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Signed, sealed, and delivered: RNA localization 
and translation at centrosomes

ABSTRACT Protein localization is intrinsic to cellular function and specialized activities, such 
as migration or proliferation. Many localized proteins enrich at defined organelles, forming 
subdomains of functional activity further specified by interacting protein assemblies. One 
well-studied organelle showing dynamic, functional changes in protein composition is the 
centrosome. Centrosomes are microtubule-organizing centers with diverse cellular functions 
largely defined by the composition of the pericentriolar material, an ordered matrix of pro-
teins organized around a central pair of centrioles. Also localizing to the pericentriolar mate-
rial are mRNAs. Although RNA was identified at centrosomes decades ago, the characteriza-
tion of specific RNA transcripts and their functional contributions to centrosome biology 
remained largely unstudied. While the identification of RNA localized to centrosomes acceler-
ated with the development of high-throughput screening methods, this discovery still out-
paces functional characterization. Recent work indicates RNA localized to centrosomes is bio-
logically significant and further implicates centrosomes as sites for local protein synthesis. 
Distinct RNA localization and translational activities likely contribute to the diversity of cen-
trosome functions within cells.

CODING AND DECODING THE MESSAGE
The central dogma is a study in cryptography. First, the DNA code 
must be transcribed in the nucleus into a premessenger RNA (pre-
mRNA) subject to mRNA processing before nuclear export. Once in 
the cytoplasm, the messages encoded by mature mRNAs are trans-
lated by ribosomes to generate protein products. When and where 
proteins are generated matters. For many cellular responses, such as 
cell migration or proliferation, rapid adaptation to the cellular envi-
ronment requires the rapid redistribution of proteins. Conversely, 

errant synthesis or localization of certain protein products, such as 
those that define cell fates or contribute to specialized cellular func-
tions, may have deleterious consequences for individual cells or de-
veloping tissues. Numerous proteins are translated locally at their 
site of function, effectively generating subcellular enrichments on 
demand, and protecting distal sites from ectopic exposure.

Often, local protein synthesis is coupled with RNA localization, 
whereby mRNAs are enriched at defined subcellular locales. RNA 
localization is a posttranscriptional paradigm of gene regulation 
conserved from single-celled bacteria and fungi through complex, 
multicellular organisms, including humans. Many excellent reviews 
address mRNA localization and local translation and its importance 
in diverse cellular responses (Gavis et al., 2007; Martin and Ephrussi, 
2009; Meignin and Davis, 2010; Jung et al., 2014; Buxbaum et al., 
2015; Ryder and Lerit, 2018; Das et al., 2021). In this Perspective, I 
provide a primer to RNA localization, then focus on RNA localization 
and translation at centrosomes and spindle poles, a topic of recently 
renewed interest.

AN INTRODUCTION TO RNA LOCALIZATION
While many proteins are targeted to defined subcellular compart-
ments, others are synthesized in situ following mRNA localization. 
Spatial enrichments of RNAs are generated by a variety of mecha-
nisms, including active transport (Long et al., 1997; Takizawa et al., 
1997), diffusion and entrapment (Forrest and Gavis, 2003), and local 
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protection from degradation (Ding et al., 1993). Active transport is a 
prevalent mechanism; and actin, microtubules, and their associated 
myosin, kinesin, and dynein motors are all implicated in mRNA trans-
port, depending on the specific transcript and destination (reviewed 
in Bullock, 2011). As the first discovered localized mRNA, β-actin 
mRNA is itself a model for RNA localization mechanism and function 
(Jeffery et al., 1983). Subsequent work defined β-actin mRNA as sub-
cellularly localized to the leading edge of migratory fibroblasts, 
where it promotes cell migration (Lawrence and Singer, 1986; 
Kislauskis et al., 1997; Katz et al., 2012). While early observations es-
tablished the importance of RNA localization for embryonic pattern-
ing and neuronal responses, the paradigm is conserved and serves 
critical functions in diverse cellular settings (Ryder and Lerit, 2018).

RNA localization is remarkably specific, often requiring recogni-
tion of sequence or structural motifs within target mRNAs by RNA-
binding proteins (Kislauskis and Singer, 1992). Many RNAs are main-
tained in a translationally repressed state until localized (Gavis and 
Lehmann, 1994). Other mRNAs, including several localizing to 

FIGURE 1: The centrosome as a microtubule-organizing center. (A) Cartoon depicts microtubules 
composed of α- (pale green) and β-tubulin (dark green) heterodimers nucleated from the PCM 
(gray sphere). Microtubules are polarized structures with minus ends (−) embedded in the PCM 
and plus ends (+) extending into the cytosol. (B) Structured-illumination microscopy image of a 
mitotic Drosophila embryo centrosome labeled with pericentrin-like protein (PLP; yellow; 
Martinez-Campos et al., 2004), γTubulin (γTub; blue; Joshi et al., 1992), and centrosomin (Cnn; 
magenta; Megraw et al., 1999; Vaizel-Ohayon and Schejter, 1999) antibodies. Image courtesy of 
Nasser Rusan. Dashed arrow shows the direction of the line scan used in (C) to measure the 
intensity distributions of centrosome proteins. The peak intensity of each protein was normalized 
to 100 and the distribution is plotted relative to the center of the centriole (0 nm). (D) Artistic 
rendition of the subconcentric organization of the centrosome, where each color represents the 
distribution of a centrosome protein. (1) The inner zone (yellow) represents centriolar proteins 
(e.g., PLP), (2) the midzone (blue) represents PCM proteins residing closer to the centriole, such as 
γTub, while (3) the outer zone PCM (red) defines proteins at the outer margin of the centrosome, 
such as Cnn. (E) Organization of mitotic spindles within a Drosophila embryo. Magenta 
centrosomes are marked by Asterless (Asl; Varmark et al., 2007); microtubules (green), actin (red), 
and DNA (blue) are displayed. Image courtesy of Elías Castro. Bars: (B) 500 nm and (E) 5 μm.

centrosomes, reach their destinations 
through a cotranslational transport mecha-
nism, whereby RNA localization is coupled 
to protein synthesis (Sepulveda et al., 2018; 
Chouaib et al., 2020; Safieddine et al., 2021).

While not all RNAs localize to defined 
subcellular regions, a large number do. A 
genome-wide RNA localization screen in 
early Drosophila embryos revealed >70% 
mRNAs are enriched at defined subcellular 
compartments (Lecuyer et al., 2007). Spatial 
transcriptomics in mammalian cells similarly 
highlights the high prevalence of subcellular 
RNA localization (Fazal et al., 2019). Taken 
together, RNA localization is widespread, 
conserved, and functionally important, as its 
dysregulation impacts development and 
disease (reviewed in Holt and Bullock, 2009; 
Wang et al., 2016).

MESSAGES AT THE CENTROSOME
Centrosomes as microtubule-
organizing centers
Among the subcellular depots for RNA local-
ization are specific organelles, including cen-
trosomes. Centrosomes function in microtu-
bule nucleation and organization (Karsenti 
et al., 1984; Mitchison and Kirschner, 1984) 
and are key for the fidelity of mitosis. Upon 
mitotic entry, the duplicated centrosomes or-
ganize the bipolar mitotic spindle to ensure 
faithful segregation of the chromosomes to 
the two daughter cells (Pihan, 2013). During 
interphase, centrosomes build a network of 
polarized microtubules, serving as a highway 
system for intracellular trafficking and cell po-
larization. Additionally, in quiescent cells, 
centrosomes convert into the basal bodies 
required for ciliogenesis (Kobayashi and 
Dynlacht, 2011). Indicative of its functional 
importance, centrosome dysfunction is asso-
ciated with human developmental disorders 
and disease, including microcephaly, ciliopa-
thy, and cancer (Nigg and Raff, 2009).

The microtubule-nucleating activity of the centrosome is en-
abled by the pericentriolar material (PCM; Figure 1A), the levels of 
which dramatically increase upon mitotic entry (Gould and Borisy, 
1977; Khodjakov and Rieder, 1999). The advent of superresolution 
microscopy uncovered the conserved subconcentric organization of 
centrosomal proteins within PCM (Figure 1, B and C; Fu and Glover, 
2012; Lawo et al., 2012; Mennella et al., 2012; Sonnen et al., 2012). 
Centriolar components reside near the center, while PCM proteins 
reside within different or partially overlapping layers radiating out 
(Figure 1D). The composition and organization of PCM oscillates 
with the cell cycle, augmenting the microtubule-organizing activity 
of the centrosome to direct formation of the bipolar mitotic spindle 
(Figure 1E).

Early evidence for RNA at centrosomes
Initial observations for RNA at centrosomes date back to the 1960s 
(reviewed in Marshall and Rosenbaum, 2000). Pioneering work 
indicated purified ciliary basal bodies from the protist Tetrahymena 
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contained approximately 2% of total cellular RNA (Seaman, 1960; 
Argetsinger, 1965; Hoffman, 1965; Hartman et al., 1974).

While it was debated whether RNA represented a contaminant 
following cell fractionation, there was also speculation nucleic acids 
supported centriole duplication (Seaman, 1960; Sagan, 1967). Thus 
far, there is no evidence supporting a role for RNA in centriole dupli-
cation, a process largely regulated by the conserved Polo-like kinase 
4 (PLK4; Bettencourt-Dias et al., 2005; Habedanck et al., 2005). As 
we will discuss below, the function of RNA localized to centrosomes 
remains relatively underexplored.

Identification of mRNAs at the centrosome
Classically, subcellular RNA localization is visualized through in situ 
hybridization (Jeffery et al., 1983). Thus, cyclin B (cyc B) mRNA was 
first localized to centrosomes within early Drosophila embryos (Raff 
et al., 1990). Later, studies in Xenopus suggested local cyc B mRNA 
is important for mitotic progression (Groisman et al., 2000). A ge-
nome-wide RNA localization screen similarly detected cyc B and 
other defined mRNAs at Drosophila centrosomes (Lecuyer et al., 
2007). Recent RNA localization screens employing higher resolution 
and more quantitative single molecule fluorescence in situ hybridiza-
tion (smFISH; Femino et al., 1998) identified additional mRNAs local-
izing to centrosomes (Chouaib et al., 2020; Kwon et al., 2021; Safied-
dine et al., 2021), consistent with work from our own group (Ryder 
and Lerit, 2020; Ryder et al., 2020). Transcriptomic methods further 
enumerate the list of RNAs associated with mitotic spindles (Sharp 
et al., 2011; Hassine et al., 2020). Similarly, high-throughput analyses 
reveal several human microtubule-associated and centrosome-local-
ized proteins, including Pericentrin (PCNT) and CDK5RAP2, reside in 
complex with RNA (Doxsey et al., 1994; Fong et al., 2008; Mallam 
et al., 2019). These data showcase the prevalence of RNA localized 
to centrosomes and spindle poles. Moreover, many of the RNAs lo-
calizing to centrosomes are conserved across divergent species, ar-
guing for biological significance (recently reviewed in Zein-Sabatto 
and Lerit, 2021). Notably, most mRNAs identified in these screens 
encode proteins known to localize to and regulate centrosomes, 
hinting RNA localization to centrosomes and translation are 
coupled.

TRANSLATION AT THE CENTROSOME
Compelling evidence indicates local RNA supports protein synthe-
sis at centrosomes. Isolated basal bodies from Tetrahymena are 

capable of protein synthesis (Seaman, 1962). Moreover, ribosomes 
reside in close proximity to centrioles and basal bodies, as revealed 
by electron microscopy from intact cells (Figure 2, A and B; Sorokin, 
1962). Isolated mitotic spindles from sea urchin, Xenopus, and cul-
tured human cells also contain RNA and ribosomes, highlighting the 
conservation of these associations (Goldman and Rebhun, 1969; 
Blower et al., 2007). Immunofluorescence likewise shows ribosomal 
components near centrosomes (Blower et al., 2007; Sepulveda 
et al., 2018). These data highlight the intimate association of centro-
somes, microtubules, and the translational machinery.

More recently, nascent peptide synthesis was directly visualized 
at centrosomes in Drosophila embryos and cultured mammalian 
cells. Puromycylation-proximity ligation assay (puro-PLA) detects 
nascent translation based on the physical proximity (∼40 nm) of 
puro-labeled ribosomes and a user-specified protein (tom Dieck 
et al., 2015). Puro-PLA indicates Centrocortin (Cen) mRNA is trans-
lated near centrosomes in Drosophila embryos (Bergalet et al., 
2020). Another common tool to detect local protein synthesis is 
through the incorporation of azidohomoalanine (AHA), also known 
as biorthogonal noncanonical amino acid tagging (BONCAT; 
Dieterich et al., 2006). Recent work shows AHA-labeled proteins are 
enriched at centrosomes and along the spindle, consistent with 
local protein synthesis (Pascual et al., 2020). RNA localization and 
local protein synthesis is also noted at the base of, and even within 
cilia (Hao et al., 2021; Kwon et al., 2021). Additional work is required 
to determine differences in RNA composition and translation state 
during the basal body-to-centrosome conversion.

For many transcripts, RNA localization to centrosomes requires 
intact ribosomes. The localization of abnormal spindle-like micro-
cephaly-associated (ASPM/asp), BICD cargo adaptor 2 (BICD2), 
coiled-coil domain-containing 88C (CCDC88C), Cen, centrosomal 
protein 350 (CEP350), hyaluronan-mediated motility receptor 
(HMMR), nuclear mitotic apparatus protein 1 (NUMA1)/mushroom-
body defective (mud), and PCNT/plp mRNAs to Drosophila and 
cultured human cell centrosomes is puromycin sensitive, support-
ing a model for cotranslational transport (Sepulveda et al., 2018; 
Bergalet et al., 2020; Chouaib et al., 2020; Safieddine et al., 2021). 
Cotranslational transport may expediate the rapid influx of PCM 
components required for mitotic spindle assembly, for example. 
Alternatively, cotranslational transport may limit interactions among 
certain proteins until they reach the centrosome to safeguard mi-
crotubule organization.

FIGURE 2: The intimate association of the translational machinery with microtubules and centrosomes. (A) Repro-
duction of “Biosites: Cytoplasm, 2005” illustrated by David S. Goodsell; available online (doi: 10.2210/rcsb_pdb/
goodsell-gallery-006). Illustration shows a microtubule filament (light blue, left) juxtaposed to ribosomes (dark blue) 
synthesizing proteins (pink). (B) Electron micrograph of a rat lymphocyte showing abundant polyribosomes (PR) 
clustered near the duplicated centrioles from Murray et al. (1965) originally published in Journal of Cell Biology and 
reprinted with permission from Rockefeller University Press.
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Additional evidence for local translation was beautifully demon-
strated through live imaging. Translated SunTag sequences are rap-
idly bound by fluorescent nanobodies, permitting in vivo imaging of 
active translation when inserted upstream of a protein of interest 
(Yan et al., 2016). Similarly, SunTag technology permitted detection 
of cotranslational transport and on-site translation of ASPM and 
NUMA1 mRNAs at centrosomes (Chouaib et al., 2020; Safieddine 
et al., 2021). Taken together, these data strongly implicate centro-
somes as sites for local translation.

FUNCTIONAL ROLES OF RNAS LOCALIZED TO 
CENTROSOMES
Early attempts to ascribe function to RNA at centrosomes yielded 
conflicting results. Basal bodies isolated from Chlamydomonas or 
Tetrahymena and injected into unfertilized Xenopus eggs organized 
microtubule asters that were RNase sensitive, suggesting RNA pro-
moted the microtubule-organizing activity of centrosomes (Heide-
mann et al., 1977). Consistent with these findings, microtubule 
growth and the abundance of PCM from isolated centrosomes 
proved to be RNase sensitive in other systems, too (Zackroff et al., 
1976; Pepper and Brinkley, 1980). Subsequent work contradicted 
some of these findings, however (Klotz et al., 1990). Consequently, 
functional roles for RNA localized to centrosomes remained unclear.

Evidence of a likely role for local RNA influencing centrosome 
function later arose from the Richter laboratory. Groisman and co-
workers mutated sites within the cyc B mRNA 3′-untranslated region 
(3′-UTR) required for RNA localization to spindle poles. Altering 
these sites or depleting the activity of the cognate RNA-binding 
protein, cytoplasmic polyadenylation element binding (CPEB), in 
Xenopus oocytes led to diminished cyc B mRNA and protein local-
ization to the spindle pole, spindle defects, and mitotic delays 
(Groisman et al., 2000). This work suggests local cyc B mRNA is re-
quired for spindle morphogenesis and mitotic progression, perhaps 
supporting local synthesis of Cyc B protein.

More recently, our group similarly manipulated the RNA-binding 
protein fragile-X mental retardation protein (FMRP) to investigate 
consequences for RNA localization and downstream phenotypic re-
sponses. Cen mRNA localizes to Drosophila centrosomes, and this 
localization requires intact polysomes, consistent with a cotransla-
tional localization mechanism (Lecuyer et al., 2007; Bergalet et al., 
2020). We identified FMRP, an RNA-binding protein that functions in 
translational repression (Darnell et al., 2011), in a biochemical com-
plex with Cen mRNA (Ryder et al., 2020). Moreover, loss of Fmr1, 
the gene encoding FMRP, led to increased Cen mRNA localization 
to centrosomes and increased Cen protein translation, suggesting 
Cen mRNA localization and translation are regulated by FMRP (Ry-
der et al., 2020). Consistently, reducing Cen dosage in Fmr1 mu-
tants partially rescued spindle defects and centrosome separation 
errors, indicating the titration of local Cen mRNA and/or protein 
dosage at centrosomes is functionally significant.

To directly test the role of local RNA, we mistargeted Cen mRNA 
to the anterior cortex of developing Drosophila embryos by fusing 
the Cen coding sequence with the bicoid (bcd) 3′-UTR (Cen-bcd-3′-
UTR embryos), sufficient for RNA localization to the anterior cortex 
(Macdonald and Struhl, 1988). Mistargeting Cen mRNA to the ante-
rior pole blocked localization of Cen mRNA or protein to distal cen-
trosomes, resulting in phenotypes consistent with Cen loss, includ-
ing centrosome separation errors and spindle defects (Kao and 
Megraw, 2009; Ryder et al., 2020). This work shows local Cen mRNA 
is required at centrosomes for Cen protein localization and function. 
Ectopic Cen mRNA at the anterior pole also disrupted local microtu-
bule organization and centrosome position, leading to DNA dam-
age, and demonstrating the deleterious effects of excess local Cen 
activity (Figure 3, A and B). Based on the Cen-bcd-3′-UTR studies, we 
conclude local dosage of Cen mRNA is finely tuned to ensure normal 
centrosome function. Going forward, it will be of significant interest 
to determine whether the local translation of other centrosome-lo-
calized mRNAs is likewise required for normal centrosome function.

FIGURE 3: Mistargeting Cen mRNA in syncytial Drosophila embryos impairs centrosome function. Schematic shows 
Cen mRNA and protein localization and associated centrosome-related phenotypes in (A) control and (B) Cen-bcd-3′UTR 
embryos. In control embryos, Cen mRNA and protein colocalize as pericentrosomal granules asymmetrically enriched at 
the mother centrosome. Expression of Cen-bcd-3′UTR within otherwise Cen null embryos, however, results in the 
ectopic localization of Cen mRNA and protein to the anterior cortex. Mislocalized Cen mRNA and protein also form 
massive centrosome-enriched granules. In contrast, Cen-bcd-3′UTR embryos lack Cen mRNA or protein at more distal 
centrosomes near the embryo midregion or posterior. Mistargeting Cen mRNA to the anterior cortex significantly 
disrupts centrosome function, resulting in defects in centrosome position and centrosome–nucleus tethering. More 
severe phenotypes consistent with mitotic errors are apparent near the anterior, including disorganized microtubules, 
supernumerary centrosomes, enlarged and dysmorphic nuclei, as well as nuclear fallout, the ejection of damaged nuclei 
from the syncytial blastoderm cortex. Consequently, Cen-bcd-3′UTR embryos also show elevated rates of embryonic 
lethality. Taken together, these observations indicate the local concentration of Cen mRNA is important for centrosome 
function and mitotic integrity.
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CONCLUDING REMARKS AND OPEN QUESTIONS
Despite historic debate, the localization of mRNA to centrosomes is 
now irrefutable. Moreover, recent work from independent laborato-
ries and divergent model systems further implicates centrosomes as 
sites for local protein synthesis. While local translation is predicted 
to facilitate the rapid increase in PCM proteins intrinsic to centro-
some activation before mitotic onset (i.e., centrosome maturation), 
further work is required to test this model. Indeed, the discovery of 
mRNAs localized to the centrosome far outpaces their functional 
characterization.

To understand the full impact of RNA localized to centrosomes, 
several critical questions remain to be addressed. The first set of 
questions relates to identifying which RNAs reside at centrosomes 
and how they get there. Foremost, for most mRNAs, the molecular 
machinery required for centrosomal localization, interacting binding 
partners, and key cis elements required for localization are still un-
known. Understanding mechanisms of RNA localization will allow 
researchers to perturb the process and examine consequences to 
centrosome function. These investigations will also clarify whether 
cotranslational transport is generalizable to most centrosome-local-
ized RNAs, as currently suggested by the literature, or whether 
transport mechanisms are transcript specific. Related to RNA trans-
port, do multiple RNAs cotraffic? Transport particles comprising 
multiple RNAs may efficiently direct multiple RNA transcripts to a 
common destination. Also, what regulates the cell cycle dynamics of 
RNA enrichment to centrosomes, and are these oscillations relevant 
to centrosome activity or function? How do RNA distributions differ 
at centrosomes versus basal bodies, or in response to external stim-
uli? Do changes in RNA distribution contribute to centrosome het-
erogeneity observed in distinct cell types? Resolving these funda-
mental questions will allow researchers to better understand how 
RNA localization influences centrosome composition and frame ad-
ditional experiments to ascertain biological consequences.

Many questions remain pertaining to the biological significance 
of RNA localized to centrosomes. Why is a specific RNA localized to 
the centrosome, and does it matter? While evidence supports the 
idea that some RNAs are subject to translational regulation at the 
centrosome, as demonstrated for Drosophila Cen mRNA, whether 
this is true for other centrosome-enriched RNAs requires further 
study. Similarly, details of what regulates translational control at the 
centrosome, and whether these mechanisms are linked to the cell 
cycle, are exciting areas of investigation. Do such mechanisms im-
pinge on centrosome maturation, microtubule nucleation, or other 
processes? Conversely, do RNAs influence centrosome structure? 
Manipulating RNA localization is one approach to test these ideas.

Continued investigation will unearth the answers.
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