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This study aimed to investigate whether instrumental reward learning is affected by
the cardiac cycle. To this end, we examined the effects of the cardiac cycle (systole
or diastole) on the computational processes underlying the participants’ choices in
the instrumental learning task. In the instrumental learning task, participants were
required to select one of two discriminative stimuli (neutral visual stimuli) and immediately
receive reward/punishment feedback depending on the probability assigned to the
chosen stimuli. To manipulate the cardiac cycle, the presentation of discriminative
stimuli was timed to coincide with either cardiac systole or diastole. We fitted the
participants’ choices in the task with reinforcement learning (RL) models and estimated
parameters involving instrumental learning (i.e., learning rate and inverse temperature)
separately in the systole and diastole trials. Model-based analysis revealed that the
learning rate for positive prediction errors was higher than that for negative prediction
errors in the systole trials; however, learning rates did not differ between positive and
negative prediction errors in the diastole trials. These results demonstrate that the
natural fluctuation of cardiac afferent signals can affect asymmetric value updating in
instrumental reward learning.

Keywords: cardiac cycle, decision-making, interoception, reinforcement leaning, instrumental learning,
baroreflex, reward learning

INTRODUCTION

It is widely accepted that not only does the brain regulate the internal physiological state
of the body, but information concerning the internal physiological state of the body is
also transmitted to the brain. This bi-directional signal processing between the brain and
the internal physiological state of the body is called “Interoception” (e.g., Chen et al.,
2021). Interoceptive signals are originated from all major biological systems, including the
cardiovascular, gastrointestinal, immune, and autonomic systems (for a comprehensive review,
see Khalsa et al., 2018). Recent theoretical and empirical has provided converging evidence
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that interoception plays research an essential role in energy
regulation, subjective sense of self, and affective experience (for
a review, see Quigley et al., 2021).

In previous studies on interoception, afferent signals from
heart activity (i.e., cardiac afferent signals) have been the target
of a growing body of research. The strength and timing of
arterial pressure at each heartbeat are encoded by the phasic
discharge of arterial baroreceptors during cardiac systole and
the contraction of the heart, which is transmitted to the
brainstem and used for the baroreflex control of blood pressure.
Importantly, the cardiac afferent signals from the arterial
baroreceptors are conveyed to areas of the brain associated
with the processing of cognitive and affective information (for
a review, see Garfinkel and Critchley, 2016). Consistent with
this, previous studies have found that natural fluctuations in
cardiac afferent signals influence the processing of several types
of external stimuli. Specifically, recent studies have accumulated
evidence indicating that the processing of external stimuli
can be facilitated during cardiac systole, especially when the
stimuli are associated with motivational or affective significance.
Garfinkel et al. (2014) found that the detection of threat-
related stimuli (i.e., a fearful face) in the attentional blink task
was enhanced when the stimuli were presented during cardiac
systole compared to cardiac diastole. Similarly, other studies
have shown an enhancement of attentional capture for threat-
related stimuli presented during cardiac systole in the attentional
engagement task (Azevedo et al., 2018). In addition, recent
studies have reported that processing positively valenced stimuli
(i.e., monetary rewards and happy faces) can be facilitated
during cardiac systole (Kimura, 2019; Leganes-Fonteneau et al.,
2021). Therefore, previous results have suggested that the
natural fluctuation of cardiac afferent signals causes moment-to-
moment fluctuations in the processing of stimuli associated with
motivational/affective significance.

Although previous studies have demonstrated that the cardiac
cycle influences affective processing, its effect of the cardiac
cycle on learning remains unclear. It is widely accepted
that attention to and processing of conditioned stimuli in
Pavlovian learning or discriminative stimuli in instrumental
learning play a prominent role in a variety of learning
contexts (e.g., Mackintosh, 1975; Anderson, 2016). Therefore,
considering that the cardiac cycle modulates the processing
of stimuli associated with motivational/affective significance, it
is reasonable to expect that the cardiac cycle affects learning.
Only one study, that is, Waselius et al. (2018), examined
this issue. In their study, human participants and rabbits
were subjected to trace eyeblink conditioning, in which the
tone was a conditioned stimulus and an air puff toward the
eye was an unconditioned stimulus. The onset of delivery
of the conditioned stimulus coincided with either cardiac
systole or diastole. The authors reported that the cardiac cycle
modulated neural responses to the conditioned stimulus in
both humans and rabbits and influenced Pavlovian learning
in rabbits. Their results suggest that the cardiac cycle affects
Pavlovian learning by modulating the processing of conditioned
stimuli. However, no study has examined the effect of cardiac
cycle on instrumental learning. Mackintosh (1975) proposed

that attention to discriminative stimuli influences changes in
associative strength during instrumental learning. From this
perspective, it is possible that the cardiac cycle can modulate
the processing of discriminative stimuli, and, hence, can affect
instrumental reward learning.

To examine this possibility, this study aimed to investigate
whether the cardiac cycle affects instrumental reward-learning.
For this purpose, we used a model-based approach and
examined the effects of the cardiac cycle on the computational
processes underlying the participants’ choices in the instrumental
learning task. We employed reinforcement learning (RL) models
that have been successfully used to capture a broad range
of value-based learning at the level of both behavior and
neural signals (for a review, see O’Doherty et al., 2007).
In the instrumental learning task, participants could choose
one of two neutral visual stimuli and immediately receive
reward or punishment feedback, depending on the probability
assigned to the chosen stimuli. According to a previous study
investigating the effect of the cardiac cycle on learning (Waselius
et al., 2018), we manipulated the onset of the presentation
of discriminative stimuli (i.e., two neutral visual stimuli) such
that they coincided with either cardiac systole or diastole
across trials (i.e., systole and diastole trials). We fitted the
participants’ choices in the task with RL models and estimated
the parameters involving instrumental learning (i.e., learning
rate and inverse temperature) separately in the systole and
diastole trials. The difference in the estimated parameters
between the systole and diastole trials was then examined.
If the cardiac cycle affects instrumental reward learning, the
estimated parameters would differ in the systole and diastole
trials. In contrast, if the cardiac cycle did not affect instrumental
reward learning, the estimated parameters would not differ
between the trials.

MATERIALS AND METHODS

Participants
Overall, 45 adults participated in our experiment (13 women,
32 men, age range = 20–42 years, mean = 24.0 years). All the
participants were right-handed and had normal or corrected-to-
normal vision. The participants were not taking any medication
and had no history of neurological, cardiovascular, physical, or
mental disorders. The experimental procedures were approved
by the Safety and Ethics Committee of the National Institute
of Advanced Industrial Science and Technology (AIST). All
participants understood the details of the experiment before
their participation, and written informed consent was obtained
from each participant before the experiment. This research
was conducted in accordance with ethical regulations. Power
analysis for repeated-measures analysis of variance (ANOVA)
using G∗Power 3.1 software (with the power of 0.80, expected
effect size of 0.20, and an alpha level of 0.05) suggested a
sample size of 36. One participant was excluded because of
technical problems. Eight participants were excluded because
their performance was not significantly different from chance
(binomial test, p > 0.05). Thus, the final dataset comprised
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36 participants (8 females, 28 males, age range = 20–42 years,
mean = 24.0 years). The final sample size was almost
equivalent to that of previous studies examining the effect of
the cardiac cycle on cognitive and affective processing (e.g.,
Azevedo et al., 2017; Waselius et al., 2018; Kimura, 2019;
Kimura et al., 2022).

Electrocardiograms Recording
Electrocardiogram was recorded using an MP150 Biopac System
(ECG100C). The ECG was recorded with Ag/AgCl electrodes
placed on the right collarbone and the left rib. The sampling
rate was 2,000 Hz, and a hardware bandpass filter between 0.3
and 1,000 Hz was applied. The signal was recorded using the
AcqKnowledge software (Biopac Systems).

To synchronize the onset of the presentation of the
discriminative stimuli, heartbeats were detected online using
a threshold-based R-peak detection method in AcqKnowledge
software. Using the timing of each heartbeat, the onset of
presentation of the discriminative stimuli was set to coincide with
the systolic (∼300 ms after the R-peak) or diastolic (∼550 ms
after the R-peak) phases of the cardiac cycle (Gray et al., 2009;
Garfinkel et al., 2014; Azevedo et al., 2017, 2018).

Setup and Experimental Task
In the instrumental learning task, participants selected one
of two neutral visual stimuli repeatedly for 360 trials, with
minutes of break after every 40 trials. The visual stimuli were
Arabic characters, meaningless to and not easily recognized by
Japanese participants. None of the participants was familiar with
Arabic characters. In each of the 360 trials, participants received

reward feedback (10 Japanese yen) or punishment feedback
(−10 Japanese yen) depending on the probability assigned to
the chosen option. The Presentation software (Neurobehavioral
Systems installed on a Lenovo, ThinkPad W540 computer laptop)
presented the stimuli and recorded participants’ responses.
All the visual stimuli were presented on a 22-inch LCD
monitor (Dell E2210).

Figure 1 shows the flowchart of each trial. Each trial
began with a fixation display with a black cross presented
at the center of a gray background. The duration of the
fixation display was controlled, trial by trial, to adjust the
onset of presentation of the discriminative stimuli, such that
the duration of the fixation display was 1,000 ms on average
and remained the same in all cardiac cycle trials. The fixation
display was followed by the display of two discriminative
stimuli (i.e., stimuli A and B) presented on either side of
the fixation cross. The positions of the two stimuli (left and
right) were randomized. Participants were required to choose
one stimulus by pressing the left button (i.e., “Z” button
on a keyboard) with the index finger or the right button
(“X” button on a keyboard) with the middle finger, using
their dominant hand. No time limits for choices were set
for technical reasons, and the two stimuli remained until
the participant pressed the button. However, the participants
were encouraged to choose one stimulus within 2,000 ms.
After the participant’s response, the chosen stimulus was
highlighted by a thickening of the black outline. After
1,000 ms, reward/punishment feedback was displayed, in which
the fixation cross was replaced by a colored circle (red or
blue). The mapping of red/blue and reward/punishment was

FIGURE 1 | Schematic illustration of the flow of one trial of the instrumental learning task. The presentation of the discriminative stimuli (indicated by the dashed line)
was experimentally manipulated to coincide with either the cardiac systole or diastole. This figure shows the reward probability for one of the two discriminative
stimuli (stimulus A) which was changed among six blocks according to the pre-determined schedule.
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counterbalanced across the participants. The inter-trial interval
was 1,500–2,500 ms.

The onset of the display of discriminative stimuli was
synchronized to coincide with either the participant’s cardiac
systole or diastole. Half of the trials (180 trials) were synchronized
to coincide with the cardiac systole (systole trials), whereas the
other half were synchronized to coincide with cardiac diastole
(diastole trials).

The reward probability for each stimulus was unknown to the
participants and changed among the six blocks according to the
predetermined schedule (see Figure 1). The number of trials in
each block ranged from 52 to 69. The reward probabilities for
stimuli A vs. B were 70 vs. 30%, 50 vs. 50%, or 30 vs. 70% for each
block. Therefore, the participants were required to continuously
monitor the contingency between choice and reward feedback
over the course of the task to maximize their reward earnings. To
directly compare the time courses for the choices and the effect of
the cardiac cycle, all participants were confronted with the same
reward probabilities. The participants were instructed that the
reward probabilities could change during the task, but received
no information as to how often such a change might occur.

Procedure
Upon arrival, the participants were informed about the
experiment, and asked to provide informed consent. After their
height and weight were measured, the participants were seated
comfortably in front of the display, and the electrodes for the
ECG were attached. The participants were then asked to relax for
5 min to familiarize themselves with the laboratory environment
and the electrodes. After the participants received instructions
regarding the instrumental learning task, they were given a
practice block of 10 trials to familiarize themselves with the
task. Then, the participants received an instruction about the
monetary reward: they were told that (a) they would earn 10
Japanese yen for each reward feedback and lose 10 Japanese yen
for punishment feedback and (b) they would receive a cumulative
reward for the entire task. After the instruction was given, the
participants performed the task, which consisted of 360 trials,
with minutes of break after every 40 trials. At the end of the
experiment, the participants received a predefined participation
fee of 5,000 Japanese yen with a task-related bonus.

Behavioral Data Analysis
Reaction time was measured as the latency in milliseconds
between the onset of presentation of the discriminative stimuli
and when the button was pressed in each trial. The proportion of
choices for Stimulus A was calculated for each reward probability.

Model-Based Analysis
To examine the effect of the cardiac cycle on the parameter
estimates derived from the computational RL model, the
following procedure was adopted: first, to capture the
participants’ choice behavior in the present task, we constructed
a model set in which the effect of the cardiac cycle was not
considered, fitted them to the participants’ choice data, and
determined the best-fitting model. Second, using the best-fitting
model, different parameters in the systole and diastole trials

were estimated. We focus on two learning rates (α+ and α−,
see below) and inverse temperature β, and examine whether
these parameter estimates are different between the systole and
diastole trials.

Q-Learning Models
We constructed computational models and fitted them to the
participants’ choice data for the instrumental learning task. We
employed a conventional reinforcement learning model termed
the Q-learning model (Sutton and Barto, 1998). In the standard
Q-learning model, the action value for the chosen option (e.g.,
stimulus A) in trial t, denoted by Qc (t), is updated based on the
following equation:

QA(t + 1) = QA(t)+ αδ(t)

Where α is the learning rate that determines the degree of the
update. δ(t) represents the prediction error which is calculated
as:

δ(t) = R(t)− QA(t)

Here, R(t) is the outcome obtained by choosing stimulus A in
trial t. The prediction error represents the difference between the
expected and actual outcomes. Therefore, the action values for
each option increase when the obtained outcome is better than
expected, whereas they decrease when the obtained outcome is
worse than expected. The probability of choosing stimulus A is
given by the set of Q values according to the following softmax
rule:

PA(t) =
1

1+ exp(−β(QA(t)− QB(t)))

Here, QB (t) is the action value for choosing stimulus B at trial
t. β is the inverse temperature that determines the degree of
stochasticity in the decision-making process.

Since previous studies have demonstrated that the effect of the
cardiac cycle on affective processing could depend on stimulus
valence (e.g., Garfinkel et al., 2014; Azevedo et al., 2018; Kimura,
2019; Leganes-Fonteneau et al., 2021), we used a modified version
of the Q-learning model in which learning from positive and
negative prediction errors is determined by different learning
rates, according to previous studies (e.g., Lefebvre et al., 2017).
The modified version of the Q-learning model, referred to as the
Q-A model, allows the learning rates to differ depending on the
sign of the prediction error, as follows:

QA (t + 1) =
{

QA(t)+ α+δ(t) if δ(t) ≥ 0
QA(t)+ α−δ(t) if δ(t) < 0

The learning rate α+ scales the extent to which the model updates
the action value from one trial to the next when the prediction
error is positive, whereas α− is the same when the prediction
error is negative.

We also considered three variants of the Q-A model (Q-
AF, Q-AC, and Q-AFC) as candidate models. Table 1 presents
the model details. The Q-AF model instantiates value-forgetting,
where the action value for the unchosen option is updated by the
forgetting parameter αF (e.g., Katahira et al., 2017; Toyama et al.,
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TABLE 1 | Information concerning the five models compared on the basis of their
fit to the choice data from 36 participants.

Model name Description # of free parameters LML

Q-A The standard Q-learning
model with asymmetric
learning rates (α+ and α−)
for positive and negative
reward prediction errors

3 −211.5 (6.54)

Q-AF The Q-A model with
updating unchosen action
values using forgetting
parameter

4 −205.6 (7.34)

Q-AC The Q-A model with the
computational process of
choice history using decay
rate (τ) and perseverance
parameter (ϕ)

5 −206.5 (7.28)

Q-AFC The hybrid of the Q-AF and
Q-AC models

6 −207.3 (7.37)

null mode The biased random choice
model producing the same
probability of two options
being chosen with biases of
the participants’ choices

1 −248.5 (0.75)

This list of models shows the mean values and standard errors across participants
regarding the log marginal likelihood (LML) for each model.

2017). The Q-AC model includes the perseverance factor, which
introduces the effect of a past choice to the choice probability
(e.g., Sugawara and Katahira, 2021). The Q-AFC model combines
the Q-AF and Q-AC models. We also included the null model,
which is a biased random choice model that produces the same
probability of two options being chosen with biases in the
participants’ choices. Five models were used to fit the choice data.

Parameter Estimation and Model
Comparison
We used the R function “solnp” in the Rsolnp package to
estimate the parameters of each model with the maximum a
posteriori (MAP) estimation and calculated the log marginal
likelihood of each model using Laplace approximation (Kass and
Raftery, 1995). Marginal likelihood penalizes a complex model
with additional parameters in the marginalization process. As the
marginal likelihood is proportional to the posterior probability of
the model, a higher marginal likelihood indicates a better model.
Notably, this situation is true only if all models have an equal
prior probability (i.e., all models are equally likely before the data
are provided). This method incorporates prior distributions of
the parameters and avoids extreme values in parameter estimates.
Prior distributions and constraints were set according to Niv et al.
(2012) and Sugawara and Katahira (2021), since these previous
studies used RL models similar to this study and successfully
captured the participants’ choice behavior in reward learning
tasks. As prior distributions, we used a beta distribution with
hyperparameters (a = 2, b = 2) for all learning rates, forgetting
parameter, and decay rate, a gamma distribution (shape = 2,
scale = 3) for the inverse temperature β, and a normal distribution
(µ = 0, σ2 = 5) for the perseverance parameter φ. All learning

rates and forgetting parameters were constrained to the range of
0 ≤ α ≤ 1. The inverse temperature was constrained to β ≥ 0.
In the perseverance model, the decay rate was constrained to
the range of 0 ≤ τ ≤ 1, and the perseverance parameter was
constrained to the range of – 10 ≤ φ ≤ 10.

The model parameters (α+, α−, and β) were compared
between the systole and diastole trials. Learning rates were
subjected to a two-way repeated-measures ANOVA, with two
trial types (systole and diastole) × two learning rate types (+
and −). The inverse temperatures for the systole and diastole
trials were analyzed using t-tests. Effect sizes were calculated using
Cohen’s d. An alpha level of 0.05 was used for all statistical
analyses. The difference in learning rate asymmetry (α+− α−)
between the systole and diastole trials was computed as a measure
of the cardiac cycle effect on learning rates.

RESULTS

Manipulation Check
Figure 2A illustrates the histogram detailing the presentation
of discriminative stimuli in relation to the cardiac cycle. The
precision of the onset timing in the cardiac cycle relative to the
R-wave peak indicated that> 99% of the trials were within 200 ms
of the manipulated timing in both systole (red) and diastole (blue)
trials. Specifically, the mean time from the R-wave peak for the
systole trials was 244 ms [Standard Deviation (SD) = 27 ms],
whereas the mean time from the R-wave peak for the diastole
trials was 527 ms (SD = 14 ms). The precise timing within the
cardiac cycle was comparable to that reported in previous studies
(e.g., Azevedo et al., 2017, 2018). Thus, the manipulation check
suggested that the onset of the display of the discriminative
stimuli was successfully synchronized to coincide with either the
participant’s cardiac systole or diastole.

Behavioral Data
The mean reaction time was 624 ms [Standard Error
(SE) = 41 ms] in the systole trials and 741 ms (SE = 67 ms)
in the diastole trials. A paired t-test revealed that the mean
reaction time was shorter in systole trials than in diastole trials
[t(35) = 2.42, p = 0.05, d = 0.40].

Figure 2B shows the proportions of choosing stimulus A for
each reward probability block. As shown in Figure 2B, as the level
of reward probability of stimulus A decreased, the proportions of
choosing stimulus A decreased. One-way ANOVA (three reward
probabilities) on the proportions of choosing stimulus A revealed
a significant effect of reward probability [F(2,70) = 102.34,
p < 0.01, partial η2 = 0.75]. Post hoc comparisons indicated that
the differences in the proportions of choosing stimulus A were
significant across all reward probabilities (ps< .01).

Model-Based Analysis
Table 1 lists the log-marginal likelihoods of each model. We
compared the log-marginal likelihood of each model and found
that the Q-AF model had the highest value. Given that a marginal
likelihood penalizes a complex model with extra parameters, and
a higher marginal likelihood represents a better model, the Q-AF
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FIGURE 2 | (A) The precision of the timing within the cardiac cycle, relative to the R-wave peak, is shown in the histogram. (B) The proportions of choosing stimulus
A for each reward probability block. Error bars indicate standard error (SE). (C) Mean of the learning rates (α+ and α−) in the systole and diastole trials. Error bars
indicate SE. An asterisk indicates a significant difference in the learning rate between the systole and diastole trials (*: p < 0.05). (D) The difference in the learning
rate asymmetry (α+− α−) between the systole and diastole trials for each participant. The positive value represents a larger learning rate asymmetry in the systole
trials relative to the diastole trials, whereas the negative value represents a larger learning rate asymmetry in the diastole trials relative to the systole trials. In 24 of 36
participants, there were larger learning rate asymmetry in the systole trials compared to the diastole trials.

model was the best-fitting model for participants’ choice data in
this study. We then estimated the parameters in the modified
version of the Q-AF model in which the parameters of interest
(α+, α−, and β) were allowed to have different values in the systole
and diastole trials.

Figure 2C shows the learning rates (α+ and α−) in the systole
and diastole trials. The learning rates were subjected to two-
way repeated-measures ANOVA, with two trial types (systole
and diastole) × two learning rate types (+ and −). The results
revealed a significant interaction between trial and learning rate
types [F(1,35) = 5.97, p < 0.05, partial η2 = 0.15]. Post hoc
comparisons revealed that α+ was significantly higher than α−

in the systole trials [t(35) = 2.74, p < 0.01, d = 0.46], whereas the
difference between α+ and α− was not significant in the diastole
trials [t(35) = 0.69, p = 0.50, d = 0.12]. In addition, α+ did not
differ between the systole and diastole trials [t(35) = 1.63, p = 0.11,
d = 0.27], whereas α− tended to differ between the systole and
diastole trials [t(35) = 1.95, p = 0.06, d = 0.32]. Figure 2D
illustrates the difference in learning rate asymmetry (α+− α−)
between the systole and diastole trials for each participant. The

figure indicates that a positive value represents a larger learning
rate asymmetry in the systole trials relative to the diastole
trials, whereas a negative value represents a larger learning rate
asymmetry in the diastole trials relative to the systole trials. As
shown in Figure 2D, a larger learning rate asymmetry in the
systole trials compared to the diastole trials was present in 24
of 36 participants. A paired t-test of the inverse temperature β

revealed no significant difference between the systole and diastole
trials [t(35) = 0.48, p = 0.63, d = 0.08].

DISCUSSION

This study aimed to investigate whether the cardiac cycle affects
instrumental reward learning. To this end, we manipulated the
onset of the presentation of discriminative stimuli such that they
coincided with either cardiac systole or diastole across trials.
The precision of the onset timing in the cardiac cycle showed
that discriminative stimuli were successfully displayed at either
cardiac systole or diastole (Figure 2A). The behavioral results
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showed that as the level of the reward probability of stimulus
A decreased, the proportions of choosing stimulus A decreased
(see Figure 2B), indicating that the participants performed the
instrumental learning task with the goal of maximizing their
monetary rewards. These results confirm the validity of cardiac
cycle manipulation and our experimental task.

The main finding of this study was that the learning rate
for positive prediction errors was higher than that for negative
prediction errors in the systole trials, whereas learning rates
did not differ between positive and negative prediction errors
in the diastole trials. In this study, we timed the presentation
of discriminative stimuli with the systolic (∼300 ms after the
R-peak) or diastolic (∼550 ms after the R-peak) phases of the
cardiac cycle. It has been suggested that the arterial baroreceptor
signal is processed in the brain approximately 300 ms after the
R peak (e.g., Edwards et al., 2007; Gray et al., 2009). Therefore,
it would be reasonable to consider that the different patterns of
the learning rates between the systole and diastole trials could be
caused by the effects of cardiac afferent signals on the processing
of discriminative stimuli in the brain. This can be consistent with
the study of Waselius et al. (2018) demonstrating that the cardiac
cycle modulated neural processing of the conditioned stimulus
and influenced Pavlovian learning. From this point of view,
this study extends previous research by showing that cardiac
cycle affected not only Pavlovian learning but also instrumental
reward learning.

Previous research on the cardiac cycle effect has accumulated
evidence indicating that the processing of motivational/affective
stimuli can be facilitated during cardiac systole (for a review,
see Garfinkel and Critchley, 2016). Although the discriminative
stimuli used in this study were inherently neutral, it is natural
to assume that they acquired motivational/affective significance
through instrumental learning. Previous studies have shown
that cardiac afferent signals enhance the awareness (Garfinkel
et al., 2014) and attentional processing (Azevedo et al., 2018) of
motivational/affective stimuli. Given that both awareness (e.g.,
Manns et al., 2000; Skora et al., 2021) and attentional processing
of discriminative stimuli (for a review, see Mackintosh, 1975)
are closely related to value updating in learning, the present
results can be interpreted as indicating that cardiac afferent
signals facilitated the awareness and attentional processing of
discriminative stimuli, which affected subsequent value updating
in instrumental reward learning.

The learning rate for positive prediction errors was higher
than that for negative prediction errors in systole trials,
whereas learning rates did not differ between positive and
negative prediction errors in diastole trials. This means that
the effect of the cardiac cycle on learning was observed as a
difference in learning rate asymmetry rather than as an overall
difference in learning rates. The higher learning rate for positive
prediction errors than for negative prediction errors in systole
trials was consistent with the results of previous studies (e.g.,
Frank et al., 2004; Lefebvre et al., 2017). Specifically, Lefebvre
et al. (2017) demonstrated that human choice behavior in an
instrumental learning task can be captured by the RL model,
implementing a higher learning rate for positive prediction
errors than for negative prediction errors (i.e., optimistic learning

rate asymmetry). The authors suggested that this learning rate
asymmetry is involved in optimism bias: overestimation of the
likelihood of positive events compared to that of negative events
(e.g., Sharot, 2011). From this perspective, the present results
indicate that cardiac afferent signals can enhance the expression
of optimistic learning rate asymmetry. This seems consistent with
previous findings that depressed individuals exhibit impaired
cardiac interoceptive ability (for a review, see Eggart et al., 2019)
and show an absence of optimism bias (e.g., Sharot, 2011). Future
research should explore the association between the effect of the
cardiac cycle on learning, cardiac interoceptive ability, and the
mood/affective state of individuals, for instance, using a heartbeat
detection task (Kleckner et al., 2015).

The inverse temperature did not differ between the systole
and diastole trials. Inverse temperature determines the degree
of stochasticity in the decision-making process. Therefore, a
simple interpretation of the results might be that cardiac afferent
signals do not affect the degree of stochasticity in the decision-
making process but only the value updating process. A recent
meta-analysis showed that the difference between individuals
with mood/anxiety disorders and healthy control in learning was
observed in learning rates, rather than inverse temperature (Pike
and Robinson, 2022). Considering that mood /anxiety disorders
are associated with impaired interoceptive ability (for a review,
see Eggart et al., 2019), our results suggest that the effect of
interoceptive signals on learning may be specific to the value
updating process.

Although this study cannot draw definitive conclusions
regarding the neural mechanism underlying the effect of the
cardiac cycle on instrumental reward learning, some plausible
interpretations can be proposed. Converging evidence suggests
that dopaminergic systems are involved in instrumental reward
learning (for a review, see Niv, 2009; O’Doherty et al., 2015).
In humans, previous studies using neuroimaging techniques
have repeatedly reported that prediction errors in instrumental
reward learning are associated with neural signals in the striatum,
which is known to be the major dopaminergic target (e.g.,
Schönberg et al., 2007; Niv et al., 2012). Furthermore, it has been
reported that dopaminergic manipulations by the administration
of dopamine agonists or antagonists could influence neural
activity related to prediction error and learning in the reward
learning paradigm (e.g., Pizzagalli et al., 2008; van der Schaaf
et al., 2014), indicating the causal role of dopaminergic activity
in instrumental reward learning. Previous studies have indicated
that the phasic discharge of arterial baroreceptors during cardiac
systole encodes the strength and timing of arterial pressure
at each heartbeat, which is conveyed to brain areas such as
the amygdala, anterior cingulate cortex, insular cortex, and
striatum (for a review, see Critchley and Harrison, 2013).
Importantly, Yang and Lin (1993) demonstrated that elevation
of arterial baroreceptor signals can lead to an increase in striatal
dopamine release. Therefore, our results suggest the possibility
that the cardiac afferent signal modulates the neural responses
to discriminative stimuli in the dopaminergic system, which
influences value updating in instrumental reward learning. This
possibility is supported by previous findings that endogenous
fluctuations in dopaminergic activity during the presentation
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of decision options influence the propensity to take risks
by enhancing phasic neural responses to decision options
(Chew et al., 2019). To better understand the neural mechanisms
underlying the effect of the cardiac cycle on instrumental
reward learning, future work is necessary to test this possibility
by combining experimental paradigms assessing instrumental
reward learning with neuroimaging techniques.

One important limitation of this study is the potential effect
of the cardiac cycle on action-making and reward/punishment
feedback processing. Since this study aimed to examine the
effect of the cardiac cycle at the presentation of discriminative
stimuli in the instrumental learning task, we manipulated
the onset of the stimuli to be synchronized to coincide
with the cardiac systole or diastole. This inevitably results in
asynchronization of the cardiac timing of action making and
the acceptance of feedback. Previous studies have shown that
the cardiac cycle at action-making and delivery of outcome
influences the experience of controlling one’s body to cause
desired effects in the environment (i.e., the sense of agency)
(Herman and Tsakiris, 2020). Furthermore, a previous study
reported that action feedback processing reflected in event-
related brain potentials was modulated by the cardiac cycle
in a gambling task (Kimura, 2019). Therefore, it might be
possible that the different cardiac timings at action-making and
the acceptance of outcomes have affected learning. However, it
should be emphasized that we manipulated only the onset of the
discriminative stimuli to avoid varying the temporal relationship
between the onset of the discriminative stimuli, action making,
and the onset of the outcome, as the temporal relationship among
them is a critical determinant of learning (e.g., Gallistel and
Gibbon, 2000). If future research could develop a solution to
manipulate the cardiac cycle while maintaining a stable temporal
relationship, the effects of the cardiac cycle on learning would
become more apparent.

Another limitation of this study is the generalizability of
the results. Previous studies have reported sex differences in
interoception (Grabauskaitë et al., 2017; Murphy et al., 2019;
Prentice and Murphy, 2022). Pretice and Murphy conducted a
meta-analysis examining sex differences in interoceptive accuracy
and revealed that interoceptive accuracy assessed using cardiac
tasks (i.e., heartbeat counting or heartbeat discrimination tasks)
was higher in men than in women. This suggests that the effect
of the cardiac afferent signal on learning can differ between
men and women. In the present study, mean of the learning
rates (α+ and α−) in the male participants was 0.39 (SE = 0.04)
and 0.27 (SE = 0.04) in the systole trials and 0.34 (SE = 0.02)
and 0.31 (SE = 0.04) in the diastole trials. Alternately, mean
of the learning rates (α+ and α−) in the female participants
was 0.33 (SE = 0.08) and 0.19 (SE = 0.03) in the systole trials
and 0.29 (SE = 0.09) and 0.27 (SE = 0.06) in the diastole
trials. The results imply that the pattern of learning rates does
not seem to be different between men and women. However,
given the small number of female participants in this study,
we cannot draw definitive conclusions regarding the impact of
sex differences on the results of this study. Future studies are
necessary to determine this issue using an equal number of male
and female participants.

The implications of the present findings contribute to the
current literature on impairments in learning and decision-
making accompanied by mood/anxiety disorders (for a review,
see Pike and Robinson, 2022). Pike and Robinson (2022)
reported that individuals with mood/anxiety disorders show
higher learning rates for negative prediction errors, which
may promote negative affective bias symptoms and behavioral
deficits. Recently, Waselius et al. (2022) demonstrated that
both breathing and heartbeat rhythms influence learning and
suggested that noninvasive monitoring of bodily rhythms
combined with closed-loop control of external stimuli can
be used to promote learning. From this perspective, the
present findings suggest that the control of discriminative
stimuli according to the cardiac cycle can enhance the
expression of optimistic learning rate asymmetry, which
may be used to promote learning and decision-making
in individuals with mood/anxiety disorders. It would be
interesting to examine whether manipulating the onset
timing of discriminative stimuli according to the cardiac
cycle facilitates learning performance in individuals with
mood/anxiety disorders.

CONCLUSION

This study demonstrated that the learning rate asymmetry,
which was estimated using a computational RL model, can be
affected by the cardiac cycle. In particular, we showed that
the expression of optimistic learning rate asymmetry (i.e., a
higher learning rate for positive prediction errors than for
negative prediction errors) was enhanced when discriminative
stimuli were displayed during cardiac systole. Our results
provide evidence that the natural fluctuation of cardiac afferent
signals modulates the awareness and attentional processing of
discriminative stimuli, which affect asymmetric value updating
in instrumental reward learning.
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