with 0 (a) 0.05 (b) µM
urolithin A for 48 h, cells were seeded above transwell chamber membranes. After 4 h, membrane bottoms were stained with crystal violet
and photographs were taken (×200 magnification) to assess cell invasion (D). MMP-9 activity was determined by MMP assay in cells treated
with 0.05 µM urolithin A for 48 h (E) *P < 0.05 represents significant difference from the control group
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FIGURE 2 Autophagy in SW620 cells treated with urolithin A. Electron microscopy of cross sections of controls (a,d,g) and 1.5 µM
(b, e, h) or 15 µM (c, f, i) urolithin A-treated cells (A). Representative autophagic vesicles (red triangle) and late autophagic
compartment containing electron dense cellular material (red star) are shown in treated cells. Immunocytochemical detection of LC3 in
urolithin A-treated cells via laser scanning confocal microscope (B). Representative photos of controls (a, e) and 1.5 µM (b, f), 15 µM
(c, g), or 30 µM (d, h) urolithin A-treated cells are shown (bar 500 µm). Results are representative of three independent experiments
(C). SW620 cells were exposed to the indicated urolithin A concentrations for 24 h and then analyzed by Western blotting for LC3-I
and LC3-II expression (D)
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stimulated LC3 expression in SW620 cells (Figure 2D). Urolithin

A-induced autophagy is not dose-dependent at micromolar concen-

trations; 15 µM urolithin A induces more autophagy than 1.5 µM,

however, 30 µM urolithin A induces less autophagy than 15 µM

(Figures 2Bd, h and 2C).

3.3 | Micromolar urolithin A induces both autophagy
and apoptosis

SW620 cells were stained with annexin V, an apoptosis marker.

Incubation with 30 µM urolithin A increased both apoptosis

(Annexin V-fluorescein isothiocyanate [FITC] positive) and necrosis

(PI positive) (Figures 3A and 3C). However, at concentrations ranging

from 1.5 to 15 uM, urolithin did not induce apoptosis. These results

suggest that micromolar urolithin A induces both autophagy and

apoptosis approximately 24 h after treatment.

3.4 | Urolithin A inhibits cell cycle progression in
SW620 cells

Cell cycle distribution profiles for urolithin A-exposed SW620 cells

were assessed via flow cytometry. Urolithin A treatment resulted in

the progressive accumulation of G2/M phase cells until 24 h

(Figures 3B and 3D). Thus, urolithin A deregulates cell cycle

progression and inhibits DNA synthesis in SW620 cells.

FIGURE 3 Effect of urolithin A on apoptosis and cell cycle progression. SW620 cells were incubated with 0 (a), 1.5 (b), 15 (c), or 30 (d) µM
urolithin A for 24 h, then stained with annexin-V FITC and PI. Apoptosis was analyzed using flow cytometry (A). Results shown are
representative of three independent experiments (C). *P < 0.05. Cells were treated with 0 (a), 1.5 (b), 15 (c) or 30 (d) µM urolithin A for 24 h,
then harvested, fixed with ethanol, and stained with propidium iodide. DNA contents were determined by flow cytometry for assessment of
the cell cycle distribution (B). Results shown are representative of three independent experiments (D). The time curve that 30 µM Urolithin A
induces apoptosis after the treatment (E)
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3.5 | Inhibition of autophagy, caspases, or MMPs
suppressed urolithin A-activated cell death and anti-
metastasis activity

Inhibition of autophagy in SW620 cells by 3-methyladenine (3-MA),

bafilomycin (BAF), chloroquine (CHL), and Atg5-siRNA treatment sup-

pressed submicromolar urolithin A-activated cell death andMMP inhibition

(Figure 4A–B). Inhibition of autophagy in SW620 cells by 3-methyladenine

(3-MA) treatment suppressed submicromolar urolithin A-activated metas-

tasis inhibition (Figure 4C). However, the effects of micromolar urolithin A

concentrations were unchanged by 3-MA treatment. Thus, autophagy

seems to play a critical role in the anticancer activity of urolithin A.

Similarly, inhibitionofcaspasesbyZ-VAD-FMKsuppressedmicromolar

urolithin A-activated cell death in SW620 cells (Figure 4D-F), but did not

affect submicromolarurolithinAactivity.Metastasis inhibitionbyurolithinA

was suppressed by Z-VAD-FMK treatment. Caspase-3 inhibition by

urolithin A was suppressed by Z-VAD-FMK treatment.

4 | DISCUSSION

Epidemiological studies suggest that consumption of plant-

derived foods correlates with reduced cancer mortality.40–42

The anticancer effects of polyphenols are reportedly caused by

FIGURE 4 Effect of autophagy, apoptosis inhibition on urolithin A-mediated cell proliferation and anti-metastasis activity. Cells were
pretreated with pharmacological autophagy inhibitors (Atg5 siRNA, 3-MA, bafilomycin, and chloroquine), then incubated with or without
urolithin A for 24 h. Cell proliferation was measured using MTT assay (A) and MMP-9 activity was determined by MMP assay (B). Cells were
pretreated without (a) or with (b) 0.5 mM 3-MA for 1 h, then incubated with 1.5 µM urolithin A for 48 h, cells were seeded above transwell
chamber membranes. After 4 h, membrane bottoms were stained with crystal violet and photographs were taken (×200 magnification) to
assess cell invasion (C). Cells were pretreated with 20 µM Z-VAD-FMK for 1 h, then incubated with or without urolithin A for 24 h. Cell
proliferation was measured using MTT assay (D) and MMP-9 activity was determined by MMP assay (E) and caspase-3 activity was
determined by caspase-3 assay (F) **P < 0.05 represents significant difference from the control group. #P < 0.05 represents significant
difference from the urolithin A treatment group. Data represent means ± S.D. for one experiment performed in triplicate
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apoptosis induction via cell survival pathways.43,44 Several

groups have shown that polyphenol-induced apoptosis is

correlated with increased caspase activity and decreased oxida-

tive stress.45–48 However, we found that submicromolar Urolithin

A concentrations did not cause apoptosis, but induced autophagy

in colon cancer SW620 cells. Higher concentrations (30 µM) did

induce apoptosis in these cells. Other studies reported that

urolithin A induced apoptosis in colon cancer HT-29 cells (at 25,

50, and 100 µM) and prostate cancer LNCaP cells (at 40 µM).49,50

Our studies suggested that the anticancer effects of urolithin A

may result, at least in part, from autophagy induction at both

lower and higher concentrations, and apoptosis at higher

concentrations. Of note, the urolithin A concentrations that

triggered autophagy were consistent with those found in the

intestine, showing that dietary polyphenols play important roles

in body functions.

Recently, studies showed that autophagy and MMP-9 were

correlated and autophagy may promote MMP-9 induction.51–53 In

the current study, we found that both autophagy and apoptosis were

induced in response to urolithin A treatment, but MMP-9 was

reduced. Autophagy plays a complex role in tumorigenesis; at early

stages of tumor formation, autophagy has been shown to be

oncosuppressive. However, autophagy seems to be required for the

progression of adenomas to carcinomas at later stages of disease.

Autophagy may be activated in various cancers in response to

treatment by polyphenols such as PGG and EGCG.54–55 Here we

demonstrated that dietary submicromolar urolithin A suppresses

SW620 cell proliferation and metastasis by promoting autophagic

cell death. Thus, autophagy could play an anti-survival and

potentially tumor suppressive role in colon cancer. Dietary

polyphenol-induced tumor cell autophagy might enhance mTOR

inhibitor activity to accelerate tumor cell killing.

In summary, we showed for the first time that treatment of colon

cancer SW620 cells with dietary submicromolar urolithin A can induce

autophagy and inhibit CRC cell growth and metastasis. Our in vitro

findings provide novel insights into understanding the anti-tumor

functions of dietary urolithin A in CRC.
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