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Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host

response to infection. While many individual cells and systems in the body are involved

in driving the excessive and sometimes sustained host response, pathogen engagement

with endothelial cells and platelets early in sepsis progression, are believed to be key.

Significant progress has been made in establishing key molecular interactions between

platelets and pathogens and endothelial cells and pathogens. This review will explore

the growing number of compensatory connections between bacteria and viruses with

platelets and endothelial cells and how a better understanding of these interactions

are informing the field of potential novel ways to treat the dysregulated host response

during sepsis.
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INTRODUCTION

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response
to infection (Sepsis 3) and despite being the primary cause of in-hospital mortality there is
little in the drug discovery pipeline for this disease (1). Treatment primarily focuses on the use
of antibiotics but with the growing incidence of antibiotic-resistant strains of bacteria and the
time it takes to diagnose sepsis there is clearly a need to discover novel approaches to treating
sepsis. As the definition indicates that sepsis is a dysregulated host response (2) an obvious novel
treatment strategy is to correct this dysregulated host response. Through significant advances in
our understanding of the molecular interactions two possible theories have emerged that help
explain the nature of the dysregulation. The platelet-pathogen theory suggests that pathogens bind
to platelets activating them. These activated platelets bind to both endothelial cells and immune
cells activating them which causes damage and disruption to the endothelial layer, leading to loss of
barrier integrity, fluid leakage resulting in shock (Figure 1). Alternatively, the endothelial-pathogen
theory suggests that pathogens bind to endothelial cells activating them. This leads to a release
of granules and pro-inflammatory cytokines and chemokines, that recruit platelets to form a
thrombus encasing the pathogens and immune cells and contribute to excessive thrombocytopenia
and hyper-inflammatory response. Pathogen binding to endothelial cells also causes apoptosis
which results in disruption of the endothelial layer leading to adherens junction disassembly,
increased vascular permeability, fluid leakage, and shock (Figure 2). In this review, we will discuss
each of these theories outlining the molecular mechanisms leading to each.
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FIGURE 1 | Platelet Theory. An invading pathogen binds to platelets either directly (absence of plasma protein) or indirectly (presence of plasma protein). Binding

results in platelet activation via Src kinases which results in prostanoid release, cytokine secretion, granule secretion, and activation of GPIIbIIIa. Release of ADP and

thromboxane A2 (TXA2) serves to amplify the platelet response. In conjunction with this, activation of GPIIbIIIa allows fibrinogen binding resulting in platelet

aggregation. Secretion of platelet cytokines and chemokines activates the vascular endothelium. For example, secreted TNFa activates the TNFR1 receptor on

endothelial cells which triggers the death pathway resulting in apoptosis. This results in endothelial cell shrinkage and loss of barrier integrity leading to increased

vascular permeability and shock. Separation of endothelial cells allows for pathogens to escape the bloodstream and infect major organs which eventually leads to

multi organ failure.

PLATELET FUNCTION

After red blood cells platelets are the most numerous cell-
like particle in the blood. Their total volume and surface area
when combined together is larger than that of all the leukocytes
taken together. They are not true cells as they have no nuclei
and are in fact fragments of megakaryocytes (3). Their primary
role is in hemostasis and they clump together to occlude any
breach in the vasculature. They can be considered to have

three distinct functions: adhesion, secretion and aggregation
and platelet activation links these processes through multiple
signaling pathways.

Adhesion
Platelets typically travel close to the endothelium patrolling
for breaches in the vasculature. The resting endothelium is
inert ensuring platelets do not adhere, however when the
endothelial cell layer is damaged exposing sub-endothelial matrix
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FIGURE 2 | Endothelial theory. Similar to platelets invading pathogens bind either directly or indirectly to the vascular endothelium. Binding results in endothelial cell

activation that results in apoptosis. Although the pathway to apoptosis has not yet been defined apoptosis leads to endothelial cell shrinkage and loss of barrier

integrity leading to increased vascular permeability and shock. Separation of endothelial cells allows for pathogens to escape the bloodstream and infect major organs

which eventually leads to multi organ failure. Endothelial cell activation also leads to granule secretion which deposits vonwillebrand factor on the surface of the

endothelial cells. This encourages platelet rolling, activation and aggregate formation. In addition, bacteria also roll on the deposited vonwillebrand factor eventually

coming to a halt and firmly adhering. Passing platelets bind to the immobilized bacteria on the endothelial cells which leads to inappropriate thrombus formation and

exacerbation of the dysregulation.

proteins (which as occurs with a cut), or becomes activated
through inflammation the area becomes highly thrombogenic
and platelets subsequently adhere. Key proteins in the matrix that
support platelet adhesion are collagen and vonWillebrand Factor
(VWF). Adhesion is a highly controlled event and is mediated by
platelet receptors such as integrin α2β1 and glycoprotein (GP)
VI or collagen and GPIb/IX/V for VWF. The VWF-GPIb/IX/V
interaction is shear-dependent and is primarily involved in
adhesion under high shear stress such as in coronary arteries. See
Nieswandt et al. for a review on platelet function (4).

Activation
While binding to either collagen or VWF facilitates adhesion
of platelets to the site of injury it also triggers activation of
the platelet leading to platelet secretion and aggregation. The
adhesion process is not the only process for activating platelets as
soluble mediators can also lead to platelet activation. Substances
like adenosine diphosphate (ADP), thrombin, thromboxane A2,
and adrenaline can also trigger platelet activation through their
respective receptors. To further link all of the platelet functions
the primary source of these soluble mediators are platelets in
a process known as secretion. Most of these receptors mediate
their effects through two different signaling pathways. Some
receptors stimulate phospholipase (PL) A2which ultimately leads
to the production of thromboxane A2 while others trigger PLC
activation (5).

Secretion
Once activated, platelets secrete the contents of their granules.
Platelets contain different types of granules such as alpha and
dense granules and lysosomes. The content of these granules

plays an important role in haemostasis. Secreted ADP activates
the surrounding platelets and this is critical in creating the
growing clot. The granules also secrete adhesion molecules such
as fibrinogen as well as up-regulating adhesion receptors such
as GPIIb/IIIa (fibrinogen receptor) and p-selectin (CD62) to the
platelet surface (6).

Aggregation
While platelet activation leads to granule secretion it also leads
to activation of GPIIb/IIIa on the platelet surface. GPIIb/IIIa is
an integrin (αIIbβ3) fibrinogen receptor and is usually present
in a resting, non-binding conformation. Once activated it can
bind soluble fibrinogen and as fibrinogen is a large bivalent
molecule one fibrinogen molecule can bind to two GPIIb/IIIa
molecules. If these GPIIb/IIIa molecules are on different platelets
the effect is to link two platelets together. Considering that there
are around 50,000 GPIIb/IIIa molecules per platelet this creates
a platelet-rich clot cross-linked by fibrinogen. This process is
known as aggregation and is critical for sealing a breach in the
vasculature (7).

PLATELET SIGNALING

Platelet activation occurs through two processes—outside-in
signaling and inside-out signaling and is reviewed in more
detail by Stalker et al. (8). The classic example of outside-in
signaling is the process by which soluble mediators such as ADP,
thrombin, and thromboxane (Tx) A2 activate platelets. These
bind to membrane receptors (in most cases G-protein-coupled
receptors) triggering downstream events. Agonist binding to

Frontiers in Immunology | www.frontiersin.org 3 August 2019 | Volume 10 | Article 1748

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kerrigan et al. Host Interactions in Sepsis

these receptors trigger activation of one of two phospholipases
(PL)—PLA2 or PLC. PLA2 is the primary PL and acts to release
arachidonic acid from the inner membrane of the platelet. This
arachidonic acid is a substrate for cyclooxygenase (COX). In
platelets, the COX isoform is COX 1 and it converts arachidonic
acid into prostaglandin (PG) H2. PGH2 is an intermediate
in the signaling process and it is further metabolized to its
active product by cell specific enzymes. In platelets the primary
enzyme is thromboxane synthase which converts PGH2 to TxA2
which binds to receptors and triggers further platelet activation.
This pathway is completely inhibited by COX 1 inhibitors such
as aspirin.

The second signaling pathway uses a number of different
isoforms of PLC which cleave inositol triphosphate (IP3)
and diacylglycerol (DAG) from the membrane. IP3 binds to
an intracellular Ca2+ channel which increases intracellular
Ca2+ levels through release from the endoplasmic reticulum.
DAG ultimately activates protein kinase C which activates
further downstream events. This pathway is not inhibited
by aspirin. Agonists are often divided into weak agonists
which are PLA2-dependent and strong agonists which are
PLC-dependent, although this is often concentration-dependent
with low concentrations of agonists using PLA2 and high
concentrations using PLC.

While soluble agonists activate platelets via PLA2/PLC this
is not the only process for activating platelets. Platelet adhesion
also leads to platelet activation however, the activation process for
each of the adhesion receptors is receptor specific. One example is
that of platelet activation in response to adhesion to fibrinogen.
The platelet receptor involved is GPIIb/IIIa and initially it was
considered that GPIIb/IIIa was merely an adhesion receptor as
there were no obvious signaling pathways associated with it.
However, it is now clear that GPIIb/IIIa can recruit signaling
molecules [Src family kinases, focal adhesion kinase (FAK) etc.]
and generate activating signals (9). GPIb/IX/V acts by recruiting
14-3-3ζ, actin binding protein, Src, FAK etc (10). Receptors that
contain an ITAM (immunoreceptor, tyrosine-based activation
motif) or ITAM-like domain such as Fc receptors and CLEC-2
recruit the tyrosine kinase syk when dimerized (11). Fc receptors
can heterodimerise, that is they can dimerize with other receptors
such as GPVI and GPIb. GPVI contains an SH3 domain that
recruits the src family kinases and when dimerized with FcR-γ it
triggers the recruitment of syk and phosphorylation of FcR (12).

The wave of outside-in activation is followed by a wave of
inside-out signaling. This primarily involves talin binding to
the β3 subunit of GPIIb/IIIa (13). This inside-out signaling is
essential for full activation of the platelet.

Platelets also have inhibitory signaling pathways to counter
the activating pathways. The primary pathway is mediated by
prostacyclin (PGI2). When it binds to is receptor it increases
cAMP which in turn activates PKA and inhibits platelet
activation. A related mechanism is that of nitric oxide (NO)
which directly enters the platelet and activates soluble guanylate
cyclase increasing cGMP levels. Both prostacyclin and NO are
produced by healthy endothelial cells to prevent clot formation.

In sepsis, thrombocytopenia develops in up to 50% of
cases and is associated with poor outcome (14). This

thrombocytopenia is likely to play a significant role in the
pathogenesis of sepsis leading to development of multiple organ
dysfunction syndrome (MOPS), disseminated intravascular
coagulation (DIC) and/or massive bleeding as a result of platelet
consumption and thrombus formation (15). It is well-established
that innate immune cells (IIC) such as macrophages, natural
killer cells (NK) cells, neutrophils, dendritic cells etc, release
a plethora of pro-inflammatory mediators creating a so-called
cytokine storm (16). We now also know that in addition to their
hemostatic functions platelets also play a role in inflammation
and regulation of inflammatory response by secreting cytokines,
interferons, and chemokines. For example, Staphylococcus and
Streptococcus spps can trigger platelet aggregation, cytokine
release, and thrombocytopenia (17–19).

PLATELETS AND IMMUNITY

The critical role of platelets in the innate immune response is
largely mediated by their ability to interact with other immune
cells mainly neutrophils (20, 21). Platelets express receptors on
their surface that are usually associated with immune cells such as
FcγRIIa and Toll-like receptors (TLR) 2 and 4 (22). For example,
in 2007 Clark et al., demonstrated that lipopolysaccharide (LPS)
binds to platelet TLR4 whichmediates attachment to neutrophils.
Critical to this interaction is platelet activation which results
in granule secretion, P-selectin expression on the surface of
the platelet, and crosslinking to its counter receptor P-selectin
glycoprotein ligand-1 on the leukocyte surface. Other studies
have demonstrated that platelet GPIbα can bind VWF and
crosslink the platelet to neutrophils via the β2 integrin (CD18).
Neutrophil Extracellular Traps (NETs) are web-like structures
composed of a chromatin backbone, histones and anti-microbial
proteins and their main function is to trap and kill bacteria,
virus, and fungi, avoiding their dissemination. While NET
formation is a critical event in innate immunity, uncontrolled
formation may exert significant tissue damage which contributes
significantly to the already difficult to control host dysregulation
(23). Dengue virus has been shown to activate platelets in a
CLEC-2-dependent manner producing extracellular vesicles that
induce NET formation (24). Regardless of the interaction, platelet
attachment to the neutrophil results in rapid activation and most
importantly the formation of NETs and together they play an
important role in the pathogenesis of sepsis (25).

As platelet activation occurs during inflammation and
infections such as sepsis there is also a need to control excessive
platelet activation. One controlling factor is that of C-reactive
protein (CRP) which is an acute phase protein synthesized in
the liver in response to infection. It exists in a monomeric
(mCRP) and pentameric (pCRP) forms which have opposing
effects. pCRP is known to inhibit platelet aggregation by binding
to GPIIb/IIIa and thus will act to reduce thrombus formation
(26). Another agent that regulates the platelet response is nitric
oxide (NO). NO is produced by the endothelium and is a potent
vasodilator but also an inhibitor of platelet activation. During
sepsis NO levels increase due to production by immune cells.
This increased NO contributes to vasodilation and hypotension
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as well as inhibiting platelet function (27, 28). Thus, platelet
activation status during sepsis depends on the balance between
activating and inhibiting factors.

Platelet Immune Receptors
Platelets express immunoreceptor tyrosine-based activation
motifs (ITAMs)-containing receptors such as FcγRIIa, GPVI,
and C-type lectin-like receptor (CLEC)-2 (29). The presence of
FcγRIIa, a receptor for the Fc portion of IgG, on platelets is
unusual as it is a receptor involved in phagocytosis and all other
FcγRIIa-expressing cells are phagocytic (29). However, while not
true phagocytic cells platelets do engulf bacteria in a manner
that has some similarities to phagocytosis (30, 31). Platelet
FcγRIIa is fully functional and can trigger platelet aggregation.
Immune complexes [or even heat-agglutinated immunoglobulin
(Ig) G] directly induce platelet aggregation in an FcγRIIa-
dependent manner. Furthermore, bacteria that become coated
in IgG can also induce platelet aggregation in an FcγRIIa-
dependent manner (see below). The functionality of TLRs is
more complex. While studies show that TLRs can mediate
platelet activation others show that they don’t (32). There is
evidence to suggest that platelets activated by TLRs can engage
with neutrophils and/or monocytes triggering their activation
(33). Dendritic Cell-Specific Intercellular adhesion molecule-3-
Grabbing Non-integrin (DC-SIGN), also known as CD209, is a
C-type lectin which is usually expressed on macrophages and
dendritic cells that is known to be involved in the phagocytosis
of HIV and is also expressed on platelets (34). DC-SIGN and
FcγRIIa are particularly implicated in platelet activation in
Dengue virus infection (DENV) and incubation of platelets with
anti-DC-SIGN antibodies prevented DENV-mediated platelet
activation (35).

Other receptors shown to facilitate platelet interactions in
response to pathogens are sialic-acid-binding immunoglobulin-
like lectins (Siglecs)- a type I transmembrane proteins, that play
role in regulating the host’s immune responses to pathogen (36).
In platelets Siglec-7 is most abundantly expressed and its function
depends on the P2Y1 platelet receptor and of the GPIIb/IIIa
integrin. It is proposed that Siglec-7 down-regulates pathogen-
induced platelet activation by inducing apoptosis (37). Along
with FcγRIIa, CLEC-2, and GPVI are ITAM receptors found on
platelets. The ligands for CLEC-2 is podoplanin and for GPVI
it is collagen, fibrinogen, and fibrin (38). These receptors have
been found to play a role in the interaction with pathogens. Thus,
CLEC-2 has been shown to bind to human immunodeficiency
virus (HIV) and GPVI has been shown to bind to Hepatitis C
virus (39, 40). GPVI has been shown to be important in Klebsiella
pneumoniae sepsis models (41). CLEC-2 has been shown to drive
thrombosis following Salmonella infection (42). Furthermore,
the platelet CLEC-2-podoplanin interaction has been found to be
an important modulator of inflammation during sepsis (43, 44).

Platelet Cytokines
Platelets release cytokines either directly into the bloodstream
by de-granulation, or by secreting platelet-derived micro-vesicles
(PDMV), which make up between 60 and 90% of extracellular
vesicles (EV) in plasma and contribute to hemostatic and

immune function of platelets (45–47). These “immuno-parcels”
can elicit innate and adaptive immune responses at distant sites
by delivering variety of immunomodulatory factors, such as
CD154 (also known as soluble CD40 Ligand, sCD40). CD154
from PDMV is enough to activate antigen specific splenic B
cell response in CD154−/− mice, in both T cell-dependent and
independent manner (48). PDMV also contain a variety of
nucleic acids including messenger and micro-RNAs (49). For
example, platelets contain mRNA of pro-IL-1β, which upon
platelet activation is translated in situ and fully synthesized pro-
IL-1β is then released into circulation (50). IL-1β but not IL-1α
binds to fibrinogen and it is the bound form of IL-1β that has
enhanced action to induce monocyte chemoattractant protein
1 (MCP-1) and nitric oxide (NO) production by endothelial
cells via NFκB pathway (51). Among other pro-inflammatory
modulators released by platelets are: MCP-1, macrophage
inflammatory protein (MIP)-1α, regulated on activation, normal
T cell expressed and secreted (RANTES), IL-8, tumor growth
factor (TGF)-β, angiogenesis and growth factors, and various
immunoglobulins (48, 52–55).

PLATELET BACTERIAL INTERACTIONS

There are several platelet receptors that are involved in
either direct interactions with pathogens either through direct
interactions between microbial adhesins and platelet surface
component or indirect associations via a bridging molecule (17,
20, 56, 57). The best studied interaction is that between S. aureus
and platelets but the interaction with other Gram-positive and
Gram-negative bacteria has also been described (17). The most
significant causative agents of sepsis are S. aureus is the major
cause (21%), E. coli (16%), Staphylococcus epidermidis (11%), and
S. pneumoniae (4%) and these are also the best studied for their
interactions with platelets (58).

Staphylococci-Platelet Interactions
S. aureus expresses several cell wall anchored surface proteins
that enable binding of the bacteria to platelets (59). During the
exponential growth phase S. aureus expresses Clumping factor
(Clf) B, fibronectin-binding protein (FnBP) A and B; while
ClfA is expressed during the stationary phase. These proteins
bind to fibrinogen facilitating its binding to and activation of
platelet GPIIb/IIIa (60–62). S. aureus surface protein A (SpA)
is known to bind IgG but also binds to domain A1 on VWF
which mediates binding to platelet GPIbα (63). However, these
interactions are insufficient to activate platelets and all require
simultaneous activation of FcγRIIa through engagement with
opsonising IgG’s on the surface of the bacterium. Engagement
of integrins and FcγRIIa lead to platelet activation, aggregation,
adenosine triphosphate (ATP) release, and thrombus formation.
In the absence of plasma proteins S. aureus can also bind
directly to GPIIb/IIIa via its iron-regulated surface determinant
protein B (IsdB) inducing platelet adherence and aggregation
(64). Four more platelet activating proteins that are secreted
by S. aureus have been recently identified by Binsker et al:
Extracellular adherence protein (Eap), the chemotaxis inhibitory
protein of S. aureus (CHIPS), the formyl peptide receptor-like 1
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inhibitory protein (FLIPr), and the major autolysin Atl (AltA)
which were all shown to induce P-selecting expression, while
Eap, CHIPS, and AltA also induced platelet aggregation (65).
Staphylococcus epidermidis expresses serine–aspartate repeat
protein (Sdr) G, a member of Microbial Surface Components
Recognizing Adhesive Matrix Molecules (MSCRAMM), that
engage with GPIIb/IIIa either via fibrinogen or directly (66).

Streptococcci-Platelet Interactions
A large number of streptococci have been shown to interact
with platelets including Streptococcus gordonii, Streptococcus
sanguinis, Streptococcus oralis, Streptococcus agalactiae, and
Streptococcus pneumoniae (17). A common mechanism through
which the streptococci interact with platelets is via a serine-
rich repeat protein (Srrp). This Srrp is expressed on the
surface of many streptococci (67–70). Numerous studies have
demonstrated that the Srrp binds to platelet GPIbα and induces
activation. Under low shear conditions (<500 s−1) platelets roll
along immobilized streptococci using a mechanism characteristic
of the interaction observed when platelets interact with VWF.
Deletion of the Srrp ablates the interaction with platelets under
both static and shear conditions (68, 70). S. gordonii have
also been shown to bind GPIIb/IIIa. A common feature in
this interaction is the presence of an RGD-like sequence in a
large cell wall surface protein (3,500 amino acid residues) that
mediates the binding called Platelet Adherence protein A (PadA)
(71, 72). Binding resulted in src induced rearrangement of the
platelet actin cytoskeleton leading to filopodia and lamellipodia
formation resulting in platelet spreading over the bacteria (73).
Protein analysis and site directed mutagenesis revealed that
PadA contains two critical integrin-recognition motifs (383RGT
and 484AGD) that mediate interaction with GPIIb/IIIa (73).
S. pneumoniae has also been shown to bind to and induce
platelet activation resulting in dense granule secretion in a
TLR2-dependent manner. Although the bacterial component
that interacts with platelet TLR2 was not identified a likely
candidate is wall lipoteichoic acid (74).

Platelet-Gram-Negative Bacteria
Interactions
Escherichia coli, Helicobacter pylori, Porphyromonas gingivalis,
and Brucella abortus all have been shown to bind platelets
(18, 75–78). E. coli O157:H7 interact with platelets via platelet
TLR4 and P-selectin (CD62) leading to secretion of CD40L,
increase in fibrinogen binding on platelets and the formation
of aggregates (79). This platelet activation is both FcγRIIa- and
GPIIb/IIIa-dependent, and requires opsonisation of bacteria with
IgG (18, 32). Platelet activation induced by H. pylori has been
shown to be FcγRIIa and GPIbα-dependent (77, 80). B. abortus
binds directly to platelets in a dose-dependent manner, although
platelet receptors for this interaction remain to be established.
This interaction induced enhanced fibrinogen binding and P-
selectin expression, and promoted infection of monocytes by
delivering bacteria to them (75). P. gingivalis has also been shown
to bind to platelets in an IgG-dependent manner. Depletion of
IgG or pre-incubation of platelets with an anti-FcγRIIa antibody
abolished platelet activation and aggregation (81).

Complement-Dependent Platelet
Activation
While some bacteria have surface proteins that can interact with
platelets many bacteria can activate platelets despite the absence
of such proteins. S. aureus mutants which lack known platelet
interacting proteins such as ClfA and ClfB and are thus unable
to bind fibrinogen can still induce platelet activation. This is
also true of strains of S. sanguinis that do not bind to platelets.
However, the aggregation profile of these bacteria is quite
different. While wildtype S. aureus induces aggregation within
2–3min these non-interacting bacteria take more than 15min
to induce aggregation although the aggregation is still FcγRIIa-
dependent. Bacterial-induced aggregation is usually mediated by
FcγRIIa and a co-receptor such as GPIIb/IIIa and GPIb, in the
case of non-binding bacteria the co-receptor is a complement
receptor. This slow aggregation requires complement assembly
most likely by the alternative pathway. The delay in onset of
aggregation probably reflects the time required for complement
membrane attack complex formation (82, 83).

PLATELET-VIRUS INTERACTIONS

Bacteria are not the only pathogens that affect platelet function
during infection. Viral Haemorrhagic Fevers (VHF’s) are very
contagious zoonotic diseases that occur all over the world
although more prevalent in tropical and warm climates (84).
As name suggests VHF are associated with thrombocytopenia,
hemorrhage, and fever caused by systemic inflammation. VHF
viruses cause diseases such as Ebola, Lassa, Marburg, Yellow
fever, and Dengue (69). Viruses interact with platelets mainly
via FcγRIIa, integrins, DC-SIGN, and complement receptors
(85). The best characterized of these interactions is with the
Dengue virus which binds to DC-SIGN on platelets, causing their
activation, mitochondrial dysfunction, and apoptosis via caspase-
9 and 3 engagement thus contributing to systemic inflammation
and platelet depletion (Figure 3) (35).

ENDOTHELIAL CELL FUNCTION

Endothelial cells make up a highly adaptive single cell layer
displaying distinct apical and basolateral sides in blood vessels.
They appear elongated in the direction of blood flow and
form a tight cobblestone pattern. Endothelial cells are highly
metabolically active and are constantly sensing alterations in the
local extracellular environment (86). The endothelium receives
and integrates information from hormones, neurotransmitters,
pericytes, smooth muscle cells, leukocytes, platelets, viral or
bacterial infection, proinflammatory cytokines, and oxygen
tension (87). Endothelial cells also respond to vascular injury
and high hydrodynamic shear stress. The primary function of
the endothelium is to regulate systemic blood flow and maintain
blood vessel wall permeability which selectively controls the
movement of fluid, ions, and macromolecules between the
circulating blood and the surrounding tissues.
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FIGURE 3 | Virus binding to platelets. Several virus have been shown to bind

to platelets. Binding is mediated by attachment to the Dendritic Cell-Specific

Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN), a c-type

lectin receptor. Engagement results in activation of caspase 3 and 9 leading to

platelet apoptosis. This results in thrombocytopenia.

Barrier Integrity
The passage of molecules, cells, and fluid through the endothelial
cell layer is a tightly controlled process. In the healthy
state endothelial cells are held together to ensure barrier
integrity through intracellular junctions called tight junctions
and adherens junctions (87). Critical tight junction proteins
include occludins and claudins which are localized at the apical
area of the intracellular cleft. These tight junction proteins are
predominantly responsible for control of permeability of solutes
between blood and tissues (88). Adherens junction proteins on
the other hand are predominantly responsible for maintaining
endothelial cell-endothelial cell connection to ensure vascular
integrity. Themain adherens junction protein responsible for this
is VE-cadherin which is localized at the basal membrane (89, 90).

Anticoagulant and Anti-thrombotic Surface
Under resting conditions the luminal surface of the endothelium
is typically both anticoagulant and antithrombotic in order to
maintain fluidity within the circulation (91). Healthy endothelial
cells express a number of inhibitors to prevent the synthesis
and activity of the key penultimate enzyme in the coagulation
cascade, thrombin. Anti-coagulation is ensured when thrombin
interacts with the endothelial cell integral membrane protein
thrombomodulin. Engagement induces activation of protein C
which forms a complex with protein S and results in inactivation
of factor VIIIa and factor Va, critical co-factors for coagulation
(92). Sustained or prolonged release of mediators from healthy
endothelial cells inhibit activation and adhesion of platelets to
the endothelium. Prostacyclin (PGI2) is released from resting
endothelial cells and binds to the Gs-coupled prostacyclin I2
receptor (IP receptor) expressed on platelets (93). Receptor
activation results in activation of protein kinase A which

increases platelet cAMP, thus preventing platelet activation.
Similarly, lipid-soluble nitric oxide is also released from resting
endothelial cells and activates protein kinase G which increases
cGMP, also preventing platelet activation. Increases in cAMP or
cGMP inhibit platelet aggregation, platelet secretion and platelet
adherence to the vessel wall (94).

Leukocyte Recruitment
The endothelium responds to tissue invasion by transporting
leukocytes from the bloodstream to subendothelial
compartments. Circulating leukocytes i.e., neutrophils and
monocytes are recruited to the source of infection and release
TNFα, a potent endothelial cell activator. TNFα induces the
expression of adhesion molecules on the surface of endothelial
cells facilitating leukocyte rolling-and-adhesion. MLK is involved
in the release of Weibel-Palade bodies (WPBs) stored in the
endoplasmic reticulum which harbor P-selectin (95). P-selectin
is subsequently transported, by WPBs, and presented on the
luminal side of the endothelium (96). The initial interaction
between endothelium and leukocyte involves selectins (P- and
E-selectins). These selectins recognize sialyl-Lewis-x moieties
of leukocyte glycoproteins allowing reversible adherence to the
endothelium (97). A second interaction between lymphocyte
function-associated antigen 1 (LFA-1) andmacrophage-1 antigen
(MAC-1) on the surface of leukocytes with intracellular adhesion
molecule (ICAM)-1 and ICAM-2 on the endothelium occurs,
however, the initial interaction is weak which allows leukocytes
to roll along the vasculature (98, 99). Chemokines, such as
CXCL8 upregulated by NF-κB and AP-1, bind to receptors on
leukocytes inducing a conformational change in LFA-1 and
MAC-1 (CD18/CD11b) allowing them to adhere to ligands with
high affinity (100). This facilitates firm adhesion of leukocytes to
the endothelium arresting rolling movement. In a process known
as extravasation, LFA-1, MAC-1 (CD18/CD11b), and platelet
endothelial cell adhesion molecule (PECAM, CD31) enable the
leukocytes to squeeze between endothelial cell junctions. The
leukocytes migrate to the basement membrane (diapedesis)
where enzymes break down the extracellular matrix (101). The
leukocytes continue migrating through subendothelial tissue
following a chemokine (CXCL8; CCL2) concentration gradient,
a process known as chemotaxis, to the source of infection where
they encounter pathogens.

ENDOTHELIAL CELL-BACTERIAL
INTERACTIONS

Gram Positive Bacteria-Endothelial Cell
Interactions
Bacterial interaction with endothelial cells is not well-defined
and as a result few interactions have been identified. Lack
of progression in this field can be attributed to poor models
used to study the interactions. Endothelial cells exist in a
dynamic environment surrounded by various circulatory cells
(leukocytes, red blood cells, platelets) in plasma. To better
reflect the physiological conditions during infection Cheung
and Fischetti demonstrated that when endothelial cells are
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grown in the presence of tumor necrosis factor α (TNFα),
significantlymore S. aureus bind to the endothelial cells. S. aureus
binding was further increased when fibrinogen was added to
the endothelial cells (102). These findings suggest that S. aureus
binds to fibrinogen and cross-links the bacteria to the “activated”
endothelial cell (103). Binding was abolished when S. aureus
cells were treated with trypsin, suggesting that the bacterial
adhesin was a cell wall protein. Using surface-biotinylated
solubilized components of S. aureus revealed a critical role
for protein A in binding endothelial cells (104). Protein A
is known to bind a number of plasma proteins including
IgG and VWF (63, 105). Subsequent studies demonstrated
that upon endothelial cell activation, release of intracellular
calcium causes mobilization of weibel palade bodies which
results in deposition of VWF onto the surface of the cell, thus
producing a binding site for protein A on S. aureus. Claes
et al. identified a second VWF binding protein expressed on
S. aureus called vwb (106). This protein typically acts as a
coagulase and activates prothrombin to generate fibrin. Much
similar to before deposition of VWF on the surface of endothelial
cells following activation or injury provides a binding site for
vwb. A S. aureus strain deficient in the vwb protein or an
antibody against the A1 domain of vWf significantly reduced
S. aureus adhesion to endothelial cells an in vivo model of
blood stream infection. Collectively these data suggest that
S. aureus use at least two different mechanisms to interact
with surface deposited VWF after endothelial cell activation.
While these observations are critical in our understanding
of how S. aureus interacts with the endothelium it doesn’t
identify the primary interaction that triggers endothelial cell
activation to lead to VWF deposition. Using a shear based model,
McDonnell et al., identified a very early interaction that drives
vascular dysregulation early in infection (107). Using primary
human endothelial cells sheared at physiological shear rates
experienced in the vasculature the authors demonstrated that
the S. aureus ClfA binds plasma fibrinogen and crosslinks the
bacteria to the major endothelial cell receptor αVβ3. Binding
via this mechanism resulted in VWF deposition on the surface
of the endothelial cells which will allow both bacterial and
platelet attachment. Binding also resulted in a loss of barrier
integrity as determined by an increase in vascular permeability
and loss of VE-cadherin expression. Permeability changes
is a common characteristic in sepsis patients and facilitates
dissemination of infection to all major organs, thus contributing
to organ failure. Blocking S. aureus attachment to αVβ3
prevented VWF deposition and loss of barrier integrity. S. aureus
attachment also triggered significant cytokine and chemokine
release contributing to hyper-inflammation and immune cell
recruitment (108).

While it is evident that S. aureus has evolved to possess
various mechanisms to attach to endothelial cells the functional
significance of these interactions are still under investigation.
One clear functional interaction demonstrates the ability
of S. aureus to internalize into endothelial cells (109).
Internalization likely occurs to evade immune or anti-microbial
attack, as neither immune cells or antibiotics are capable of
entering into endothelial cells. Internalization is mediated by

Fnbp expressed on S. aureus which binds plasma fibronectin and
cross links to endothelial cell receptor α5β1.

Gram Negative Bacteria-Endothelial Cell
Interactions
In contrast to S. aureus interactions with endothelial cells
which focused primarily on identifying bacteria proteins,
research investigating the interaction between Gram negative
bacteria interaction and endothelial cells has focused on its
major cell wall component LPS and the downstream signaling
as a result of this interaction. Possibly the best described
interaction involves the Toll-Like Receptors (TLRs). For example,
TLR4 recognizes LPS (110). TLR4 signaling begins with the
formation of a TLR4/myeloid differentiation 2 (MD2) complex.
Upon LPS binding, homodimerization of two TLR4/MD2
receptors occurs, inducing a conformational change that allows
the Toll/interleukin-1 receptor-like (TIR) domains of TLR4
to recruit adaptor proteins for the activation of MyD88-
dependent pathway at the plasma membrane. These adaptor
proteins subsequently activate interleukin (IL)-1R associated
kinases (IRAKs) and tumor necrosis factor (TNF) receptor
associated factor 6 (TRAF6) (111, 112). This, in turn, activates
transforming growth factor β-activated kinase 1 (TAK1) resulting
in MAP kinase kinase (MKK) inducement of the MAPK
signaling cascade (113). The MAPK signaling cascade activates
nuclear transcription factors such as nuclear factor (NF)-κB
and activator protein (AP)-1 (114). The activation of NF-
κB and AP-1 induces the production of pro-inflammatory
cytokines and chemokines driving the acute phase inflammatory
response (115). Furthermore, LPS can stimulate a MyD88-
independent pathway following internalization of the TLR4-
MD2 complex (116). TLR4-MD2 complex utilizes adaptor
proteins TIR domain-containing adaptor inducing IFN-β
(TRIF), TIR domain-containing adaptor molecule-1 (TICAM-
1), and TRIF-related adaptor molecule (TRAM) to activate TNF
receptor associated factor 3 (TRAF3) (117–119). TRAF3 activates
the kinase TBK1 and IKKε stimulating interferon regulatory
factor 3 (IRF3) nuclear translocation, resulting in the production
of type-I interferons (116). Type-I interferons are associated with
upregulation of anti-inflammatory cytokines IL-10 and IL-27
which inhibit acute phase pro-inflammatory cytokine (TNFα and
IL-1) and chemokine (CXCL1 and CXCL2) production (120–
122). Nuclear upregulation of both pro- and anti-inflammatory
genes corresponds to type-II endothelial activation.

While there is little doubt that LPS plays a key role in driving
the inflammatory response during sepsis Gram negative bacteria
i.e., E. coli can also bind to endothelial cells. McHale et al.,
demonstrated that the highly conserved outer membrane protein
A (ompA) binds directly to aVb3 on endothelial cells in the
absence of plasma proteins (123). In this unique interaction,
the ompA protein contains the RGD integrin recognition motif
that binds directly to the RGD binding site on αVβ3. Similar to
S. aureus binding to αVβ3, E. coli attachment results in loss of
barrier integrity causing an increase in permeability and loss of
VE-cadherin expression.
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ENDOTHELIAL CELL-VIRUS
INTERACTIONS

While it generally accepted that virus are capable of binding to
and dysregulating the endothelial cell barrier, the mechanisms
through which they interact is not well-characterized. For
example, the dengue virus envelope protein has been shown
to bind to host cell Fc receptors, DC-SIGN (CD209), ICAM3
(CD-50), CD14, mannose receptor (CD206), HSP70/90, GRP78,
and heparan sulfate proteoglycans (HSPGs), all of which
are expressed on endothelial cells (124–129). In addition,
hantaviruses have been shown to bind to endothelial cell
αVβ3 which recruits VEGF receptor 2 to activate Src mediated
internalization of VE-cadherin. Internalization causes loss of
barrier integrity resulting in localized increases in vascular
permeability and oedema (Figure 4) (130–134).

NOVEL TARGETS IN SEPSIS

As our basic understanding of the molecular mechanisms
through which bacteria interact with either platelets or
endothelial cells develops, key novel targets that drive
dysregulation in both of these cells is becoming clear. While it
can be argued that both platelets and endothelial cells may be
innocent by-standers in these diseases there is strong evidence
to support a role for them in driving the early signals that tips
sepsis into a state of excessive and sustained host dysregulation.
For example, if, as we have discussed above, platelets respond
to pathogens by becoming activated they will aggregate forming

micro-thrombi. These micro-thrombi can occlude the micro-
circulation in many organs such as liver, kidney and brain. These
occlusions cause ischemic damage which, as it accumulates,
leads to organ failure. Furthermore, serotonin released from
these activated platelets causes severe vasodilation leading to
shock (135). The combination of organ damage and shock is
what defines sepsis. On the other hand, several studies have
demonstrated that upon entry to the bloodstream, bacteria
bind to the vascular endothelium within minutes. Bacterial
binding causes endothelial cell injury that results in loss of
barrier integrity which causes the down-regulation of the critical
adherens junction protein VE cadherin. This process facilitates
bacterial dissemination to all major organs causing secondary
infection and therefore contributing to organ failure. In addition,
bacteria binding to the endothelium results in a significant
cytokine and chemokine release driving the hyper-inflammatory
response during sepsis.

As a result of our improved understanding of the molecular
interactions that drive dysregulation in the bloodstream, it has
led to identification of key novel targets that could control sepsis
better. For example, a number of meta-analysis of retrospective
studies showed that patients on aspirin or clopidogrel who
develop sepsis have better outcomes than those not on an anti-
platelet agent (136). This is despite the fact that patients on an
anti-platelet agent are generally much older and sicker (usually
anti-platelet agents are used post-MI) than those not on an anti-
platelet agent. As conventional anti-platelet agents are designed
to inhibit the hemostatic properties of platelets what about a new
generation of anti-platelet agent that inhibits the interaction of
the platelet with the pathogen? For instance a preliminary study

FIGURE 4 | Virus binding to endothelial cells. Virus can bind to the major endothelial cell receptor aVb3. Binding results in recruitment of the Vascular Endothelial cell

Growth Factor Receptor 2 (VEGFR2) which activates Src kinase. This directs VE-cadherin internalization, dissociation of adherens junctions, and an increase in

vascular permeability. Separation of endothelial cells allows for pathogens to escape the bloodstream and infect major organs which eventually leads to multi

organ failure.
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has shown benefit of targeting the CLEC-2 ligand podoplanin in
mouse models of acute respiratory distress syndrome (44).

There are three approaches to targeting platelets in sepsis.
The first is to target platelet activation. This can easily be
achieved using existing anti-platelet agents—primarily aspirin
and clopidogrel. The advantage is that there is a lot of
experience with these agents and both are off patent and thus
inexpensive. This is particularly important in treating sepsis in
developing countries. There is good evidence to suggest that
these agents have benefit in sepsis from retrospective studies
and certainly a good quality prospective study is warranted
(137, 138). The disadvantage with these agents is the potential
for bleeding complications. This is especially true for patients
with thrombocytopenia where there is a risk of preserving platelet
number at the expense of platelet function. However, the meta-
analysis suggests that this risk is more than compensated by
the benefit. One factor with the meta-analyses is that patients
were already on anti-platelet therapy prior to developing sepsis.
This is the ideal situation as it prevents platelets being activated.
However, when a patient is diagnosed with sepsis and then given
aspirin it might be a bigger challenge as thrombocytopenia will
already be established. Thus, they need to be given anti-platelet
agents as early as possible to maximize their benefit.

A precision medicine approach can also be used where
the platelet receptor that binds to the pathogen is targeted.
For instance, GPIIb/IIIa is the receptor for S. aureus
and thus GPIIb/IIIa antagonists have the potential to
prevent platelet activation in S. aureus-mediate sepsis
(139). However, the difficulty here is that the pathogen
must be identified prior to treatment. The big challenge
in sepsis is identification of the pathogen. Once identified
antibiotic therapy is the only effective solution. Another
difficulty is that many of these receptors are involved in
haemostasis and thus their inhibition will lead to increased
bleeding problems.

A third approach is to target platelet-immune receptors.
This has the potential to prevent platelet activation induced by
pathogens without compromising their hemostatic properties.
Furthermore, they are pathogen-independent—or at least
involved with many pathogens. One example of such a strategy
is to target FcγRIIa on the basis that most bacteria use it as a
co-receptor for platelet activation. Small molecules that inhibit
FcγRIIa have been discovered and amonoclonal antibody against
FcγRIIa is entering PI studies (140, 141). Such an agent could be
given to patients prior to confirmation of sepsis. This would slow
the progression of sepsis allowing time for appropriate antibiotic
therapy to take effect. Not only would this improve survival it
may reduce the incidence and severity of post-sepsis syndrome.
Furthermore, as it does not impact haemostasis there is no risk
of bleeding with patients and the identity of the pathogen is
not necessary.

Similarly, given the unique and critical finding that a growing
number of pathogens bind directly to the vascular endothelium
using the same receptor, αVβ3, inhibition of this receptor may
prevent endothelial injury thus preventing the patient from
progressing to shock. In addition, by preventing pathogens from
internalizing into endothelial cells may also help reduce the

incidence of recurrent infection which is common in sepsis, a
step is also partly mediated by αVβ3. Currently there are no
drugs available to prevent bacterial attachment to the vascular
endothelium and therefore endothelial cell dysregulation is
difficult to control, however identification of the molecular
interactions between bacteria and the endothelial cells makes it
an attractive future target.

CLINICAL
IMPLICATIONS—PERSPECTIVES

As described before, platelet activation is a key factor in the
pathogenesis of sepsis, but what has been crucially lacking in
this regard are (i) widespread acceptance and acknowledgment
of the fundamental role of platelets in this area, (ii) the
understanding that platelet activation can lead to microthrombi
from platelet aggregation which can then lead to single or
multiple organ failure, (iii) thrombocytopenia in sepsis is at least
partly (or predominantly in authors’ opinion) due to platelet
aggregation in addition to decreased platelet production and
destruction by the micro-organisms, and (iv) inadequacy of the
trials using antiplatelet agents in conjunction with the standard
therapies in the comprehensive management of sepsis. One of
the fundamental issues in translational research in this area
has been delineating when the platelet activation is protective
in the fight against the infections from the destructive role
by forming platelet aggregates and microthrombi. Clarification
of the timing when the beneficial role changes to a damaging
role can aid in targeting the antiplatelet therapy before organ
failure has developed. In addition, identifying which specific
receptors and molecular mechanisms are involved in the
different infections and at different stages would help in
selecting appropriate antiplatelet therapies rather than using the
conventional antiplatelet drugs in all cases.

An additional area of interest is dealing with the platelet-
endothelial interactions and how they may be perturbed in
sepsis (142). Although there have been many studies on the

topic in the setting of cardiovascular diseases, it is still early

days for clinical interventions in sepsis. Two key experimental
trials have shown promise by inhibiting histones and neutrophil

extracellular trap formation, which are key players in the platelet-
endothelial interactions. Esmon’s group showed in an animal

model of sepsis that they can protect the host from DIC by

specifically blocking the protein, histone H4 (143). Amore recent
paper noted the formation of cell-free DNA and NETS in sepsis
(144). They also correlated with sepsis severity. Importantly,
the use of recombinant DNAse could cause the degradation
of NETs which could attenuate organ damage in combination
with antibiotics.
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