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Abstract: Fecal contamination in natural water sources is a common problem in low-income countries.
Several health risks are associated with unprotected water sources, such as gastrointestinal infections
caused by parasites, viruses, and bacteria. Moreover, antibiotic-resistant bacteria in water sources
have become an increasing problem worldwide. This study aimed to evaluate the bacterial pathogens
present in water within a rural context in Ecuador, along with the efficiency of black ceramic water
filters (BCWFs) as a sustainable household water treatment. We monitored five natural water sources
that were used for human consumption in the highlands of Ecuador and analyzed the total coliforms
and E. coli before and after BCWF installation. The results indicated a variable bacterial contamination
(29–300 colony-forming units/100mL) in all unfiltered samples, and they were considered as high risk
for human consumption, but after filtration, no bacteria were present. Moreover, extended-spectrum
beta-lactamase-producing E. coli with blaTEM, blaCTX-M9, and blaCTX-M1 genes, and two E. coli classified
in the clonal complex ST10 (ST98) were detected in two of the locations sampled; these strains can
severely impact public health. The clonal complex ST10, found in the E. coli isolates, possesses the
potential to spread bacteria-resistant genes to humans and animals. The results of the use of BCWFs,
however, argue for the filters’ potential impact within those contexts, as the BCWFs completely
removed even antibiotic-resistant contaminants from the water.

Keywords: black ceramic water filters; water quality; resistant bacteria; extended-spectrum
β-lactamase; ST10 clonal complex

1. Introduction

Water pollution is a problem greatly impacting human health. Only an estimated 71%
of the world’s population has access to safe drinking water [1,2]. Among the pollutants
are bacteria, protozoa, viruses, and noxious chemicals. A study carried out in 2019 by
the United Nations’ International Emergency Children’s Fund and the World Health
Organization to assess water quality found that approximately 844 million people lacked
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a readily available source of safe drinking water. Of this number of people, 263 million
spent more than 30 min per day finding water, and 159 million were using natural water
sources for consumption. As a consequence of this lack of safe drinking water in rural areas,
along with poor sanitation, the appearance of gastrointestinal diseases, such as infectious
diarrhea, cholera, dysentery, hepatitis A, and typhoid, have become a serious human health
problem [2].

Indeed, contaminated water has been estimated to cause approximately 502,000 deaths
from diarrhea per year [3], while 10% of the deaths of children under five years old are
related to diarrhea, with a total of 800,000 deaths per year [4]; these cases are clearly
more frequent in developing countries. In Ecuador, diarrhea is the third leading cause
of morbidity, along with 30,269 hospital discharges per year [5,6]. This frequency mainly
occurs because of the very limited access to safe drinking water in rural areas. In fact, only
57.5% of the inhabitants have access to sanitation systems [7]. In addition, as a consequence
of this contamination of water, multidrug-resistant bacteria, now globally widespread,
represent a continuous risk of increased morbidity and mortality in the rural areas of
developing countries [8].

The highlands of Ecuador, with rural villages and hamlets, is a prime example of this
problem. According to the most recent data published by the government, only 52.1% of
Ecuador’s inhabitants have access to a potable water system, while 47.9% must obtain
this resource from wells, rivers, or rainwater [7]. Contamination from sewage, garbage,
livestock, agricultural chemicals, debris, and other inputs, however, makes these alternative
water sources unfit for human consumption. In addition, the data from the government
specify that 19% of the inhabitants of the country do not have a correct mechanism for fecal
elimination, with 7% eliminating waste into the same rivers that populations will later use
for their consumption. Consequently, according to data from 2019, contaminated food and
water were the cause of ca. 24,000 clinical cases [5,9].

Furthermore, in rural areas of Ecuador, certain antibiotics are used in animals for
prophylactic treatment and growth promotion in unknown quantities [10,11]. These un-
controlled practices increase the selection for antibiotic resistance in the resident bacteria.
These antibiotics are dumped into the rivers and ponds from which the inhabitants con-
sume water. The antibiotics also reach the intestinal saprophytic microbiota in situ so
as to reduce the effectiveness of those same drugs when they are subsequently used to
treat gastrointestinal infections against the bacteria thus exposed [12]. This uncontrolled
practice in recent years has led to the initiation of several types of research in Germany,
Algeria, China, and Brazil, aimed at detecting bacterial-resistance genes, such as mobile
colistin-resistant (mcr-1) and ESBL-producing E. coli in water samples [13–16]. In Ecuador,
ESBL-producing E. coli and mcr-1 genes were detected in the feces of yard animals and in
urban fauna, as well as in human fecal samples [17–20]. In the Andean region of Ecuador,
however, research on natural water sources has been very limited.

Within this context, a definite and sustainable solution that has been suggested for
providing safe drinking water in low-income settings is the use of household water treat-
ment [2]. The advantage of water-purification technology is its ease of use and its acces-
sibility to remote communities. Among the devices that have been studied, compared
to the classic models implemented worldwide, black ceramic water filters (BCWFs), new
household water treatment devices that have been recently developed to improve microbial
removal, were the best option. BCWFs have proved to be a viable alternative for elimi-
nating bacteria and reducing viruses in contaminated water. Such filters, in addition to a
complementary treatment, such as chlorination, can be used in homes to reduce enteric
viruses and fully eliminate protozoa and bacteria, thus markedly diminishing the incidence
of gastrointestinal diseases generated by contaminated water [21,22].

Consequently, BCWFs could be readily used for water purification among populations
with limited access to safe drinking water. The present study was thus aimed at evaluating
the degree of bacterial contamination in the water; genotyping E. coli; surveying the
antibiotic-resistance genes in ESBL-producing strains from the water sources; and, finally,
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verifying the feasibility of BCWFs as effective household water-treatment devices for
low-income populations in the highlands of Ecuador.

2. Materials and Methods
2.1. Study Area and Water Sampling

The highlands of Ecuador are Andean environments that range from 2300 to over
4500 m above sea level. Livestock activities and rural settlements are common in this area.
The study region was located in rural neighborhoods around Nono village (0003.9263 S,
07834.6171 W) in the Pichincha province, a mountainous area located 30 km from Quito,
the capital of Ecuador, with 2.5 million inhabitants (Figure 1). Firstly, we performed a
survey of 40 families in the villages to identify the sampling sites through consideration
of the water sources that were used for drinking by the local inhabitants. The procedure,
in brief, was as follows: From each location selected after survey, samples were collected
from the water sources (ponds and rivers) of the Nono district. Next, 5 L were taken in
water sampling polypropylene bottles and transported to laboratories at the University
of the Americas for subsequent analysis. In addition, samples from each drinking water
source were collected in order to assess the effectiveness of BCWF in filtering fecal bacteria.
The BCWFs used were an in-house developed technology for household water treatment,
published in a previous study and applied in Ecuadorian low-income communities [23]
(technical specifications in Supplementary Materials 1).
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Figure 1. Map of Nono district, Pichincha province, Ecuador. The overall figure illustrates the
geographical orientation of Ecuador within Central America. In the expanded map of the inset, the
numbers (1–5) indicate the locations where the samples of water were taken, with the Universal
Transverse Mercator coordinates of each point listed in the table below.

2.2. Physicochemical and Microbiologic Analysis of BCWF Efficacy

The samples from the five locations were first analyzed to evaluate the contamination
present in the water sources for those communities. The characterization of physicochemical
and microbiologic parameters of water quality was carried out through the use of standard
methodologies [24] before and after BCWF filtration; 1 l from each natural water source was
filtered through a BCWF for efficiency analysis. A Student t-test was performed in order to
determine significant differences between before and after filtrating for physicochemical
analysis. Microbial analysis consisted of quantification of the total coliforms and E. coli
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present. To that end, 100 mL of the water samples, before and after BCWF filtration, were
filtered through nitrocellulose membranes of 0.45 µm pore size (Millipore, Amsterdam, The
Netherlands) and incubated in a chromogenic agar (Chromocult Agar, Merck, Darmstadt,
Germany) at 37 ◦C for 18 h. Typical colonies of E. coli and coliforms were counted and
quantified [25] For the confirmation of E. coli, the colonies from the chromogenic agar were
transferred to EMB agar and incubated at 37 ◦C for 24 h. Typical metallic-green colonies
were selected for the indole and TSI biochemical tests. Bacterial cryopreservation was
performed in brain heart infusion broth, with 10% (v/v) glycerol, and was frozen at −20 ◦C
and −80 ◦C for further analysis.

2.3. Molecular Genetic Determination of Resistance Genes in E. coli

In order to detect the presence of resistance genes, the genomic DNA of E. coli was
extracted with the PureLink® Genomic DNA Kit (Invitrogen, Waltham, MA, USA), accord-
ing to the manufacturer’s instructions. The resulting DNA samples were quantified in
NanoDrop equipment (Thermo ScientificTM, Waltham, MA, USA, ND-2000) and stored
at –80 ◦C. For genetic identification of mcr genes, a polymerase chain reaction (PCR) was
performed for mcr-1 with the forward, 5’-GCTACTGATCACCACGCTGT-3’, and reverse,
5’-AGCTGAACATACACGGCACA-3’, primers, yielding a product size of 698 bp. ESBL
genotyping was performed through the use of a Qiagen Multiplex PCR-plus kit (Qia-
gen, Germantown, MD, USA) in a method that can simultaneously detect blaTEM, blaSHV,
blaCTX-M1, blaCTX-M2, blaCTX-M9, and blaCTX-M8/25, as previously described [26].

Gene amplification was carried out in an Eppendorf thermocycler, Mastercycler® PRO
(Eppendorf, Hamburg, Germany). The conditions and cycles for thermocycling for the
mcr-1 gene were as follows: initial activation (1 cycle at 95 ◦C, 15 min), denaturation (94 ◦C,
30 s), annealing (62 ◦C, 90 s), and extension (72 ◦C, 90 s) for 30 cycles, followed by a final
extension (1 cycle at 72 ◦C, 10 min). In addition, the conditions for ESBL screening were
as follows: initial activation (1 cycle at 95 ◦C, 3 min), denaturation (95 ◦C, 30 s), annealing
(60 ◦C, 90 s), and extension (72 ◦C, 90 s) for 30 cycles, followed by a final extension (1 cycle
at 68◦ C, 10 min). The PCR products were analyzed on a 2% (w/w) agarose gel with SYBR
Safe and 1X Tris-borate-EDTA buffer. Electrophoresis was programmed at 100 V for 30 min
in a Labnet Enduro Gel XL horizontal chamber (Labnet International, Inc., Edison, NJ, USA).
The agarose gel was visualized on a ChemiDocTM Imaging Systems photo-documentation
system (BioRad, Hercules, CA, USA) by means of Image LabTM software version 5.2.1
(BioRad, Hercules, CA, USA). The size of each band observed in the gel was determined
through comparison with a 100 bp DNA ladder. The positive control DNA for both mcr-1
and ESBLs multiplex was kindly donated by the Osaka Institute of Public Health, Japan.

2.4. Multilocus Sequence Typing (MLST)

MLST was performed to determine the genetic diversity of E. coli isolates according
to the MLST Pasteur database (http://pubmlst.org, accessed on 20 June 2021). The PCR
conditions of seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA) were
amplified and sequenced as described by Wirth et al. (2006). The PCR products were
sequenced using the Sanger sequencing technique in an ABI 3500xL Genetic Analyzer
(Applied Biosystems, Waltham, MA, USA) with a BigDye 3.1® capillary electrophoresis
matrix. The procedure, stated in brief, was as follows: the allelic profiling and sequence-
type (ST) determination were also confirmed at the above PubMLST website. In addition,
to further analyze the relationship between the different sequencing types, a phylogenetic
analysis of the housekeeping genes was performed.

3. Results
3.1. Sampling Sites

Five natural water sources, three ponds and two rivers, were identified as being used
for human consumption in the vicinity of the inhabited areas of Nono (Figure 1, Table 1). In
the map of the Nono district (Pichincha province, Ecuador) in Figure 1, the numbers (1–5)

http://pubmlst.org
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indicate the location where the samples of water were taken, and the Universal Transverse
Mercator coordinates of each sampling site are listed in the accompanying table.

Table 1. BCWF bacteria-removal assay with natural water testing, physicochemical removal in filtered
water on the basis of drinking water guidelines [27].

Parameter Before
BCWF

After BCWF
(n = 5)

SD (After
BCWF)

Reduction
Level (%)

After BCWF
p Value

Turbidity (NTU) 3.38 1.72 1.83 49.11 * 0.02138
Nitrite (mg/L) 0.13 0.02 0.02 85.18 * 0.02708
Nitrate (mg/L) 1.77 1.54 0.60 13.39 NS 0.07752

BOD 17.80 2.80 1.30 84.27 NS 0.1226
COD 34.41 10.65 1.88 69.06 ** 0.00475

Ammonia (mg/L) 0.11 0.04 0.02 63.70 ** 0.002501
Phosphate (mg/L) 1.84 1.13 0.05 38.49 *** 0.00018
Chloride (mg/L) 58.46 17.53 8.54 70.01 *** 0.00007
Sulfate (mg/L) 14.74 9.84 5.91 33.26 ** 0.00678

Oil (mg/L) 0.01 0.01 0.00 58.90 * 0.03597
Alkalinity (mg/L) 131.19 109.29 36.93 16.69 NS 0.05738

Significance level: * 0.05; ** 0.01; *** 0.001; NS no significance. Bold p-values indicate significant differences
obtained by the Student t-test of parameter-reduction indices upon the use of BCWF for water purification.
BOD, biochemical oxygen demand; COD, chemical oxygen demand; SD, standard deviation; NTU, nephelometric
turbidity unit.

3.2. Physicochemical Analysis of BCFW Efficacy

The physicochemical parameters indicated a difference in the percentage of the various
components assayed before and after BCWF filtration of the water. All parameters tested
showed significant levels of reduction after BCWF treatment, with the exception of nitrate,
BOD, and alkalinity (Table 1).

3.3. Microbiological and Molecular Genetic Determination

Microbiological analyses before filtrating revealed the presence of E. coli, along with
total and fecal coliforms at all the locations analyzed. Table 1 summarizes the counts of
E. coli colonies in the water from each location before and after BCWF filtration. These
findings point to significant bacterial contamination in the natural water sources that Nono’s
population routinely uses for consumption. As for bacterial concentration, the locations
with the highest bacterial presence of E. coli were the ones at the lowest altitudes, with >300
colony-forming units (CFU/100 mL) at sampling sites three and five, at 2439 and 2435 m
above sea level, respectively (Supplementary Materials 2). Furthermore, molecular genetic
analyses revealed the presence of these three types of ESBL genes: blaTEM and blaCTX-M-1 at
site three, and blaTEM and blaCTX-M-9 at site five (Supplementary Materials 3.1). Both E. coli
isolates were determined to be of ST 98 in the bacterial lineage referred to as clonal complex
(CC) ST10 (Table 2). No isolate was positive for the mcr-1 gene (Supplementary Materials
3.2).
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Table 2. Comparison of the microbiological characteristics of the water before and after the filtration
with black ceramic water filters.

Sampling
Points

Natural
Source

Distance to
the Town

Center (Km)

Altitude
(Masl) *

CFU/mL
before

Filtering

ESBL-Producing E.
coli

Clonal
Complex
(Strain)

CFU/mL after
Filtering

1 Pond 4.07 2594 29 - ND ** 0
2 River 4.2 2583 31 - ND 0
3 Pond 4.98 2429 >300 blaTEM, blaCTX-M-1 ST10 (98) 0
4 Pond 4.72 2623 74 - ND 0
5 River 4.18 2435 >300 blaTEM, blaCTX-M-9 ST10 (98) 0

* Meters above sea level; ** ND, not determined ST.

4. Discussion

To the best of our knowledge, the study reported here is the first to report the existence
of ESBL genes in the water consumed in rural areas of the highlands in Ecuador. Indeed,
we detected three different ESBL genes: blaTEM, blaCTX-M9, and blaCTX-M1. Several studies
have indicated that the finding of ESBL genes in E. coli isolated from water samples is
common. In a study on water sources in Germany, Hetty Blaak (2014) identified blaCTX-M1
and blaCTX-M15 genes [28]. In addition, in the Białka river in Poland, blaCTX-M, blaTEM, and
blaOXA genes were detected in a river near sewage treatment plants [29]. A study of the
water in Lebanese estuaries identified a high prevalence of blaCTX-M15 genes in the E. coli
present [30]. In Ecuador, a study carried out by Ortega (2020) determined that the CTX-M-1
group, and specifically the blaCTX-M15 gene, was the most prevalent in the Machángara
River in Quito; this finding agrees with the prevalence of ESBL genes in Ecuador, with that
locus being the most common ESBL-encoding gene found in humans worldwide [31].

It is noteworthy that the previous studies were performed in the lowlands, where
the bacterial load is normally greater because of a drain on the associated bodies of water
through greater human activity and a higher population density. However, the finding of
ESBL genes in highland isolates with relatively few inhabitants is indeed striking, although
it is not rare. One possible explanation is that the source of that water contamination is
both animal and human [28,32]. In environmental samples, the genes of the CTX-M-1
group are the most prevalent. Furthermore, the feces of wild animals, such as birds, have
been thought to contribute to ESBL-producing E. coli in surface water [33–35]. Schierack
et al. (2020), in a study on wild birds in Germany and Mongolia, reported that blaCTX-M-1
and blaCTX-M-9 genes were detected in the two respective countries, along with a direct
correlation with the prevalence of human infections in those countries [36]. In contrast,
the genes of the TEM group are known to be more common in human environments; this
association implies either a direct or indirect human contamination of the water sources in
our study—and this is very likely because of the absence of an adequate program for water
contamination management to protect and conserve that resource [29,35].

No positive isolates for the colistin-resistance gene, mcr-1, were found in the E. coli
bacteria present in the water samples of this study, even though the inhabitants had been
found to use this antibiotic as a fattening supplement in the cattle feed. Moreover, cattle
graze in close proximity to the water sources that the population use for their consumption.
Nevertheless, resistant pathogens may possibly be diluted in those natural water sources.
Similar studies, however, have demonstrated the presence of mcr genes in water samples
elsewhere. A study by Yang et al. (2017) detected mcr-1 in E. coli and Klebsiella pneumoniae
in a river in China [37]. Likewise, other investigations carried out by Hembach et al. (2017)
found the resistance locus, mcr-1, in seven wastewater treatment plants in Germany [14].
The mcr-1 gene can be present in aquatic environments because aquatic ecosystems, in
general, are considered reservoirs of antibiotic-resistant bacteria. In Ecuador, a study
conducted by Loayza-Villa et al. (2020) detected this gene in the feces of dogs and a
chicken [17,20].
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The finding that the MLST analysis of E. coli isolates indicated CC10 to be the predomi-
nant clonal complex in the water samples was of significance, as it agrees with other studies
carried out in which ST10 CC was likewise predominant in extraintestinal environments,
such as river water [31], wastewater [28], and food [38], as opposed to other clonal groups
more commonly found in clinical samples, such as ST131 [39,40]. Furthermore, E. coli ST10
is widely found in intestinal samples from animals and humans as both a commensal and a
pathogen. Although ST10 CC is commonly found to be susceptible to antimicrobials, the
ability of this group to spread rapidly and survive in the environment is of concern [41].
ST10 CC is linked to multidrug resistance and ESBL and is recognized as an emerging
lineage of foodborne extraintestinal pathogenic E. coli (ExPEC) [42].

In addition, within the overall diversity in the E. coli population, two lineages (ST10
and ST155) might function as reservoirs of the mcr-1 gene; the larger of these sources was
linked to ST10 [43]. Although mcr-1 genes were not found in the present study, we consider
the role of ST10 CC, as one of the main E. coli clonal complexes associated with animal
enterotoxigenicity, to be highly relevant. In fact, Shepard et al. (2012) found that the majority
of the porcine enterotoxigenic E. coli isolates belonged to three clonal complexes, 10, 23, and
165, and pointed out the relationship exhibited by ST10 CC to ESBL-resistance-associated
elements [44].

This current ESBL presence could be involved in the increasing mortality rate, since
patients with gastrointestinal infection do not present favorable responses to treatment with
these antibiotics, which results in the clinical syndrome evolving into sepsis [45,46]. For
the present study area, these findings point to a serious public health problem because the
main cause of death for Nono’s inhabitants is related to gastrointestinal diseases, which are
usually treated mainly with antibiotics; the frequency of this therapy can cause antibiotic
resistance to increase progressively [5,23].

The use of BCWF in isolated populations that are without access to adequate sanitary
systems is a suitable alternative recourse for water purification, and also represents an
effective, environmentally friendly, and inexpensive device capable of preventing the
health complications associated with multidrug-resistant bacterial infections. The hazard
to human health was verified, since the initial physicochemical and biologic parameters
of the water bodies tested were far outside the permissible limits [24]. Contamination
with sewage water, garbage, and debris, as well as the leaching of chemicals involved in
livestock production, have led to a marked deterioration of water quality and, therefore,
the consumption of that water constitutes a serious health hazard [47,48]. BCWFs were
effective in reducing the major contamination parameters in raw water, such as nitrites,
biochemical oxygen demand, and chloride, by >70% (Table 1). Similar results have been
obtained in several studies, where ceramic filters proved to be highly useful alternative
tools for removing pollutants from water sources [23,48]. In the present work, the removal
of bacteria by BCWF was 100% effective, as no bacterial colonies developed after filtration,
including those carrying resistance genes. Finally, although the use of BCWF proved to be
effective in the removal of bacterial pathogens, disinfection processes after filtering, such
as chlorination, are recommended to ensure the quality of the water and the health of the
people who consume it.

5. Limitations

The present study had several limitations. First, the survey was performed on a
restricted number of natural water sources, though the sampling sites selected were repre-
sentative sources of natural water that the inhabitants routinely used for their consumption.
The geographical situation and the accessibility to the water bodies were limitations for the
sampling of larger areas. Another limitation was that the origin of the fecal contamination
was unknown, and to clarify that source would require more data from upstream and
from higher ground. Due to the evidence of the use of colistin as a growth promoter in
animals, the possibility of finding mcr-1 genes in future studies remains pending. Moreover,
a determination of whether the fecal contamination was of human, porcine, avian, or
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a wild origin—or a mixture of any of those possible sources—would also be necessary.
To do so, molecular flocculation techniques would be required, along with isolation and
identification of species-specific enteric viruses. Despite these limitations, we believe that
the data presented in this study will assist in more completely understanding the status of
the water for human consumption in the highlands of the Ecuadorian Andes and serve to
make decisions for the implementation of the specific and affordable sanitary measures
that we recommend for low-income populations.

6. Conclusions

The water sources for human consumption in the highlands of Ecuador exhibited major
microbial pollution, including contamination with ESBL-producing E. coli that carried the
blaTEM, blaCTX-M9, and blaCTX-M1 genes, and were detected in two of the five water sources.
These findings represent a significant hazard to the health of the inhabitants of these
highlands. Although the use of the antibiotic colistin as a growth promoter in animals
was common in the study area, the samples screened did not manifest any presence of
mcr-1 genes. Nevertheless, two of the E. coli isolates belonged to the ST10 (ST98) clonal
complex, which indicates the presence of these bacteria as a continuous potential risk in
spreading multidrug-resistant enteric bacteria within these low-income populations. As a
solution, the BWCFs made in Ecuador would be effective in the complete removal of these
potentially dangerous bacteria, present in natural water sources, and undesirable chemical
species. We therefore strongly recommend the distribution of BCWFs in all areas with
limited access to drinking water in order to reduce the incidence of diseases associated with
the use of contaminated water. It is necessary to deepen studies into the contamination
of natural water sources that are used for human consumption by using molecular and
phylogenetic techniques that would allow us to determine the origin of the contamination.
This is important since natural water sources are the only ones that many inhabitants of
low-income rural communities have access to.
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