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White matter fiber clustering aims to get insight about anatomical structures in order to generate atlases, perform clear visualiza-
tions, and compute statistics across subjects, all important and current neuroimaging problems. In this work, we present a diffusion
maps clustering method applied to diffusion MRI in order to segment complex white matter fiber bundles. It is well known that
diffusion tensor imaging (DTI) is restricted in complex fiber regions with crossings and this is why recent high-angular resolution
diffusion imaging (HARDI) such as Q-Ball imaging (QBI) has been introduced to overcome these limitations. QBI reconstructs
the diffusion orientation distribution function (ODF), a spherical function that has its maxima agreeing with the underlying fiber
populations. In this paper, we use a spherical harmonic ODF representation as input to the diffusion maps clustering method. We
first show the advantage of using diffusion maps clustering over classical methods such as N-Cuts and Laplacian eigenmaps. In
particular, our ODF diffusion maps requires a smaller number of hypothesis from the input data, reduces the number of artifacts
in the segmentation, and automatically exhibits the number of clusters segmenting the Q-Ball image by using an adaptive scale-
space parameter. We also show that our ODF diffusion maps clustering can reproduce published results using the diffusion tensor
(DT) clustering with N-Cuts on simple synthetic images without crossings. On more complex data with crossings, we show that
our ODF-based method succeeds to separate fiber bundles and crossing regions whereas the DT-based methods generate artifacts
and exhibit wrong number of clusters. Finally, we show results on a real-brain dataset where we segment well-known fiber bundles.

Copyright © 2008 Demian Wassermann et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Recent work shows that diffusion magnetic resonance imag-
ing (dMRI) can help recovering complex white matter fiber
bundles. However this is still an open problem due to the
structural complexity of the fiber bundles, which can have
crossing configurations. Diffusion tensor imaging (DTI) [1]
is restricted in these conditions due to the hypothesis that
the diffusion within a voxel follows a Gaussian distribu-
tion, a model that cannot model intravoxel crossings. Q-ball
imaging (QBI) [2], a recent high-angular resolution diffu-
sion imaging (HARDI) technique, overcomes this limitation
by reconstructing a diffusion orientation distribution func-
tion (ODF), a spherical function that has its maxima agree-
ing with the underlying fiber populations. The ODF recon-
struction from QBI is attractive because it is model-free and
has been recently shown possible with a regularized and an-
alytical solution [3], which produces a robust and very fast

ODF reconstruction. In fact, the ODF estimation is, in prac-
tice, as fast as a standard least-square diffusion tensor (DT)
estimation.

Efficient segmentation of fiber tracts in dMRI images is
an important problem in neuroimaging problem because it
has many potential applications. For example, it could po-
tentially provide important information on diseases that af-
fect fiber tracts. Alteration of the fiber tracts may provide new
biomarkers in white matter pathologies and segmentation of
these tracts can also improve our understanding of the func-
tional role these tracts have and the cognitive consequences
of their disruption.

The goal of this work is to provide a segmentation
method that can separate the main white matter fiber bun-
dles in the brain. We propose a new method that can seg-
ment fiber bundles and deal with fiber crossings while also
requiring a minimum number of hypothesis from the data
and a small number of algorithmic parameters. Spectral
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Figure 1: Funk-Radon transform G illustrated for the input diffusion attenuation signal S (b = 1000 s/mm2) with 1 fiber (left) and two
orthogonal fibers (right). The thin lines are the true underlying fiber directions and the thicker tubes are the detected maxima. One must
imagine these functions as living on the surface of the sphere. Here, for visualization purposes, the radius of the respective spheres are scaled
by the corresponding value on the surface. Blue-to-red colors represent low-to-high spherical values.

embedding and clustering methods have recently proved to
be effective in image segmentation [4, 5]. However, classical
approaches require restrictive hypotheses that are difficult to
meet in real applications. For instance, N-Cuts [4] and Lapla-
cian eigenmaps [6] require data within each cluster to be uni-
formly sampled, which produces artifacts when this hypoth-
esis is not met. Moreover, classical approaches for image seg-
mentation also assume that the scale within each cluster is the
same using a single-scale parameter for the whole dataset. In
order to overcome these limitations, we propose to use diffu-
sion maps [7] as spectral embedding method. This method
looses the dependence on the sampling of the elements to
cluster. Moreover, we propose to use an adaptive scale-space
parameter in order to deal with space-scale differences across
different clusters. Finally, we propose two approaches to au-
tomatically determine the number of clusters by analyzing
the spectra of the image embedding.

Another contribution of this paper is to show that the
Q-ball ODF clustering using diffusion maps can reproduce
the DT clustering using N-Cuts on simple synthetic images
without crossings. On more complex data with crossings,
we show that our method succeeds to separate fiber bun-
dles and crossing regions on synthetic data, where the DT-
based methods generate artifacts and exhibit wrong number
of clusters. Finally, we successfully segment the fiber bundles
in a real-human brain dataset in different regions with fibers
crossing.

2. METHODS

The main goal of this work is to produce a segmentation
algorithm able to segment white matter fiber bundles from
dMRI data. In order to represent intravoxel crossings with
the ODF, we need at least 15 real coefficients when a spherical
harmonic basis is used [3, 8, 9]. This leads to 3D images with
a high dimensional element at each voxel. This high dimen-
sionality makes previous diffusion imaging segmentation ap-
proaches based on level set methods such as [10–12] compu-
tationally expensive. Moreover, these methods require an ini-
tialization step. In order to perform the segmentation in an
initialization-free manner and with a lower-dimensionality
image, we use spectral clustering methods [4, 5] which per-
form dimensionality reduction before performing the seg-

mentation and do not need initialization. The segmentation
is then performed on the statistics within each cluster and the
fiber crossings can be identified.

In this section, we present the three main parts of our
algorithm. First, the estimation of the Q-ball diffusion ODF
and its compact representation using spherical harmonics.
Second, the metric used to measure distances between Q-ball
ODFs. Last, the diffusion aps spectral clustering technique
used to segment the ODF image into the background and
the Different fiber bundles.

2.1. ODF estimation from QBI

QBI [2] reconstructs the diffusion ODF directly from the
HARDI measurements on a single sphere by the Funk-Radon
transform (FRT). In practice, the FRT value at a given spheri-
cal point is the great circle integral of the signal on the sphere
defined by the plane through the origin with normal vector.
The FRT is qualitatively illustrated in Figure 1. The ODF is
intuitive because it has its maximum(a) aligned with the un-
derlying population of fiber(s). However, computing statis-
tics on a large number of discrete ODF values on the sphere
is computationally heavy and infeasible to integrate into a
segmentation algorithm of the whole brain. A more compact
representation of the ODF is thus needed. In [3, 8, 9, 13] a
simple analytic spherical harmonic (SH) reconstruction of
the ODF is proposed. For completeness of the article, we now
review and develop the main parts of our regularized analyt-
ical ODF reconstruction solution. The idea is to first estimate
HARDI signal on the sphere with a regularized spherical har-
monics approximation and then do a simple linear transfor-
mation of the harmonics to obtain the desired regularized
ODF.

Spherical harmonic (SH) estimation of the HARDI signal

The SH, normally indicated by Ym
� (� denotes the order and

m the phase factor), are a basis for complex functions on the
unit sphere. Explicitly, they are given as follows:

Ym
� (θ,φ) =

√
2� + 1

4π
(� −m)!
(� + m)!

Pm
� (cos θ)eimφ, (1)
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where (θ,φ) obey physics convention (θ ∈ [0,π], φ ∈
[0, 2π]) and Pm

� is an associated Legendre polynomial. For
k = 0, 2, 4, . . . , � and m = −k, . . . , 0, . . . , k, we define the new
index j := j(k,m) = (k2 + k + 2)/2 +m and define our mod-
ified basis Y with elements Yj such that

Yj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2·Re

(
Ym
k

)
if − k ≤ m < 0,

Y 0
k if m = 0,
√

2·Img
(
Ym
k

)
if 0 < m ≤ k,

(2)

where Re(Ym
� ) and Img(Ym

� ) represent the real and imaginary
parts of Ym

� , respectively. The basis is designed to be symmet-
ric, real, and orthonormal. Symmetry is ensured by choosing
only even order SH and the ratios in front of each term also
ensure that the modified basis is real and orthonormal with
respect to the inner product 〈 f , g〉 = ∫Ω f ∗gdΩ, whereΩ de-
notes integration over the unit sphere and f ∗ is the complex
conjugate of f for f and g complex functions on the sphere.
We thus approximate the signal at each of the N gradient di-
rections i as

S
(
θi,φi

) = R∑
j=1

cjYj
(
θi,φi

)
, (3)

where R = (� + 1)(� + 2)/2 is the number of terms in the
modified SH basis Y of order �. Letting S be the N× 1 vec-
tor representing the input signal for every encoding gradient
direction, C the R× 1 vector of SH coefficients cj , and B is
the N × R matrix constructed with the discrete modified SH
basis

B =

⎛
⎜⎜⎝
Y1
(
θ1,φ1

)
Y2
(
θ1,φ1

) · · · YR
(
θ1,φ1

)
...

...
. . .

...
Y1
(
θN ,φN

)
Y2
(
θN ,φN

) · · · YR
(
θN ,φN

)
⎞
⎟⎟⎠ . (4)

We can write the set of equations as an overdetermined linear
system S = BC. We want to solve for the SH series coefficients
cj , where cj =

∫
Ω S(θ,φ)Yj(θ,φ)dΩ. At this point, instead of

simply evaluating the integrals directly as done in [14] or per-
forming a straightforward least-squared minimization as in
[15, 16], we add local regularization directly into our fitting
procedure. This is to be able to use a high-order estimation
without overmodeling the small perturbations due to noise
in the input diffusion MRI signal. We thus define a measure,
E, of the deviation from smoothness of a function f defined
on the unit sphere as E( f ) = ∫

Ω (�b f )2dΩ, where �b is the
Laplace-Beltrami operator. Using the orthonormality of the
modified SH basis, where we have

∫
Ω Yi(θ,φ)Yj(θ,φ)dΩ =

δi j , the above functional E can be rewritten straightforwardly
[3, 13] as

E( f ) =
∫
Ω

�b

(∑
p

cpYp

)
�b

(∑
q

cqYq

)
dΩ

=
R∑
j=1

c2
j �( j)2(�( j) + 1

)2 = CTLC,

(5)

where L is simply the R × R matrix with entries
�( j)2(�( j) + 1)2 along the diagonal (�( j) is the order asso-
ciated with the jth coefficient, that is, for j = 1, 2, 3, 4, 5, 6,
7, . . . �( j) = 0, 2, 2, 2, 2, 2, 4, . . .). We thus obtain a closed-
form expression for the regularization term. Therefore, the
quantity we wish to minimize can be expressed in matrix
form as

M(C) = (S− BC)T(S− BC) + λCTLC, (6)

where λ is the weight on the regularization term. The coef-
ficient vector minimizing this expression can then be deter-
mined just as in the standard least-squares fit (λ = 0) from
which we obtain the generalized expression for the desired
spherical harmonic series coefficient vector

C = (BTB + λL
)−1

BTS. (7)

From this SH coefficient vector we can recover the signal
on the Q-ball for any (θ,φ) as S(θ,φ) = ∑R

j=1cjYj(θ,φ).
Intuitively, this approach penalizes an approximation func-
tion for having higher-order terms in its modified SH series.
This eliminates most of the higher-order terms due to noise
while leaving those that are necessary to describe the under-
lying function. However, obtaining this balance depends on
choosing a good value for the parameter λ. We use the L-
curve numerical method [17] and experimental simulations
to determine a good smoothing parameter [3, 13, 18]. Here,
λ = 0.006 is used as in [3, 13, 18].

Analytical ODF estimation

The true diffusion orientation distribution function (ODF)
in a unit direction u, Ψ(u), is given by the radial projection
of the probability distribution function (PDF) of the diffus-
ing water molecule. Tuch [2] showed that this diffusion ODF
could be estimated directly from the raw HARDI signal S
on a single sphere of Q-space by the Funk-Radon transform
(FRT) (Figure 1). In [3, 13], we showed how this FRT can be
evaluated analytically with an elegant corollary to the Funk-
Hecke theorem [19]. The final ODF reconstruction on the
sphere then becomes a simple linear transformation of the
SH coefficients cj describing the input HARDI signal S,

Ψ(θ,φ) =
R∑
j=1

2πP�( j)(0)cj︸ ︷︷ ︸
f j

Yj(θ,φ), (8)

where f j are the SH coefficients describing the ODF Ψ and

P�( j)(0) = (−1)�/2(1·3·5 · · · (�( j) − 1)/2·4·6 · · · �( j)) be-
cause �( j) is always even in our modified SH basis. We see
that the SHs are eigenfunctions of the Funk-Radon trans-
form with eigenvalues depending only on the order � of the
SH series.

Hence, by using an SH estimation of the HARDI signal,
we have showed that the QBI can be solved analytically. This
was also showed in [8, 9]. An important contribution in fa-
vor of our approach is that this solution can be obtained
while imposing a well-defined regularization criterion. The
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accuracy of the modified SH series approximation with the
Laplace-Beltrami smoothing was established in [18] and our
regularized ODF solution was also shown to have better fiber
detection properties and shown to be more robust to noise
than similar solutions [8, 9].

2.2. Distances between ODFs

Once the ODF are computed, we want to capture similarities
and dissimilarities between two ODFs, that is, two spherical
functions Ψ,Ψ′ ∈ S2 that can be represented by real-SH vec-
tors of length R, f = { f1, . . . , fR} and f ′ = { f ′1 , . . . , f ′R} ∈
RR, as shown in (8) in the previous section. Since the ODFs
come from real physical diffusion measurements they are
bounded and form an open subset of the space of real-valued
L2 spherical functions with an inner product 〈, 〉 defined as

〈Ψ,Ψ′〉 =
∫
Ω
Ψ(θ,φ)·Ψ(θ,φ)′dΩ

=
∫
Ω

( R∑
i=1

fiYi(θ,φ)
R∑
j=1

f ′j Yj(θ,φ)

)
dΩ.

(9)

Again, because of the orthonormality of the spherical har-
monic basis, the cross-terms cancel and the expression is
simply

〈Ψ,Ψ′〉 =
R∑
j=1

f j· f ′j . (10)

Therefore, the induced L2 norm ‖Ψ‖ = √〈Ψ,Ψ′〉 giving us
the distance metric between two ODFs is

‖Ψ−Ψ′‖ =
√√√√√ R∑

j=1

(
f j − f ′j

)2
. (11)

The Euclidean distance was also used successfully for
ODF segmentation in [12] and for DTI segmentation in [11]
even though more appropriate metrics exist such as the J-
divergence [11, 20] and Riemannian geodesic distances [11].
Similarly, one can think of choosing another metric to com-
pare ODFs. For instance, since the ODF can be viewed as a
probability distribution function (PDF) of fiber orientations,
one can use the Kullback-Leibler distance between two PDFs,
as done in [2]. However, in that case the problem quickly
blows up computationally because one needs to use all N dis-
crete HARDI data on the sphere instead of the R SH coeffi-
cients (R
 N).

2.3. Diffusion maps-based clustering

We now want to segment white matter fiber bundles in a
Q-ball image. One of the open questions in Q-ball image
analysis and clustering is that which metric should be used
to compare Q-ball ODFs. Here, we describe a clustering al-
gorithm that infers an embedding and a metric to compare
ODF images. We derive an affinity measure incorporating the
Euclidean distance and the spatial location distance between

ODFs. This affinity measure then used in a spectral embed-
ding framework. As mentioned in [7], the Euclidean distance
within this embedding actually represents an intrinsic metric
of the data, which can be used to perform statistics in the em-
bedded space and can thus be used to segment Q-ball ODF
images into white matter fiber bundles.

Spectral embedding and clustering

In recent years, spectral manifold learning and clustering
techniques [4, 6, 21–23] have become one of the most pop-
ular modern clustering family of methods. They are simple
to implement, they can be solved efficiently by standard lin-
ear algebra software, and they very often outperform tradi-
tional manifold learning and clustering algorithms such as
the classical principal component analysis (PCA) [24] and k-
means [25] algorithms. Moreover, due to the dimensionality
reduction properties, they are especially well suited to work
with high-dimensional data. These techniques have been re-
cently used to cluster various types of images [4, 5] and white
matter fiber tracts [26]. In our case, we perform the spectral
clustering for two different types of elements: the DT and
the ODF. In the DT case, the element is represented by a 6-
dimensional vector corresponding to the upper (or lower)
triangular part of the DT 3×3 symmetric matrix. In the ODF
case, the element is represented by the 15-dimensional vec-
tor corresponding to the 4th-order spherical harmonic ODF
estimation.

Spectral clustering reduces the clustering problem to a
graph partitioning problem. Each element to be clustered is
represented as a node in a graph and the edges joining the
vertex are a measure of affinity between the elements. This
affinity measure lies between 0 and 1, 0 being the less affine
case. A spectral decomposition of this graph is taken by cal-
culating the eigenvalue decomposition (EVD) of the graph
Laplacian [27]. Then a low-dimensional Euclidean manifold
embedding is inferred from this decomposition. Finally, the
clustering is performed in the inferred Euclidean manifold.

All the above techniques rely on three hypotheses.

(1) Preservation of the distance relationship: after a dis-
tance is defined between elements, the learned mani-
fold should preserve the distance relation.

(2) Uniform sampling of the elements: the density of the
extracted elements changes if and only if these ele-
ments belong to anatomically different bundles.

(3) Convexity of the elements: if two elements are in the
dataset, almost all of the intermediate tracts obtained
by the interpolation that can be inferred from the met-
ric used to build the affinity matrix are in the dataset.

It is not easy to guarantee that the data to be embed-
ded and clustered will adhere to these hypotheses. Donoho
and Grimes, in [13], analyze when a spectral embedding al-
gorithm is able to recover the true parameterization of a set
of images. As medical images represent the discretization of
a continuous space, hypotheses 1 and 3 are plausible. How-
ever, there is no indication that within a fiber bundle the dis-
tribution of the elements (DT or ODF) are uniformly sam-
pled. Moreover, in [29]it is shown that different sampling
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frequencies within one cluster leads the N-Cuts and Lapla-
cian eigenmaps methods to subdivide the cluster in several
parts. In order to overcome this limitation and to be resilient
to sampling frequency differences within a cluster, we use the
diffusion maps [7] spectral embedding technique. We now
describe the three steps involved in the diffusion maps algo-
rithm in turn.

Step 1 (Computing the affinity matrix). Letting X represent
the set of all ODF elements to cluster, the main idea is to
look for a representation between the elements of X that is
more representative than RR (recall that ODFs are ∈ RR)
and reduces the dimensionality of the problem. With keeping
this in mind, a fairly good way of representing any set of ele-
ments with an affinity function a : X×X→R>0, is a weighted
graph, G(X ,E,w(·)), where the weight of the edge between
two vertices represents the affinity of the elements connected
by this edge. More formally, for an edge,1 e = ( fi, f j) ∈ E, the
weight of the edge is w(e) = a( fi, f j). Hence, each element of
the adjacency matrix of G or conversely the affinity matrix of
(X , a(·)) is

Aij = a
(
fi, f j

)
. (12)

Taking this in account, the weighted graph G(X ,E,w(·)) can
be also noted as G(X ,A).

Usually, a distance function d(·) instead of an affinity
function is given. The distances can be easily converted into
affinities by applying a kernel to the distance function

a
(
fi, f j

) = e−(d( fi, f j )
2/σ2

i j ), (13)

where σ is an adaptive scale-space parameter that may de-
pend on the elements fi and f j . In this work, the adaptive
scale-space parameter is taken following [30]. A “neighbor-
number” k is given as parameter to the algorithm and then
σ2
i j = d( fi, fik )d( f j , f jk ), where fik is the kth closest neigh-

bor according to the distance function d(·, ·) of element fi.
This choice of a scaling parameter for each point allows self-
tuning of the point-to-point distances according to the local
statistics of the neighborhoods surrounding points i and j.

As in image segmentation, the spatial position of each el-
ement is important, the spatial dependency should be incor-
porated into the affinity matrix. Following [5, 31], we use
Markovian relaxation to incorporate this information. In or-
der to represent the affinity of all the elements that can be
reached within one spatial step, the affinity matrix is modi-
fied in the following way:

A1 =
⎧⎪⎨
⎪⎩
Aij if

∥∥coords
(
fi
)− coords

(
f j
)∥∥

2 ≤ 1,

0 in any other case,
(14)

1 In this section, for simplicity, the subindexed variables fi, f j represent
different elements to be clustered and not spherical harmonic coefficients
as in Section 2.2. fi is the full ODF element ∈ RR at position i.

where coords( f ) are spatial coordinates of element f in the
image

P1 = 1
max

l
D
(
A1
)
ll

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
l

D
(
A1
)
ll

−D(A1
)
ii if i = j,

A1 in any other case,

(15)

where D(A1) is a diagonal matrix with D(A1)ii =
∑

jA1i j ,
usually called the row-sum or degree matrix of A1.

Then, obtaining the affinities of elements that can be
reached within s spatial steps is enough to elevate P1 to the
power of s, Ps = (P1)s as stated in [31]. Moreover, s can be
chosen to be the smallest positive integer which results in
nonzero elements in the whole matrix in order to represent
the weakest connected induced graph. The diagonal adjust-
ment forces the inherent random walk to a uniform steady
state, hence every part of the Markov field will be explored at
the same speed. For the sake of clarity, Ps will be referred to
as affinity matrix A in the rest of the paper.

Step 2 (Performing the embedding). The algorithm must
embed the elements of X into an n-dimensional Euclidean
space y(X). This is done by applying eigenvalue decomposi-
tion to the Laplacian of the affinity matrix. This embedding
must be compliant with hypothesis 1. As in [6, 7, 27], this is
done by performing the spectral decomposition of the graph
Laplacian of the graph induced by A,

Δ = D(A)− A ∈ R|X|×|X|, (16)

where |X| is number of elements to be clustered.
In order to overcome the necessity of hypothesis 2, we

prenormalize the affinity matrix as done in [7]. This is done
by normalizing the weight of each edge of the graph, Aij , by
the probability density of both elements relating through the
edge,

(
Ap
)
i j =

Aij

p(i)p( j)
, (17)

where p(·), the probability density function of the elements
in X , is not known but can be approximated up to a multi-
plication factor by

p(i) =
∑
k

Aik =
∑
k

Aki. (18)

Due to the necessity of having a uniform behavior of the
clustering algorithm without minding the scale of the affinity
measure taken, a doubly stochastic matrix normalization is
performed:

Ads = D
(
Ap
)−1/2

ApD
(
Ap
)−1/2 ∈ R|X|×|X|. (19)

As Ads is a double stochastic symmetric matrix, the eigen-
value decomposition of (16) can be calculated by taking the
singular value decomposition (SVD)

VSVT = Ads ∈ R|X|×|X|. (20)
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Finally, the Euclidean coordinates yi of an element fi ∈ X in
the n-dimensional embedding manifold are

y
(
fi
) = yi = 1

v0
i

(
λ1v1

i , . . . , λnvn
i

)T
, f i ∈ X , (21)

where

V = (v0 · · · v|X|−1) ∈ R|X|×|X| (22)

is the eigenvector column matrix and the corresponding
eigenvalues are, 1 = λ0 ≥ λ1 ≥ · · · ≥ λ|X|−1 ≥ 0. The first
eigenvector v0 is not taken into account as a component in
the embedding because it is constant and hence meaningless
as shown in [6, 7, 27].

Step 3 (Clustering). Once the embedding has been per-
formed, several techniques have been proposed for the clus-
tering step [4, 6, 32].

The first step in this process is to determine the num-
ber of clusters, this can be done in two ways. The first, as in
[33], is choosing the number of clusters according to the “el-
bow.” This is present in the eigenvalue plot. For instance, if
the slope of the eigenvalue plot changes noticeably at eigen-
vector λi, the number of clusters should be i + 1. The second
way is reordering the affinity matrix rows and columns fol-
lowing the second eigenvector as proved in [34], which shows
the block structure of the matrix as squared blocks along the
matrix diagonal. Then, the number of clusters is the number
of blocks. Their commended number of dimensions for the
embedding is the same as the number of clusters. Finally, the
clustering is performed by running a k-means clustering al-
gorithm on the space spanned by y(X). A formal justification
for this approach can be found in [6, 32].

2.4. Q-ball data generation and acquisitions

Synthetic data

We generate synthetic HARDI data using the multitensor
model which is simple and leads to an analytical expression
of the ODF [2, 18]. For a given b-factor and noise level, we
generate the diffusion-weighted signal

S
(

ui
) = n∑

k=1

1
n

exp
(− b uT

i Dk(θ)ui
)

+ noise, (23)

where ui is the ith gradient direction on the sphere, n is the
number of fibers, and 1/n is the volume fraction of each
fiber. In practice, we use N = 81 from a 3rd-order tessel-
lation of the icosahedron, b = 3000 s/mm2, and n = 1 or
2. Dk(θ) is the diffusion tensor with standard eigenvalues
[3, 3, 1.7]×10−2 mm2/s oriented in direction θ, which agree
with reported physiological values [35]. Finally, we add com-
plex Gaussian noise with standard deviation of 1/35, produc-
ing a signal with signal-to-noise ratio of 35.

We generate three synthetic data example, two simple ex-
amples: one with a ring of sinusoidal-shaped fibers, one with
fibers with different sizes and scales, and the other with com-
plex crossing areas simulating the “U”-fibers (corticocortical

fibers) that can occur in the brain. These synthetic datasets
help understand the behavior of the different spectral clus-
tering methods when confronted with simple and complex
fiber geometries.

Human brain data

Diffusion-weighted data and high-resolution T1-weighted
images were acquired on a whole-body 3 Tesla Magne-
tom Trio scanner (Siemens, Erlangen) equipped with an 8-
channel head array coil [36]. The spin-echo echo-planar-
imaging sequence, TE = 100 ms, TR = 12 s, 128 × 128
image matrix, FOV = 220 × 220 mm2, consists of 60 diffu-
sion encoding gradients [37] with a b-value of 1000 s/mm2.
Seven images without any diffusion weightings are placed
at the beginning of the sequence and after each block of
10 diffusion-weighted images as anatomical reference for of-
fline motion correction. The measurement of 72 slices with
1.7 mm2 thickness (no gap) covered the whole brain. Ran-
dom variations in the data were reduced by averaging 3 ac-
quisitions, resulting in an acquisition time of about 45 min-
utes. No cardiac gating was employed to limit the acquisition
time. The issue of cardiac gating is discussed in [38]. Addi-
tionally, fat saturation was employed and we used 6/8 partial
Fourier imaging, a Hanning window filtering, and parallel
acquisition (generalized autocalibrating partially parallel ac-
quisitions, reduction factor = 2) in the axial plane.

The brain is peeled from the T1-anatomy, which was
aligned with the Talairach stereotactical coordinate system
[39]. The 21 images without diffusion weightings distributed
within the whole sequence were used to estimate motion cor-
rection parameters using rigid-body transformations [40],
implemented in [41]. The motion correction for the 180
diffusion-weighted images was combined with a global regis-
tration to the T1 anatomy computed with the same method.
The gradient direction for each volume was corrected using
the rotation parameters. The registered images were interpo-
lated to the new reference frame with an isotropic voxel reso-
lution of 1.72 mm2 and the 3 corresponding acquisitions and
gradient directions were averaged.

Distance functions between elements to cluster

In order to implement the diffusion maps spectral cluster-
ing method a distance function for each data type is chosen.
This distance function is used to calculate the affinity matrix
as expressed by (13). In the DT case, following [42], we use
the Riemannian tensor distance. In the ODF case we use the
distance shown in (11).

3. RESULTS

3.1. Synthetic data experiments

Diffusion maps versus N-cuts

The first experiment shows the difference in performance
between the diffusion maps and N-Cuts approach. The N-
Cut algorithm does not perform the sampling-based normal-
ization described by (17) and is thus sensitive to sampling
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(a) N-Cuts eigenvalue plot (b) N-Cuts, 2 clusters (blue and black) (c) N-Cuts, 3 clusters (blue, orange,
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(d) Diffusion maps eigenvalue plot (e) Diffusion maps, 2 clusters (or-
ange and black)

Figure 2: N-Cuts generates overclustering due to sampling frequency variation in ODF images. In both eigenvalue plots Figures 2(a) and
2(d), the slope between the line joining λ0 and λ1 and the line joining λ1 and λ2 changes drastically, expressing an elbow in λ1, which indicates
two clusters. The clustering results with Figures 2, 2(b), 3, 2(c), clusters are shown. Diffusion maps correctly finds two clusters, the object
and the background, Figure 2(e). In the labeling, the ODFs are overlaid on the labels.

(a) DTI, 3 clusters (purple, green,
black)

(b) ODF, 3 clusters (orange, blue,
black)

Figure 3: Synthetic image without fiber crossings. The results for
the DT and ODF images are equivalent. The colors behind the DTs
and ODFs indicate the clusters.

frequency differences within the clusters. In order to show
this sampling hypothesis problem, we used a ring fiber bun-
dle with different sampling frequencies. Within the ring, the
fibers have a sinusoidal shape and the frequency of the mod-
ulating sine function is 4 times bigger in the lower half of the
ring. More formally, the fibers follow the angular function
o(θ) = θ + (1/8)πsin(μ·θ), 0 ≤ θ < 2π, where μ = 8 for the
upper half of the ring and μ = 32 for the lower half. Two clus-
ters are expected, the ring and the background. The results of

(a) DTI ellipsoids (b) ODF spherical functions

Figure 4: Synthetic DT and ODF images. The expected number is
four, one for each fiber, one for the crossing between the two fibers
and one for the background.

both clustering techniques are shown in Figure 2, where the
background has been masked out. Figure 2(a) shows the plot
of the first 10 eigenvalues for the N-Cuts method, shown in
Figures 2(b) and 2(c), and the slope between the line join-
ing λ0 and λ1 and the line joining λ1 and λ2 changes dras-
tically. This elbow at λ1 indicates that there are 2 clusters.
Figure 2(d) shows the plot of the first 10 eigenvalues for the
diffusion maps method whose clustering results are shown
in Figure 2(e). The N-Cuts exhibits frequency-dependent
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Figure 5: Clustering results in ODF and DT images, only ODF show
the correct clustering. In both cases the clustering result and the
reordered affinity matrix are shown.

(a) Axial GFA slice with axial
slice marked

(b) Coronal GFA slice with
cropped region marked

Figure 6: Generalized fractional anisotropy axial, Figure 6(a), and
coronal, Figure 6(b) slices in the real dataset.

clustering artifacts while the diffusion maps method clearly
shows two clusters. In the diffusion maps, the clustering has
correctly segmented the background and the ring.

ODF versus DT images

In Figure 3, a single fiber scenario with no fiber crossing is
shown. The DT-based and ODF-based image clustering pro-
duce the same results. Hence, ODF clustering reproduces
DT-based results on a simple fiber population example.

Finally, Figure 4 shows a fiber crossing scenario with
two overlapping fiber bundles that have different geometries.

Segmentation was performed over the DT and the ODF im-
age shown in Figure 5. Note that the cluster number is cor-
rectly estimated only in the ODF image. Moreover, the ODF
N-Cuts segmentation exhibits artifacts not present in the
ODF diffusion maps segmentation. The ODF diffusion maps
effectively identify the two different fiber bundles as well as
the fiber crossing areas.

3.2. Real data

The real-data experiment presented in this section shows the
segmentation and labeling of a cropped axial and coronal
slice. The cropped slices were chosen by an expert in regions
of known fiber crossings where the DT model is normally
limited. The ROIs show intersection of several fiber bundles.
Hence, our segmentation algorithm is confronted with ele-
ments that have different orientation and different diffusion
characteristics.

In order to show that ODF data segments the white mat-
ter fiber bundles better than the DT data in real cases, we ana-
lyze the evolution of the affinity matrix as the scale-space pa-
rameter changes in the axial cropped slice shown in Figure 6.
Affinity matrices were computed with varying scale-space
parameter between 1/5, 1/10, 1/20, and 1/40 of the quantity
of elements (|X|) to cluster, respectively. In order to show
the block structure of the affinity matrices, they were re-
ordered using the second (Fiedler) biggest eigenvector [34].
It can be seen in Figure 7 that as the scale diminishes, the
DT data shows a high correlation between all the elements
of the slice. This makes clustering very difficult because the
blocks are small and highly correlated. On the other hand,
the ODF data shows a very clear block structure across all
scales. This block structure shows a high correlation of the
elements within each block and a low interblock correlation,
giving a much better input to the clustering algorithm than
the DT data.

In Figure 6, the location of the cropped axial slice is
shown in the axial slice, Figure 6(a), and coronal slice,
Figure 6(b). As it can be seen in the segmented and labeled
axial slice, Figure 8, the segmentation also allows to identify
and label some of the main white matter structures, Cor-
pus Callosum (CC), Anterior Corona Radiata (ACR), For-
ceps Major (fmajor) and Forceps Minor (fminor).

In Figure 9, the location of the cropped coronal slice
is shown in the axial slice, Figure 9(a), and coronal slice,
Figure 9(b). As it can be seen in the segmented and labeled
coronal slice, Figure 9(c), the segmentation allows to iden-
tify and label main white matter structures: Corpus Callo-
sum (CC), Cingulum (CG), Corona Radiata (CR), Superior
Longitudinal Fasciculus (SLF). Note that the segmentation
is resilient to crossing areas such as seen at the interface be-
tween CR and CC.

4. DISCUSSION

We have presented an algorithm to perform Q-ball imag-
ing segmentation of white matter fiber bundles. The pro-
posed method combines state-of-the-art HARDI reconstruc-
tion and state-of-the-art spectral clustering techniques. Our
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(a) DTI reordered affinity matrices as the scale-space parameter decreases 0

(b) ODF reordered affinity matrices as the scale-space parameter decreases

Figure 7: Plots of DTI and ODF affinity matrices of an axial cropped slice shown in Figure 6. The matrices are reordered according to the
second (Fiedler) eigenvector. ThePlots of DTI affinity matrices are shown in decreasing order of σ , which takes the values 1/5, 1/10, 1/20, and
1/40 of the quantity of elements to cluster. In the DTI case, the decreasing on the scale parameter σ leads to a matrix with highly correlated
elements that is very difficult to cluster. In the ODF case, the block structure is clear and is better suited to apply a clustering algorithm.

CC

fmajorfminor

ACR

Figure 8: Our proposed algorithm is able to identify important
white matter fiber bundles on an axial slice of a real dataset. The
cropped axial slice shown in Figure 6(a) has been segmented. In the
labeled ODF visualization, each color represents one of the clusters
found. The white matter labels are CC: Corpus Callosum, ACR: An-
terior Corona Radiata, fmajor: Forceps Major and fminor: Forceps
Minor.

algorithm is initialization-free and has only two parameters.
A scale-space parameter and the number of regions (clusters)
are to be found. Regarding this number of clusters parame-
ter, we have proposed to estimate it automatically. We have
introduced a spectral embedding technique that does not re-
quire uniform sampling of the elements. To do so, the affin-
ity measure used incorporates an Euclidean distance measure
between the spherical harmonic coefficients describing the
Q-ball ODFs and also incorporates the spatial location dis-
tance between ODFs. The affinity measure and the metric

induced in the embedded space is then used to cluster Q-
ball ODF images into multilabel segmentation representing
the fiber bundles. Spectral embedding has already been ap-
plied to dMRI (e.g., [5]). However, to our knowledge, this is
the first work using the diffusion maps that avoids the high
dependence on element sampling. It is also the first work at-
tempting Q-ball ODFs.

We have illustrated that the ODFs are the desirable ele-
ments to use for clustering in the white matter because the
classical DT model is limited in regions of fiber crossings.
The ODF is even more attractive because of the recent ana-
lytical spherical harmonic solution to the ODF reconstruc-
tion [3, 8, 9, 13]. The analytical solution is in fact as fast as a
standard DT least-square estimation. In this work, we believe
that we have used the state-of-the-art ODF reconstruction
method [13], which is regularized, robust and very simple to
implement.

The spectral embedding performed by the diffusion
maps technique is at the heart of our segmentation algo-
rithm. Whereas other spectral embedding techniques have
a tendency to produce artifacts in the presence of different
sampling characteristics within a cluster, the technique used
in this work greatly reduces this tendency by performing the
simple linear algebra calculation shown in (17).

Spectral embedding techniques produce a representation
of the embedded data based on element-to-element affinities.
This leads to the fundamental issue: how to choose the affin-
ity measure? It is a challenge to find a measure that incorpo-
rates similarities between elements as well as the spatial lo-
cation difference between elements. For similarities between
elements, we chose the Euclidean distance between spherical
harmonic coefficients describing the ODFs. This approach
is simple and very efficient because it allows to process the
ODFs directly on the SH coefficients. The Euclidean distance
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(a) Axial GFA slice with coronal
slice marked

(b) Coronal GFA slice with
cropped region marked

SLF

CG

CR

CC

(c) Labeled ODF visualization of the cropped region

Figure 9: Our proposed algorithm is able to identify impor-
tant white matter fiber bundles on a coronal slice of a real
dataset. Generalized fractional anisotropy axial, Figure 9(a), and
coronal, Figure 9(b) slices are shown. Labeled ODF visualization,
Figure 9(c), each color represents one of the 7 clusters found. The
white matter labels are CC: Corpus Callosum, CG: Cingulum, CR:
Corona Radiata, SLF: Superior Longitudinal Fasciculus.

has also been used successfully in a level set segmentation
framework [12] and it would be interesting to compare our
spectral clustering approach against it. For spatial location
difference, we chose Markovian relaxation in order to be con-
sistent with the graph theoretical representation of the diffu-
sion maps technique. Although this way of representing the
distance involves an artificial elimination of all the nonneigh-
boring relations of the ODF elements in the affinity matrix
and an adjustment of the diagonal elements, we believe that
the resulting affinity relations represent the affinity better.
The affinity of two neighboring elements at the beginning of
the Markovian relaxation algorithm is represented by a func-
tion of the Euclidean distance between them. This affinity
can be interpreted as the probability that a random walker
has of going from the first element to the second. The affinity
of two elements at the end of the relaxation is the probability
of a random walker starting from one element and reaching
the second in a certain number of steps.

The final step of our algorithm is k-means clustering. We
believe that there is room for improvement in this last part of
the algorithm. In the first place, the k-means algorithm needs
an explicit number of clusters to find. This can be heuris-
tically determined by analyzing the eigenvalue plot or the
reordered affinity matrix structure, as shown in this work.
However, an automatic method that could find the number
of clusters would considerably improve the algorithm. In the
second place, the k-means algorithm and its variants, for in-
stance, k-medians, k-medioids, search for isotropic clusters
in the embedding space [25]. These methods are able to per-
form clustering on convex structures. This could also im-
prove the last clustering phase of our algorithm

Finally, in order to analyze the importance of the differ-
ence between our diffusion maps algorithm and the widely
used N-Cuts, we used synthetic simulations. In these sim-
ulations, we generated a synthetic image with a single clus-
ter within which the sampling of the elements changed. We
showed that when this sampling changes, the N-cuts algo-
rithm produces artifacts while our diffusion maps method
does not. As uniform sampling within a cluster is a difficult
property to guarantee in the white matter fiber bundles, our
diffusion maps method is better suited for this task. We thus
believe that diffusion maps are the right clustering method
to be used on dMRI processing problems.

5. CONCLUSIONS

In this work, we have presented two contributions. First, we
have shown that in order to perform spectral clustering on
complex dMRI with crossing fiber bundles, an HARDI tech-
nique such as Q-ball imaging is better than the classical DTI
technique. This is because the ODF reconstructed from QBI
is able to recover multiple crossing fiber populations. Sec-
ond, a diffusion maps-based technique for image segmen-
tation was introduced to reduce artifacts arising from the
widely used N-Cuts image segmentation. We have illustrated
the advantages of the ODF diffusion maps segmentation al-
gorithm, and showed on a real dataset that our algorithm is
able to identify important and complex white matter fiber
bundles.

Finally, the diffusion maps technique has been shown to
be more robust to sampling frequency variations within each
object to be segmented. In order to cluster the elements, we
have used an adaptive scale-space parameter and we have
used Markovian relaxation in order to incorporate spatial
dependencies. Overall, the approach is theoretically sound
with the graph-based representation which lies at the heart
of spectral clustering methods.

Therefore, we have an algorithm to perform fiber bundle
clustering for a single brain. It is now important to study the
behavior over several subjects in order to assess the repro-
ducibility of the algorithm. In time, this will enable to per-
form multisubject statistics within bundles in the embedded
space. This will help characterize the white matter fiber bun-
dles of several subjects and study if the alteration of these seg-
mented tracts can provide new biomarkers for white matter
diseases.
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