
entropy

Article

State Estimation of an Underwater Markov Chain Maneuvering
Target Using Intelligent Computing

Wasiq Ali 1,2 , Yaan Li 1 , Muhammad Asif Zahoor Raja 3 , Wasim Ullah Khan 4,* and Yigang He 4,*

����������
�������

Citation: Ali, W.; Li, Y.; Raja, M.A.Z.;

Khan, W.U.; He, Y. State Estimation of

an Underwater Markov Chain

Maneuvering Target Using Intelligent

Computing. Entropy 2021, 23, 1124.

https://doi.org/10.3390/e23091124

Academic Editors: Friedhelm

Schwenker and Stelios Bekiros

Received: 11 May 2021

Accepted: 17 June 2021

Published: 29 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China;
wasiqali@mail.nwpu.edu.cn (W.A.); liyaan@nwpu.edu.cn (Y.L.)

2 Department of Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus,
Attock 43600, Pakistan

3 Future Technology Research Center, National Yunlin University of Science and Technology,
123 University Road, Section 3, Yunlin 64002, Taiwan; rajamaz@yuntech.edu.tw

4 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
* Correspondence: kwasim814@whu.edu.cn (W.U.K.); yghe1221@whu.edu.cn (Y.H.)

Abstract: In this study, an application of deep learning-based neural computing is proposed for
efficient real-time state estimation of the Markov chain underwater maneuvering object. The designed
intelligent strategy is exploiting the strength of nonlinear autoregressive with an exogenous input
(NARX) network model, which has the capability for estimating the dynamics of the systems that
follow the discrete-time Markov chain. Nonlinear Bayesian filtering techniques are often applied
for underwater maneuvering state estimation applications by following state-space methodology.
The robustness and precision of NARX neural network are efficiently investigated for accurate
state prediction of the passive Markov chain highly maneuvering underwater target. A continuous
coordinated turning trajectory of an underwater maneuvering object is modeled for analyzing the
performance of the neural computing paradigm. State estimation modeling is developed in the
context of bearings only tracking technology in which the efficiency of the NARX neural network
is investigated for ideal and complex ocean environments. Real-time position and velocity of
maneuvering object are computed for five different cases by varying standard deviations of white
Gaussian measured noise. Sufficient Monte Carlo simulation results validate the competence of
NARX neural computing over conventional generalized pseudo-Bayesian filtering algorithms like
an interacting multiple model extended Kalman filter and an interacting multiple model unscented
Kalman filter.

Keywords: neural computing; state estimation; Markov chain; turning trajectory; bearings only
tracking; maneuvering object

1. Introduction

Real-time state estimation of maneuvering object has captured a lot of interest from
the research community recently [1]. The phenomena of state prediction found its extensive
significance in many practical civilian and defense applications like sonar, radar, indoor
tracking, surveillance, unmanned aerial vehicle, smart transportation network, drone
navigation, wireless radio network, air traffic control, and bioinformatics [2,3]. Despite its
wide range of usage in numerous engineering problems, efficient state prediction still has
plenty of room for improvement and various challenges to deal with [4]. Ambiguity in
designing the complex maneuvering in state vector of the object and incorrectly measured
bearings are the main factors which create complications in state approximation of a
maneuvering vehicle [5]. The real-time kinetics of maneuvering targets are often designed
by dynamic and measurement models through numerical expression. These mathematical
equations of maneuvering targets describe the behavior of motion parameters like speed,
velocity, position, course, turning rate and explain how they switch from their present
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points in real-time [6]. In the case of maneuvering state estimation, a single dynamic model
is unable to describe all random maneuvering behaviors of underwater passive vehicles.
In the single model, true movement and state vector of the target can be mismatched, and
this largely affects the overall performance of the state estimation mechanism [7]. The state
prediction models which compute the numerical expressions of target dynamics at each
point of trajectory are considered as global and best models [8].

In literature, a lot of valuable research efforts have been done for achieving efficient
state prediction of underwater maneuvering objects [9]. A single model Kalman filtering
algorithm appeared as the initial attempt in this domain; however, its prediction accu-
racy is often largely affected by random and complex maneuverings of the underwater
object [10]. After that, a conventional full statistic model was proposed by researchers
for improving the performance of state approximation in which second-order terms of
acceleration are approaching the first-order Markov chain [11]. Although the accuracy of
state estimation phenomena improved by a filtering technique based on this model for
small maneuverings; meanwhile, the accuracy of this method diverges at constant velocity
and high maneuverings of underwater objects. Additionally, the maneuvering process
needs more prior statistical information about the target than what usually exists. In the
last decade, decision-based algorithms also attracted a lot of attention from the research
community which seems better for detecting high maneuverings of the underwater vehicle
and handling them efficiently [12]. The variable dimension filter and input estimation
algorithms are major examples of this methodology [13–15].

The dynamics of the underwater maneuvering target can be efficiently designed with
generalized pseudo-Bayesian (GPB) based interacting multiple model (IMM) algorithms,
which model the maneuverings of target by using a set of sub-filters [16,17]. However,
transition probability information and assumed dynamic models are already known in
IMM state estimation techniques [18]. Practically, in GPB algorithms, model switching
probabilities are hard to achieve, and it is also difficult to break the dynamics of the target
into different multi motion models [19]. Furthermore, computational cost significantly
rises with increasing the number of motion models which seriously affects the real-time
performance of the overall state estimation scheme. Nevertheless, IMM methodologies
have some mutual drawbacks like unnecessary mathematical computations in the case
of maneuvering objects and divergence of accuracy because of over motion modeling at
maneuvering instants [20]. On the other hand, the maneuvering state estimation problem
can be efficiently designed with time series by following state-space modeling [21]. In
all the discussed approaches, an independent and identical white Gaussian process noise
sequence is considered in the state model of maneuvering objects [22].

Smart computing techniques based on NARX neural networks appeared as an emerg-
ing field of study in the last two decades for almost every field of engineering [23,24]. In
artificial intelligence computing methodologies, the strength of optimization algorithms
and robustness of neural networks are exploited for solving different complex real-life
problems [25,26]. Neural intelligence computing schemes are finding their extensive appli-
cations in several branches of practical sciences like astrophysics [27], plasma physics [28],
atomic physics [29], thermodynamics [30], fluid dynamics [31], electric motors [32], rotating
electrical machine [33], electromagnetic [34], meteorology [35], nonlinear optics [36], mathe-
matical equations [37], bioinformatics [38], and nanotechnology [39]. These soft computing
schemes performed exceptionally well in the above-mentioned applications and took place
of all conventional methodologies [40], while, in correspondence with other traditional
techniques, neural networks have produced much better efficiency and convergence rate
in all related studies.

The issue of nonlinearity and ambiguity is a major challenge and hard to handle in
several real-life practical systems, whose dynamics are time-varying and also depend upon
their current state. The NARX neural network paradigm shows a satisfactory convergence
rate and can be beneficial for the above-mentioned systems [41]. In literature, time-series
data based dynamic inputs are effectively handled with this neural intelligence computing
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technique [42–44]. Application of a neural network for approximating time series is
an unsteady approach, where initial knowledge about time series data is not necessary.
Maneuvering state prediction of an underwater turning object is typically a nonlinear study
in which motion parameters of the target are frequently varied with respect to time.

A NARX based neural intelligence scheme is mathematically designed in our pro-
posed study for efficiently estimating the real-time state of an underwater maneuvering
target in different ocean atmospheres. The time series framework of complex passive
bearings from a two-dimensional maneuvering object is comprehensively examined in this
work for approximating motion parameters. Different underwater cases for turning and
high maneuvering objects are assumed to develop a neurocomputing scheme as a novel
application for accurate state prediction in the proposed work. The robustness, strength,
and precision of neural intelligence computing are equated with our recently recorded
work [16], in which a similar state approximation model is investigated with GPB based
algorithms like an interacting multiple model extended Kalman filter (IMMEKF) and an
interacting multiple model unscented Kalman filter (IMMUKF). Probabilistic variations
of measured noise in the Gaussian environment are used to design ideal and cluttered
undersea scenarios to compare the performance of the proposed scheme with conven-
tional filtering methodologies. Position, velocity, and turn rate based state estimation is
conducted in this work by exploiting the potency of NARX neurocomputing strategy. A
detailed and briefed graphical abstract of the proposed study is shown in Figure 1. The
salient features of the conducted study are outlined as:

(1) The strength and potency of the NARX based neurocomputing paradigm are exten-
sively investigated for accurate state approximation of a maneuvering underwater
Markov chain target.

(2) State estimates, position error, velocity error, turn rate estimates, error histogram, and
regression analysis of NARX are computed for passive turning targets and compared
with conventional nonlinear and multiple model variants of the Kalman filter like
IMMEKF and IMMUKF.

(3) Motion features of the kinetic target in the highly maneuvering trajectory are designed
by utilizing the firmness of the well-known Wiener process velocity (WPV) model
and the coordinated turn (CT) model.

(4) The standard deviation of measurement noise is selected as an evaluation crite-
rion, and its numerical values are varied in simulations for analyzing the trend of
given techniques.

(5) All the given algorithms are compared on the basis of a minimum mean square error
(MSE), which is chosen as the performance matrix and simulation outcomes show
that the accuracy of the NARX based neural network is far better from multiple model
Kalman filters for estimating the real-time state of an underwater maneuvering object.

The rest of the study is organized in the following pattern. Section 2 provides bearings
only tracking (BOT) based multiple model maneuvering state estimation system design
in two-dimensional Cartesian coordinates. Comprehensive mathematical modeling of
continuously turning object is also developed in this section. The structure and working
principle of the NARX neural intelligence network are explained in Section 3 with the
process of training, testing, and validation. Simulation outcomes and discussion in the
context of minimum MSE of given methods are described in Section 4. The last section of the
proposed work reveals the major contributions and defines further goals for future research.
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Figure 1. Overall flow chart of the proposed scheme.

2. Markov Chain Maneuvering State Estimation System Model

A rectangular coordinates’ two-dimensional state prediction system modeling of
the Markov chain maneuvering target is mathematically designed in this section of the
study. The complex ocean medium is assumed in this scheme for precise real-time state
prediction of a continuous turning object by deploying state space-based BOT phenomena.
Passive noisy bearings from the maneuvering object at each time instant are collected
from eight acoustic sensors, and these sensors are regarded as observer platforms. The
sensors are deployed along a line to involve the idea of Uniform Linear Array (ULA)
and to obtain maximum benefits of ULA in maneuvering target tracking. This nonlinear
complex data collected at observers is called the bearing of the moving object, and it is
largely based on the position of each sensor. The arrangement of observers is done in such
a manner that there is an equal distance between each observer. A continuous turning
trajectory of the underwater target is assumed in this proposed Markov chain maneuvering
state estimation system, which is being estimated by an intelligence neural computing
scheme. The movements of maneuvering object and estimation architecture are illustrated
in Figure 2.
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Figure 2. Maneuvering state estimation framework.

The modeling parameters of many practical systems fluctuate with respect to time.
One particular system model is unable to define these varying system parameters. In real-
time state estimation problems, there is always the probability that modeling parameters
might change during the prediction process. These types of systems are referred to as
Markov chain or multiple model systems. In these scenarios, the selection of a single system
model may lead to divergence of the overall scheme. Consequently, it is necessary to design
a generic state model of a moving object which can have the properties of different system
models. Here, in this study, WPV and CT models are applied for defining the dynamics of
the underwater maneuvering target.

2.1. Wiener Process Velocity (WPV) Model

The instantaneous state of the maneuvering object at time step t with position (xt, yt)
and velocity (ẋt, ẏt) in two-dimensional Cartesian coordinates is shown in state vector
Ya

t as:
Ya

t =
[

xa
t ya

t ẋa
t ẏa

t
]T. (1)

In the meantime, the state vector at the receiving station in Cartesian coordinates can
be defined as:

Yb
t =

[
xb

t yb
t ẋb

t ẏb
t
]T. (2)

The respective state vector of the maneuvering object and base station is given as:

Yt = Ya
t − Yb

t =
[

xt yt ẋt ẏt
]T. (3)

Dynamics of maneuvering object are designed according to the discrete-time WPV
model in the domain of state-space phenomena. According to this model, the state equation
can be modeled as:

Yt+1 = AtYt + ξP
t . (4)

In the above given state equation, the state transition matrix is represented with At
having dimensions of i × i. In the state-space methodology, the state transition matrix
describes the feedback of the dynamic model, while process noise ξP

t is assumed in Gaussian
distribution with zero mean. The distribution of state transition matrix At with sampling
space ∆t is assumed as follows:

At =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

, (5)
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and this sampling space ∆t is defined as:

∆t = [(t + 1)− t]. (6)

The state pace model explained in Equation (4) must be written in discrete time for
precise prediction of motion parameters with the NARX scheme. The reason for choosing a
discrete-time kinetic model is that this modeling can better evaluate the performance of the
system for time instant t, which is a multiple of sampling space ∆t. The updated form of
state equation in discrete time with its appropriate parameters is given as:

Yt+1 =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

At


xt
yt
ẋt
ẏt


︸ ︷︷ ︸

Yt

+ξP
t . (7)

The Gaussian distributed process noise ξP
t can be modeled with covariance Bt as:

ξP
t ≈ N(0, Bt). (8)

For achieving relatively slow turns of the object’s trajectory, the value of process
variance is taken 0.05 in simulations.

2.2. Coordinated Turn (CT) Model

A specific dynamic model that is commonly used for defining the motion parameters
of the maneuvering target, which is frequently moving in a turning track is known as the
CT model. In this dynamic modeling, the state vector holds a supplementary parameter
termed as the turn rate. For the CT model, the state vector of the maneuvering object in
Cartesian coordinates for its position, velocity and turn rate can be written as:

Ya
t =

[
xa

t ya
t ẋa

t ẏa
t ϕa

t
]T. (9)

In addition, the state vector at the observer platform can be designed as:

Yb
t =

[
xb

t yb
t ẋb

t ẏb
t ϕb

t
]T. (10)

Meanwhile, a corresponding state vector among the maneuvering object and observer
platform is given as:

Yt = Ya
t − Yb

t =
[

xt yt ẋt ẏt ϕt
]T. (11)

The state equation in the CT model is defined as:

Yt+1 = AtYt + ¯ξP
t . (12)

The above state equation in the CT model is almost identical as in the WPV model
given in (4) with an extra parameter, which actually explains the transfer function of
Gaussian distributed process noise. Likewise,the WPV model, the discrete form of the state
equation for the CT model is illustrated below as:

Yt+1 =


1 0 sin(ϕt∆t)

ϕt

cos(ϕt∆t)−1
ϕt

0

0 1 1−cos(ϕt∆t)
ϕt

sin(ϕt∆t)
ϕt

0
0 0 cos(ϕt∆t) − sin(ϕt∆t) 0
0 0 sin(ϕt∆t) cos(ϕt∆t) 0
0 0 0 0 1


︸ ︷︷ ︸

At

Yt +


0
0
0
0
1


︸ ︷︷ ︸

¯

ξP
t . (13)
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In this dynamic modeling, white Gaussian noise is also assumed with zero mean, and
its covariance is similar as that given in Equation (8):

ξP
t ≈ N(0,Bt). (14)

The mathematical computations of the CT model are given in matrix form while
its behavior is nonlinear. Thus, the CT model can be designed with five mathematical
expressions as:

xt+1 = xt +
sin(ϕt∆t)

ϕt
ẋt +

cos(ϕt∆t)− ∆t
ϕt

ẏt, (15)

yt+1 = yt +
1− cos(ϕt∆t)

ϕt
ẋt +

sin(ϕt∆t)
ϕt

ẏt, (16)

ẋt+1 = cos(ϕt∆t)ẋt − sin(ϕt∆t)ẏt, (17)

ẏt+1 = sin(ϕt∆t)ẋt + cos(ϕt∆t)ẏt, (18)

ϕt+1 = ϕt + ξP
t . (19)

The variance of Gaussian process noise ξP
t for turn rate ϕt is set to Υϕ = 0.15 in

simulations for assuming relatively high maneuverings.

2.3. Measurement Model

In this state estimation modeling, both WPV and CT models have the same measure-
ment model, which is also designed with the principle of state-space phenomena. The
mathematical expression of the measurement model at time step t is given as:

Xt+1 = H(Yt+1, ξM
t+1). (20)

Real-time passive maneuverings from the turning object at time step t are integrated
in a H(.) matrix, which is also known as measurement function. It contains complex
measurements by following the methodology of the point–slope tangent relationship. In
the above measurement model, independent Gaussian distributed measurement noise
is denoted with ξ at time step t. Passive measurements at sensors are obtained with
the real position of a dynamic target and orientation of sensors by using the following
relationship as:

H(Yt+1) = arctangent
[ yt −Λe

y

xt −Λe
x

]
︸ ︷︷ ︸

bearings

. (21)

In two-dimensional Cartesian coordinates, the real-time position of maneuvering target
is represented with (xt, yt) while localization of sensors e is denoted with (Λe

x, Λe
y) in the

above measurement function. Measurement model X given in (20) can be written in an
updated form for acoustic sensors e at time step t as:

Xe
t = arctangent

[ yt −Λe
y

xt −Λe
x

]
+ ξe

t
M . (22)

Measurement noise ξe
t
M in the above relationship has zero mean, while its covariance T

can be computed as:
ξe

t
M ≈ N(0, Tt), (23)

Tt = diag(ω2
X). (24)

In Equation (24), the standard deviation of measurement noise is denoted with ωX,
which plays a vital role in analyzing the accuracy of state estimation techniques in the ma-
neuvering target tracking framework. Variation of the standard deviation of measurement
noise defines the behavior of the undersea atmosphere. In our study, different values of the



Entropy 2021, 23, 1124 8 of 27

standard deviation of measurement noise are chosen for investigating the convergence and
robustness of the neural intelligence scheme and GPB algorithms. The coordinated turning
trajectory of the underwater object is developed by following these steps.

(1) Initial location of maneuvering object is the origin (0, 0), having a constant velocity of
1 towards x-axis e.g., (ẋt, ẏt) = (1, 0).

(2) A right turn is taken by target after 4 s of starting point with turn rate ϕt = −1.
(3) The target ends turning right at the total time of 9 s and moves straight with a constant

velocity of 1 for the next 2 s.
(4) At the total time of 11 s, the underwater target maneuver for the left turn with turning

parameter ϕt = 1.
(5) At the total time of 16 s, the target ends turning on the left side and moves straight

with a similar velocity for 4 s.

3. Intelligent Neural Computing

In this section, we designed an NARX neural intelligence mathematical model for
the efficient state prediction of the kinetic target in an underwater medium. In neural
computing, synchronization between supplementary external information and designed
time series cannot be ignored. In the problems of parameter estimation, the behavior of
the applied method is associated with noise depraved bearing. Hence, the information of
measurement noise or preceding data are usually incorporated for time series modeling to
find the satisfactory accuracy.

3.1. Nonlinear Autoregressive with the Exogenous Input (NARX) Neural Scheme

For the mathematical modeling of NARX neural intelligent computing, supervised
learning of neurons is used for finding the next information in time series by precisely
integrating preceding values. In time-series data, the external input and second output
are responsible for estimating future values in the designed structure of the NARX neural
computing. Therefore, input, output, delay, and hidden layers are combined for designing
a multilayer architecture of the NARX model. The time series of state equation Y(t) is esti-
mated for n preceding points of actual state Y with external input series of measurements
X(t) for a maneuvering object using the delay factor of m. For estimating required time
series, hidden nodes of NARX neural scheme are designed as:

Y(t) = k
(

X(t− 1), X(t− 2), . . . , X(t−m)
Y(t− 1), Y(t− 2), . . . , Y(t− n)

)
+ η(t). (25)

In the above designed nonlinear model of NARX neural intelligence learning, mea-
surements X(t) is a j-dimensional additional time series while Y is denoting output time
series with dimensions of k. The error of neural structure is η(t), while output delays are
represented with m and n, respectively:

q(t) = fρ1(X(t)wρ1 + γρ1
), (26)

Y(t) = fρ2(q(t)wρ2 + γρ2
). (27)

In the above equations, the hidden layer vector is denoted with q(t) having dimen-
sions of ρ. Weights between multilayers are represented by wρ1 and wρ2 correspondingly.
However, thresholds of hidden layers and input layers are represented with γρ1

and γρ2
accordingly. The network function of hidden nodes is fρ1 , and the activation response of
output nodes is shown by fρ2 . A multiple layer paradigm of NARX technique is depicted
in Figure 3.
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Figure 3. The multilayer structure of the NARX neural network.

3.2. Architecture of an NARX Neural Scheme

It is important to note that NARX is a recursive discrete-time neural network, which
consists of a time series and can be designed as:

Y(t + 1) = k
(

Y(t), Y(t− 1), . . . , Y((t− c) + 1)
X(t− (n + 1)), . . . , X((t− c)− (n + 1))

)
. (28)

The time delay parameter n is assumed null in the above equation. Based upon this
assumption, the updated form of NARX model is shown as:

Y(t + 1) = k
(

Y(t), Y(t− 1), . . . , Y(t− c,+1)
X(t), X(t + 1), . . . , X(t− c,+1)

)
. (29)

The above function is expressed in vector form as:

Y(t + 1) = k(Y(t), X(t)). (30)

In the above vector form, input and output regress are represented with vectors X(t)
and Y(t) correspondingly. For the efficient training of the NARX neural model, we applied
a Levenberg–Marquardt (LM) based algorithm. The detailed design of NARX neural
strategy is represented in Figure 4.

Figure 4. Architecture of the NARX neural network.
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3.3. Levenberg–Marquardt (LM) Training Method

The LM method is a well-known training setup found in literature for designing an
NARX neural network. It is also known as the fastest learning mechanism for the formu-
lation of an algorithm. Its training efficiency is far better from other training algorithms
because it computes the second-order derivatives without solving the Hessian matrix. The
two scientists Donald Marquardt and Kenneth Levenberg introduced the concept of the
LM training method. Minima of measurement function J(X) is calculated initially in the
LM technique with the summation of squares for nonlinear functions as:

J(X) =
β

∑
α=1

1
2
[jα(X)]2. (31)

The Hessian function P and gradient parameter g are computed as:

P = ST
t St, (32)

g = ST
t ηt. (33)

In the above Hessian matrix and gradient equation, S is representing the Jacobian
matrix. Here, we combined the first-order derivatives of neural network error in corre-
spondence with weights and biases, whereas the overall error of the NARX neural model
for all training samples is shown with ηt. The Jacobian matrix is only used for necessary
computations in the LM training scheme. However, the means of the squared errors are
combined in the performance function. The search space for the LM training technique is
calculated in the following order as:

(ST
t St + ℘tI)ϑt = −ST

t jt. (34)

In the given search space function, an identity matrix is represented with I and positive
scalars are denoted with ℘t giving increment of ϑt. Therefore, the principle of updating
weights wt in the training mechanism is expressed as:

wt+1 = wt −
Stηt

(ST
t St + ℘tI)

. (35)

3.4. Performance Evaluation Criterion

At every time instant t, the least mean square position error between a true and
approximated position for turning object is formulated as an evaluation criterion for
neural intelligence computing methodology. In this study, it shows the precision and
convergence for a neural intelligence technique. On the other hand, the MSE function
of NARX, IMMEKF, and IMMUKF are formulated for each independent Monte Carlo
simulation as:

MSE(t) =
1
N

N

∑
t=1

∥∥∥YTrue
t − YEst

t

∥∥∥2
(36)

In the above MSE function, we denote the true state for turning objects as YTrue
t , while

an approximated state of the target with NARX and filtering techniques is represented by
YEst

t . However, the total number of data points is shown by N which are 200 in simulations,
whereas t = 1 is the initial data point. These position errors are computed at each time step
t for the turning trajectory.

4. Simulation Results and Discussion

In this section of the study, simulation results in the sense of real-time state approxi-
mates, position error, velocity error, turn rate estimates, error histogram, and regression
are briefly explained for proposed NARX based neural computing.
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The standard deviation of measured Gaussian noise is chosen as a performance
parameter and numerically varied from 0.01 to 1 radian in simulations for designing five
different cases. The highest value of measured noise ω = 1 radian is showing a cluttered
ocean environment, while minimum value ω = 0.01 radian depicts the ideal atmosphere.
In simulations, there are many mathematical variables in state estimation phenomena that
need to be accurately adjusted for acquiring the required performance. Suitable values of
state estimation parameters are given in Table 1.

Table 1. Appropriate setting of different state estimation variables.

Parameters Appropriate Values
Starting state of the target Y0 = [0 0 1 0 0]T

Localization function of sensors (Λe
x, Λe

y)

Total sensors e = 8
Distance between sensors 0.5

Values of Standard deviation of measured noise ω = 0.01→ 1 radians
Process noise variance of WPV model b1 = 0.05

Process noise variance of CT model Υϕ = 0.15
Sampling space ∆t= 0.1 s

Input and output delays m, n = 2
Total sample points 200

Hidden neurons 100
NARX target steps 1000

Passive bearings combined at acoustic observers are denoted with X(t) and the actual
state of maneuvering target represented with Y(t) are applied to NARX neural network as
inputs for computing approximated state Y(t). The neural network toolbox for NARX in
the MATLAB software package is used for the conduction of the simulations. The toolbox
structure of NARX Model is based on input, hidden, and output layer as shown in Figure 5.

Figure 5. Architecture of the NARX neural network.

The actual state vector in Equation (11), which consists of five entities like x–y po-
sitions, x–y velocities, and the turning parameter is applied on one input while passive
measurements from eight sensors are applied as another input to the NARX model for
obtaining the estimated state vector of five elements. In simulations, 100 hidden neurons
are used in the hidden layer while a sigmoid function is used for activation of these neu-
rons. The process of training weights for NARX is done with the LM method by using
backpropagation through time methodology. The epoch mode strategy is conducted in the
training process of the neural network. In the designing of the NARX neural network, 70%
of the data of the complete time series is used for the training process, while the remaining
30% is divided equally in the validation and testing procedure of the obtained results.
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4.1. State Estimation Analysis of Markov Chain Maneuvering Target for Different Cases of the
Standard Deviation of Measurement Noise

In this subsection, MATLAB simulations’ results and their brief discussion are ex-
plained for real-time state prediction of the maneuvering object by applying IMMEKF,
IMMUKF, and NARX neural intelligence computing. Accuracy and convergence based
performance analysis of NARX is compared with IMM filters for five particular variations
of the standard deviation of measured noise. In every case, state estimates, position error,
velocity error, turn rate estimates, error histogram and regression analysis of GPB algo-
rithms and NARX neural computing are presented from Figures 6–15. These five different
cases are discussed below with their mathematical expressions and simulation outcomes.

4.1.1. Case 1: The Standard Deviation of Measurement Noise = 0.01 Radian

In the first case, the standard deviation of measured Gaussian noise ω is selected as a
0.01 radian that is depicting nearly an ideal and smooth underwater environment. Although
covariance in this case is computed from the standard deviation of measurement noise as:

Tt = diag(ω2
X), (37)

while measurement noise at time instant t for e sensors is calculated from covariance as:

ξe
t
M ≈ N(0, Tt). (38)

For each passive bearing at time step t for sensor e, above the computed measurement
noise, is integrating with measurement model X as:

Xe
t = arctangent

[ yt −Λe
y

xt −Λe
x

]
+ ξe

t
M . (39)

The above designed measurement model Xe
t is applied at one input of the NARX

neural model as input time series data. Another input of the NARX model is the target’s
time series where the true state vector defined below is applied for obtaining an estimated
state of underwater maneuvering target:

Yt = Ya
t − Yb

t =
[

xt yt ẋt ẏt ϕt
]T. (40)

For this value of the standard deviation of measured noise in case 1, real-time state
estimates, average true and estimated position and velocity error, true and estimated turn
rate, error histogram, and regression analysis of real and predicted turning path are given as:

• In Figure 6a, a state estimation performance of NARX for a tracking turning trajectory
of the maneuvering object is equated with GPB algorithms based on IMMEKF and
IMMUKF, and it is quite vibrant that NARX is accurately tracing the actual turning
path of the maneuvering target.

• Position error analysis in mean square sense is presented in Figure 6b in which NARX
is showing the least error among other techniques.

• In Figure 6c, the error between true velocity and estimated velocity that is also pre-
sented in the context of MSE is shown. In this result, the NARX neural scheme is
efficiently estimating true velocity compared to multiple model Kalman filters for all
data points.

• Turn rate estimates of IMMEKF, IMMUKF, and NARX are illustrated in Figure 6d.
Estimates of turning parameter are also validating the effectiveness of NARX over
IMM filters for all data points in complete turning trajectory.

• Error histogram between target time series Y(t− 1), Y(t− 1), . . ., Y(t− n), and esti-
mated output data YEst

t are illustrated in Figure 6e. An error histogram consists of a
set of error values that can be negative, and these define how much difference there
is between estimated and target time series. In this analysis, the overall error of the
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NARX neuro network is divided into 20 bins that are shown in vertical bars. At the
start of the histogram, a bin is unique from others having an error of 0.00017 at the
height of 350 instances indicating that several points in time series have errors in this
range. The zero error bar also falls on this bin which defines the zero error of the
neural network.

• Regression analysis of the NARX scheme for training, validation, and testing proce-
dure is shown in Figure 6f. The time series data set in the designed neural network
is distributed in training, validation, and testing with the proportion of 75%, 15%,
and 15%, respectively. This analysis integrates the statistical parameters for showing
the relationship between the output variable YEst

t and target variable Y(t). Here, in
regression results, the true target and estimated output overlay each other. A linear
trend is observed in both values that show the strength of NARX neural computing.
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Figure 6. State estimation performance of IMMEKF, IMMUKF, and NARX for ω = 0.01 radian.

We also compute position and velocity MSE between real and estimated position and
velocity of the object. These position and velocity error results also satisfy the graphical
simulations that the precision of NARX is better from IMM Kalman filters. Position and
velocity errors calculated for IMMEKF, IMMUKF, and NARX are enlisted in Figure 7.

 

Position MSE (m) Velocity MSE (m)

IMMEKF 0.00073 0.00758

IMMUKF 0.00069 0.00726

NARX 0.00023 0.00323
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Figure 7. Average MSEs of predicting the position and velocity for IMMEKF, IMMUKF, and NARX
in case 1.

4.1.2. Case 2: The Standard Deviation of Measurement Noise = 0.05 Radian

The standard deviation of measurement noise is chosen as ω = 0.05 radian in case 2 for
incorporating some amount of measurement noise in the estimation process. Meanwhile,
covariance from this standard deviation of measurement noise is computed as:

Tt = diag(ω2
X), (41)

Gaussian distributed measurement noise at time step t for sensor e is depending upon
above calculated covariance as:
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ξe
t
M ≈ N(0, Tt). (42)

At each time instant t, measurement noise is including in the measurement model for
sensor e as:

Xe
t = arctangent

[ yt −Λe
y

xt −Λe
x

]
+ ξe

t
M . (43)

Likewise, this designed measurement model Xe
t is applied to the neural network as an

input time series. At other inputs of NARX, the following state vector is applied as a target
time series:

Yt = Ya
t − Yb

t =
[

xt yt ẋt ẏt ϕt
]T. (44)

Real-time position of maneuvering object (xt, yt), velocity (ẋt, ẏt), and turn rate ϕt
are actually the motion parameters which we want to estimate with NARX intelligence
computing. Simulation results consisting of state estimates, position error, velocity error,
turn rate estimates, error histogram, and regression analysis for this case are shown below:

• In Figure 8a, state estimates of all three techniques are compared for the coordinated
turning trajectory of the maneuvering target. It is worth to note that, for this value of
the standard deviation of measured noise, NARX is showing better state estimates
and convergence than conventional nonlinear filtering methods.

• Average mean square position error among actual and predicted position of underwa-
ter maneuvering target is depicted in Figure 8b, which is representing the precision of
NARX over IMMEKF and IMMUKF.

• In Figure 8c, true and estimated velocity of the maneuvering object estimated from
IMM filters and NARX neural network is compared, and intelligence neural method-
ology is performing far better from filtering techniques.

• Figure 8d is showing turn rate estimates for this case of measurement noise in which
again NARX is showing better estimates of turning parameter than existing filter-
ing schemes.

• In Figure 8e, error histogram results are shown among target time series data set
Y(t− 1), Y(t− 1), . . . . . ., Y(t− n), and predicted output value YEst

t of the object’s
state. In the middle part of histogram, a vertical bin consists of an error of 0.002741,
and the length of this for the training dataset lies around 250 instances, while the
validation and testing dataset lie between 200 and 250 instances. In this case, zero
error lies beneath the vertical bar with center 0.002741.

• In Figure 8f, the regression of NARX neural intelligence computing is given for
training, validation, and testing procedure. In regression analysis, the effectiveness
of the NARX neural network is depicted by linear behavior and the head-to-head
response of the true target and estimated output.

Position and velocity MSEs between actual and predicted position and velocity of
turning target are computed for this variation of measurement noise. These position and
velocity errors verify the previous results that estimation performance of NARX is higher
than IMM Kalman filters, and it proves the strength of the neural methodology in state
prediction of the maneuvering object. These position and velocity errors computed from
IMMEKF, IMMUKF, and NARX are enlisted in Figure 9.
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Figure 8. State estimation performance of IMMEKF, IMMUKF, and NARX for ω = 0.05 radian.
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Figure 9. Average MSEs of predicting the position and velocity for IMMEKF, IMMUKF, and NARX
in case 2.

4.1.3. Case 3: The Standard Deviation of Measurement Noise = 0.1 Radian

The standard deviation of measured Gaussian noise is increased to ω = 0.1 radian
in this case representing that there is enough noise added in the system. The covariance
T at time instant t from 0.1 radian standard deviation of Gaussian measurement noise is
calculated as:

Tt = diag(ω2
X), (45)

Measurement noise from the above developed covariance for e sensor at time step t is
defined as:

ξe
t
M ≈ N(0, Tt). (46)

Now, this generated amount of Gaussian measured noise is incorporating with the
system model as:

Xe
t = arctangent

[ yt −Λe
y

xt −Λe
x

]
+ ξe

t
M . (47)

Measurement model X at time step t for sensor e is given in the above expression
where passive bearings from all installed acoustic sensors are merging with white Gaussian
distributed measurement noise. This measurement model expression is applied to the
neural network model as an input dataset, while another input of the neural network
consists of a given state vector of motion parameters:

Yt = Ya
t − Yb

t =
[

xt yt ẋt ẏt ϕt
]T. (48)

Simulation results for this variation of measurement noise in the shape of state esti-
mates, least position error, velocity error, turning parameter estimates, error histogram,
and regression analysis are shown below:
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Figure 10. State estimation performance of IMMEKF, IMMUKF, and NARX for ω = 0.1 radian.
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• State prediction results in coordinated turn trajectory for all methods are given in
Figure 10a, where the NARX based neural intelligence computing technique is show-
ing better accuracy over conventional IMMEKF and IMMUKF. It can be seen that
multimodel filters are experiencing more difficulty to estimate the state of the maneu-
vering object at turns of the trajectory than NARX, which is depicting the competency
of the neural paradigm.

• Real-time positions errors of IMM filters and NARX are shown in Figure 10b in the
context of the mean square. In this result, the accuracy of NARX is also better from
other methods for all samples of turning trajectory.

• In Figure 10c, the velocity error of maneuvering object from all algorithms is shown
in meter per second for all data points. The middle of the trajectory performance of
NARX is not satisfactory, but, at the start and at the end of data points, NARX shows
better performance than IMM filters.

• Turn rate estimates of all algorithms are presented in Figure 10d in which the estima-
tion performance of neural computing is far better from Kalman filters.

• A comparative analysis among target time series Y(t− 1), Y(t− 1), . . ., Y(t− n), and
the estimated value YEst

t of target’s dynamics in the form of the histogram is repre-
sented in Figure 10e. A vertical bar incorporating an error of 0.006892 is shown in
the center of the histogram. The height of this vertical bin for the training process
is near 300 instances, whereas validation and testing dataset appears between 250
and 300 instances. Zero error for this analysis lies under the vertical bin with a value
of 0.006892.

• Regression phenomena in graphical form for the procedures of training, validation,
and testing are explained in Figure 10f. In this graph, a minimum divergence between
target and output value is noted, which is because of an increment in the standard
deviation of measured noise.

MSEs of position and velocity in meters and m/sec correspondingly between actual
and predicted position and velocity of the target are also computed in this case. These
position and velocity errors also approve the graphical results that precision of the neural
network is far better with respect to multimodel filters. These position and velocity errors
computed from IMMEKF, IMMUKF, and NARX are represented in Figure 11.
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Figure 11. Average MSEs of predicting the position and velocity for IMMEKF, IMMUKF and NARX
in case 3.



Entropy 2021, 23, 1124 20 of 27

4.1.4. Case 4: The Standard Deviation of Measurement Noise = 0.5 Radian

In case 4, the numerical value of measured noise is increased to ω = 0.5 radian,
which is representing a sufficient quantity of Gaussian noise that is incorporated in the
state estimation system. The mathematical expression of covariance designed with this
measured noise is expressed as:

Tt = diag(ω2
X), (49)

while measurement Gaussian noise is computed from covariance as:

ξe
t
M ≈ N(0, Tt). (50)

Measured noise at times step t for e sensor is added in the measurement equation of
the system as:

Xe
t = arctangent

[ yt −Λe
y

xt −Λe
x

]
+ ξe

t
M . (51)

The complete measurement model equation involving passive bearings and measure-
ment noise is given to one input of the NARX neural model as an input time series Xe

t ,
while another input called target time series is the actual state vector is given below:

Yt = Ya
t − Yb

t =
[

xt yt ẋt ẏt ϕt
]T. (52)

These real-time positions, velocities, and turn rates of kinetic passive maneuvering
objects are developed for the absolute turning path of underwater targets and given in
NARX neural design as target data for predicting these required motion parameters. In
Figure 12, simulation results of state estimates, position error, velocity error, turn rate
estimates, error histogram, and regression are shown as:

• In Figure 12a, state estimates of IMMEKF, IMMUKF, and NARX are presented in
which the amount of measurement noise is high so all algorithms are experiencing
difficulties to follow the real trajectory. However, even in the noisy atmosphere, it is
seen that estimates of NARX are approaching a real trajectory more than the two other
given algorithms.

• Average MSE among actual and predicted position of the maneuvering object is
represented in Figure 12b, which is also showing that all algorithms have enough
amount of error, but from a comparative point of view, NARX is estimating turning
trajectory with less position error than IMMEKF and IMMUKF.

• In Figure 12c, velocity error from all methodologies is shown, which is also validating
the strength of the neural network.

• Turn rate estimates in this case are presented in Figure 12d in which the estimation
performance of neural computing is also better from IMM filtering methods.

• An error histogram among target values Y(t− 1), Y(t− 1), . . . . . ., Y(t− n), and output
estimated value YEst

t of target’s state is shown in Figure 12e. An error value −0.03387
in a vertical bin appears at the center of the histogram which has a height of close
to 300 data points for the training dataset, while validation and testing datasets fall
among 250 and 300 data sets. The zero error line on the error axis lies beneath the
vertical with center −0.03387 in the given error histogram.

• Regression in this case is given in Figure 12f which is showing a sufficient amount of
divergence between the true target and estimated output because of the increase in
the standard deviation of measured noise.

The position and velocity MSEs between actual and predicted position and velocity
of the maneuvering target are also calculated in this case. These position and velocity
error responses also verify previous results that NARX is showing better performance from
Kalman filters. These position and velocity errors computed from IMMEKF, IMMUKF, and
NARX are defined in Figure 13.



Entropy 2021, 23, 1124 21 of 27

-1 0 1 2 3 4 5 6 7

X axis

-4

-3

-2

-1

0

1

2

3

4

Y
 a

x
is

State Estimates of IMM Filters and Neural Computing

True Trajectory

IMMEKF

IMMUKF

NARX

Position of Sensors

(a) State estimates of the maneuvering target

0 20 40 60 80 100 120 140 160 180 200

Data Points

0

1

2

3

4

5

6

M
S

E
 (

m
)

Position Error of IMM Filters and Neural Computing

IMMEKF

IMMUKF

NARX

(b) Position error for complete turning trajectory

0 20 40 60 80 100 120 140 160 180 200

Data Points

0

1

2

3

4

5

6

7

8

9

M
S

E
 (

m
/s

)

Velocity Error of IMM Filters and Neural Computing

IMMEKF

IMMUKF

NARX

(c) Velocity error for complete turning trajectory

0 20 40 60 80 100 120 140 160 180 200

Data Points

-1.5

-1

-0.5

0

0.5

1

1.5

T
u
r
n
 R

a
te

Turn Rate Estimates of IMM Filters and Neural Computing

True Turn Rate

IMMEKF Estimate

IMMUKF Estimate

NARX Estimate

(d) Turn rate estimates for complete turning tra-
jectory

0

50

100

150

200

250

300

In
s
ta

n
c
e
s

Error Histogram with 20 Bins

-1
.9

6
4

-1
.7

2
3

-1
.4

8
1

-1
.2

4

-0
.9

9
8

9

-0
.7

5
7

6

-0
.5

1
6

4

-0
.2

7
5

1

-0
.0

3
3

8
7

0
.2

0
7

4

0
.4

4
8

6

0
.6

8
9

9

0
.9

3
1

1

1
.1

7
2

1
.4

1
4

1
.6

5
5

1
.8

9
6

2
.1

3
7

2
.3

7
9

2
.6

2

Errors = Targets - Outputs

Training

Validation

Test

Zero Error

(e) Error histogram between target data and out-
put data

-2 0 2 4 6

Target

-2

0

2

4

6

O
u

tp
u

t 
~

=
 1

*T
a
rg

e
t 

+
 7

.9
e
-0

5

Training: R=1

Data

Fit

Y = T

-2 0 2 4 6

Target

-2

0

2

4

6

O
u

tp
u

t 
~

=
 0

.9
7
*T

a
rg

e
t 

+
 0

.1
3

Validation: R=0.9103

Data

Fit

Y = T

-2 0 2 4 6

Target

-2

0

2

4

6

O
u

tp
u

t 
~

=
 0

.9
2
*T

a
rg

e
t 

+
 0

.0
2
8

Test: R=0.88235

Data

Fit

Y = T

-2 0 2 4 6

Target

-2

0

2

4

6

O
u

tp
u

t 
~

=
 0

.9
8
*T

a
rg

e
t 

+
 0

.0
2
3

All: R=0.96936

Data

Fit

Y = T

(f) Regression analysis of NARX

Figure 12. State estimation performance of IMMEKF, IMMUKF, and NARX for ω = 0.5 radian.
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Figure 13. Average MSEs of predicting the position and velocity for IMMEKF, IMMUKF, and NARX
in case 4.

4.1.5. Case 5: The Standard Deviation of Measurement Noise = 1 Radian

In the last case of this study, we take a maximum value ω = 1 radian for assuming an
extremely noisy atmosphere, and the state estimation system is facing a noisy measurement
model. For this maximum value of ω, covariance Tt is defined as:

Tt = diag(ω2
X), (53)

At time instant t, Gaussian distributed measurement noise ξe
t
M is computed for e

sensor from covariance Tt as:
ξe

t
M ≈ N(0, Tt). (54)

Finally, this extreme value of independent white Gaussian measurement noise is
included in measurement expression as:

Xe
t = arctangent

[ yt −Λe
y

xt −Λe
x

]
+ ξe

t
M . (55)

These passive measurements incorporated with maximum measurement noise are
used as input time series Xe

t of NARX neural architecture, while the target time series of
the neural network is taken from an actual state vector, which is defined below:

Yt = Ya
t − Yb

t =
[

xt yt ẋt ẏt ϕt
]T. (56)

The NARX based neural network is combining input time series and target time series
to efficiently estimate output time series, which consist of the predicted state vector. In
this case, results of state estimates, position error, velocity error, turn rate estimates, error
histogram, and regression are shown in Figure 14.

• State estimates of IMMEKF, IMMUKF, and NARX in this case are presented in
Figure 14a. State estimation results from all algorithms are diverging because of an
extremely noisy underwater environment. All algorithms are facing severe difficulties
in tracking true trajectory, but, in comparison, neural computing methodology NARX
is performing better to estimate turning trajectory than the other two algorithms in
this case.
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• Average real-time error among the actual and predicted position of underwater ma-
neuvering object is represented in Figure 14b in the form of MSE, which is clearly
indicating that the NARX neural network is producing less position error as compared
to IMMEKF and IMMUKF.

• In Figure 14c, velocity error results from all techniques are shown in which NARX is
experiencing some large peaks but overall has better performance from IMM filters.

• Turn rate estimates in this case are representing in Figure 14d in which NARX is better
estimating the turning parameter.

• An analysis of neural network in the form of error histogram is represented in
Figure 14e among target dataset Y(t − 1), Y(t − 1), . . . . . ., Y(t − n), and predicted
output YEst

t . A vertical bin is observed having an error of 0.1166 with a height near
250 steps for training while validation and testing datasets have a height between 200
and 250 steps. The zero error point lies at 0.1166 beneath the vertical bin.

• The regression of the NARX neural network between target and estimated output in
this case is represented in Figure 14f. In regression results, a sufficient divergence is
observed among the target and estimated results. This is because of a higher value of
Gaussian noise involved in the state estimation system.
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Figure 14. State estimation performance of IMMEKF, IMMUKF, and NARX for ω = 1 radian.

An extreme noisy environment position and velocity MSEs between actual and pre-
dicted position and velocity of the target are calculated in meters and m/s, respectively.
These position and velocity error results confirm previous results that the accuracy of
NARX is better from Kalman filters even in an extremely noisy underwater environment.
Position and velocity errors computed from IMMEKF, IMMUKF, and NARX are enlisted in
Figure 15.

 

Position MSE (m) Velocity MSE (m)
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IMMUKF 2.68362 0.86556
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Figure 15. Average MSEs of predicting the position and velocity for IMMEKF, IMMUKF, and NARX
in case 2.

The above figures of all simulation results prove that all state prediction methods are
facing problems with following the real state of turning maneuvering objects at higher
arithmetic values of measurement noise ω in an underwater atmosphere. While in a
comparative point of view among all methods, NARX based neural intelligence computing
is performing far better, which is proving its effectiveness for nonlinear real-time state
prediction applications in the underwater scenario.
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5. Conclusions

In this paper, we investigated the neural intelligence computing paradigm based
on NARX for real-time state estimation of a bearings only maneuvering Markov chain
underwater object. At each time instant, the instantaneous positions of a continuously
turning object are estimated in the bi-dimensional Cartesian geometric system. Initially, the
state space-based estimation framework for a dynamic and measurement model using BOT
phenomena are designed mathematically. Then, the neural computing technique based on
NARX is designed for efficient state estimation of a passive maneuvering Markov chain
target. In this context, the NARX neural strategy is examined in MATLAB for 200 data
points, and we assessed the robustness of neural computation for an absolute turning
trajectory of object motion in the sense of turn rate estimation, current position estimation,
real-time state estimation, and velocity error along with error histogram and regression.
Later, enough variations of standard deviation of measurement Gaussian noise are used for
examining the performance of the designed method. State estimation results endorsed the
competency of the NARX neural technique as compared with typical nonlinear multiple
model Bayesian filtering methods like IMMEKF and IMMUKF. However, an exponential
decay in the simulation results of all methods is observed in a noisy underwater scenario.
Therefore, determining precise state prediction performance in a cluttered sea atmosphere
is still a challenge.

In the future, this work can be extended by investigating the radial base function
(RBF) neural methodology for getting more accurate state estimation of a constant velocity
multiple model turning single or multi objects by applying non-Gaussian noise [45,46],
which is an interesting research domain in the field of acoustic signal processing. In
addition, in future studies, a detailed complexity analysis can be conducted for analyzing
time delay between NARX neural computing and filtering strategy.
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