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Intra-axonal protein synthesis – a new target for neural 
repair?

Post-transcriptional regulation provides a means to fine 
tune gene expression. Since a single messenger RNA (mRNA) 
can be translated into several copies of a protein, controlling 
the rate of translation for individual mRNAs can have ma-
jor effects on the levels of a protein generated. The stability 
of an individual mRNA also directly impacts the amount 
of that mRNA available for translation. Proteins and small 
non-coding mRNAs (e.g., RNA binding proteins [RBP] and 
micro-RNAs [miRNA], respectively) interact with mRNAs 
and modulate their translation and stability. RBPs also play 
a role in subcellular localization of mRNAs. Polarized cells 
use mRNA localization to introduce new proteins in distinct 
subcellular domains. Neurons are highly polarized and they 
use mRNA transport and localized translational control in 
both their dendrites and axons. Protein synthesis in dendrites 
has largely been associated with synaptic efficacy. With the 
much greater distance that axons traverse, localized protein 

synthesis would be an appealing mechanism for the distal 
axon to locally regulate its protein levels. However, initial 
ultrastructural studies showing polyribosomes in dendrites 
failed to detect these in the axonal compartment, suggesting 
that ribosomes and other translational machinery are ex-
cluded from axons. With substantial advances in molecular 
tools and cellular techniques over the last two decades, many 
groups have now unequivocally shown that axons have the 
capacity to synthesize proteins (see Perry and Fainzilber, 
2014 and references within). 

In the peripheral nervous system (PNS), intra-axonal 
protein contributes to axon regeneration. Studies from the 
Fainzilber group indicate that synthesis of Importin β1, 
RanBP1, vimentin, and Stat3α proteins in distal axons is 
used to signal injury to the cell body (Perry and Fainzilber, 
2014). Importin β1 (KPNB1) is a member of the karyopher-
in protein family that imports proteins across the nuclear 
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membrane. The axonally-generated Importin β1 protein di-
merizes with cell body-synthesized Importin α3 protein that 
arrives in axons through anterograde transport. Together 
with dynein motor protein, the Importin β1/α3 heterodimer 
transports signaling proteins to the nucleus to modulate 
an injury-induced transcriptional response (Perry et al., 
2012). Dimerization of these two proteins is made possible 
by intra-axonal translation of Importin β1 that is activated 
by increases in axoplasmic Ca2+ after injury. This increase in 
axoplasmic Ca2+ also triggers translation of RanBP1 mRNA 
in axons, whose protein product regulates a RanGTPase that 
frees axonal Importin α3 for binding to the newly translat-
ed Importin β1 protein (Yudin and Fainzilber, 2009). On 
the other hand, axonally synthesized GAP43 and β-actin 
proteins are used locally for growth of sensory axons, and 
changes in the amount of GAP43 or β-actin mRNA targeted 
into axons contributes to the type of axon outgrowth (see 
(Gomes et al., 2014 and references within). Other axonally 
synthesized proteins contribute to axon growth in vitro, but 
it is not clear whether they play the same role in vivo or not. 
For example, intra-axonal translation of RhoA mRNA has 
been linked to chondroitin sulfate proteoglycan (CSPG)-me-
diated growth inhibition in cultured neurons (Walker et al., 
2012a). Beyond growth, locally generated proteins have been 
implicated in maintenance of axons, cell survival, and mito-
chondrial respiration in cultured neurons and sometimes in 
vivo for developing neurons (see Gomes et al., 2014; Perry 
and Fainzilber, 2014 and references within).

The functions outlined above for proteins synthesized 
in cultured neurons and in vivo in the developing nervous 
system and adult PNS could conceivably be harnessed for 

neural repair strategies once more is known of the molecular 
mechanisms regulating mRNA transport and translation. 
Recent works from several groups point to the possibility 
that adult CNS neurons also have the capacity for synthesiz-
ing proteins in their axons. Akins et al. (2012) have shown 
that axons in adult mouse have granular profiles of the 
fragile X mental retardation (FMRP) and fragile X related 
(FXR1, FXR2) RBPs. These tend to concentrate in regions 
of the brain with relatively higher plasticity like the olfac-
tory nerve/bulb (Akins et al., 2012). Walker et al. (2012b) 
reported intra-axonal translation in adult mouse spinal cord 
by delivering an exogenous mRNA directly into axons using 
SinB is viral particles. In cultured neurons, delivering ade-
nylate cyclase mRNA into axons with this method allowed 
for axon growth in the face of growth-inhibitory CSPGs. 
Using a peripheral nerve graft (PNG) into the adult rat spi-
nal cord, Kalinski et al. (2015) showed that ascending spinal 
cord axons contain mRNAs and translational machinery as 
they are regenerating in the PNG. Levels of the translational 
machinery seem to decline as the axons reached ends of the 
PNGs and stop growing, suggesting that the axon’s transla-
tional activity may reflect the growth supporting environ-
ment of the PNG (Sachdeva et al., 2016). Keeping with this 
notion, Selzer et al. (2016) recently showed that regenerat-
ing reticulospinal axons in the Lamprey spinal cord contain 
mRNAs and translational machinery. In contrast to higher 
vertebrates, some reticulospinal axons in the Lamprey can 
spontaneously regenerate after spinal cord injury. Together 
these studies indicate that, at least under some conditions, 
CNS axons have the mRNA transcripts and necessary trans-
lational machinery to generate new proteins. 

Figure 1 Molecular targets for modulating intra-axonal protein synthesis.  
This schematic outlines mechanisms that could be targeted for exogenously regulating axonal protein synthesis to potentially increase axon regen-
eration. These targets include: (1) mRNA transport; (2) translational control; and (3) miRNA maturation with subsequent repression of mRNA 
translation (4) or degradation of bound mRNAs (5).
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It is tempting to speculate that mRNA translation in the 
spinal cord axons noted above is a reflection of regenerative 
growth. As noted the Lamprey reticulospinal axons can spon-
taneously regenerate, and the PNGs analyzed above similarly 
support regeneration compared to the non-permissive envi-
ronment of the mammalian spinal cord (Kalinski et al., 2015; 
Selzer et al., 2016). So could the failure of early ultrastruc-
tural studies to visualize ribosomes in axons have resulted 
from investigators looking in the wrong place or under the 
wrong conditions? Recent work from the Hengst group is in 
support of this notion. Baleriola et al. (2014) showed that 
ATF4 mRNA is transported into adult hippocampal axons 
in vivo, where it is locally translated after application of ex-
ogenous amyloid-β peptide (Baleriola et al., 2014). While 
a provocative finding for the neurodegeneration field, this 
study emphasizes that these mammalian CNS neurons retain 
the capacity for intra-axonal protein synthesis into adult-
hood. Depending on the specific mRNA targets, activating 
mRNA transport into and translation within axons seems to 
be utilized for a neuron’s injury responses or increasing its 
axon’s intrinsic regeneration capacity.

We posit that the proteins and non-coding RNAs respon-
sible for regulating the transport and translation of mRNAs 
are rising as prime candidates for neural repair strategies. 
For example, the levels of zip code binding protein 1 (ZBP1) 
in adult sensory neurons limits how much β-actin and 
GAP43 mRNAs can localize into axons (see Gomes et al., 
2014 and references within). So increasing ZBP1 expression 
could effectively increase transport of the mRNAs encoding 
growth-promoting proteins. However, ZBP1 binds to many 
different mRNAs and there is a pressing need to determine 
which mRNAs it transports into axons and if CNS and PNS 
neurons differ in their use or need for ZBP1. Likewise, many 
more RBPs are undoubtedly used for transport and transla-
tion of axonal mRNAs; there is a similar need to identify the 
axonal RBPs and the cohorts of mRNAs they interact with. 
miRNAs have also been detected in axons in culture and PNS 
axons in vivo. These non-coding RNAs provide a platform 
for modifying the translation and stability of mRNAs within 
the axons. Interestingly, the Yoo group recently showed that 
miRNA precursors (pre-miRNAs) localize to axons of the 
sciatic nerve (Kim et al., 2015). This raises the possibility for 
another step of regulatory control for intra-axonal protein 
synthesis that could be a target for future neural repair strat-
egies. However, more work is needed to define the mRNA 
targets for the axonal miRNAs as well as the signaling mech-
anisms that control pre-miRNA-to-miRNA maturation in 
axons. 

In summary, localized protein synthesis clearly can occur 
in both PNS and CNS axons. Although there are increasingly 
new functions identified for axonally synthesized proteins, 
growth of the axon remains a key mechanism for the protein 

products of axonal mRNAs. The molecular events brief-
ly outlined above that contribute to regulation of axonal 
mRNA transport and translation (Figure 1) could indeed 
bring new strategies to facilitate axon regeneration. Evidence 
has been mounting for this possibility in the PNS, and stud-
ies over the past two years suggest that protein synthesis can 
be activated in at least some axons in the brain and spinal 
cord. While RBPs and miRNAs offer potential targets for 
facilitating axon regeneration, more work is needed to un-
derstand the molecular mechanisms underlying their mRNA 
interactions and activities as well as the breadth of axonal 
mRNAs that they affect.  
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