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Abstract

The multitude of bioinformatics algorithms designed for performing a particular computational task presents end-users
with the problem of selecting the most appropriate computational tool for analyzing their biological data. The choice of the
best available method is often based on expensive experimental validation of the results. We propose an approach to
design validation sets for method comparison and performance assessment that are effective in terms of cost and
discrimination power. Validation Discriminant Analysis (VDA) is a method for designing a minimal validation dataset to
allow reliable comparisons between the performances of different algorithms. Implementation of our VDA approach
achieves this reduction by selecting predictions that maximize the minimum Hamming distance between algorithmic
predictions in the validation set. We show that VDA can be used to correctly rank algorithms according to their
performances. These results are further supported by simulations and by realistic algorithmic comparisons in silico. VDA is a
novel, cost-efficient method for minimizing the number of validation experiments necessary for reliable performance
estimation and fair comparison between algorithms. Our VDA software is available at http://sourceforge.net/projects/
klugerlab/files/VDA/.
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Introduction

The analysis of complex biological systems requires a large

investment of both funding and time [1–5]. The wealth of data

being collected from biological systems often surpasses human

capabilities to find patterns without using computerized analysis

pipelines. Bioinformatics is the driving force in the design and

exploration of novel, efficient and reliable algorithms to recover

signals and patterns in biological experiments [6–16]. However,

discordance between the predictions of available algorithms is a

widespread phenomenon, resulting in difficulty selecting the most

accurate algorithm. Independent experimental validation of

algorithmic predictions can, in principle, provide adequate

information to choose the best available method for a study.

However, end-users (e.g. experimentalists) typically focus on using

a single existing algorithm and assess its performance by

performing a limited number of validation experiments [17].

On the other hand, comparative studies have relied on simulated

data or on pre-existing validation datasets [10,11,14–16,18]. Pre-

existing validation datasets obtained from earlier studies are

typically prepared to assess and fine-tune the performance of a

single algorithm [17]. Since algorithms are often fine-tuned in a

recursive process to attain the best performance on a specific set of

validation data, these datasets may be inappropriate for unbiased

comparison of algorithmic performance.

As the number of available algorithms increase, a new design for

validation sets becomes necessary to achieve fair comparisons, and,

most importantly, aid researchers in the selection of the best analysis

tool available. In principle, one could test all predictions from all

algorithms and estimate the performance of each algorithm.

However, in most applications and particularly in genomics, the

large number of validation experiments required for such

assessment makes this approach unfeasible. The main limitation is

the cost of the validation experiments, and, in some cases, the time

needed to perform them; while running a different algorithm on the

same dataset can be done quickly at virtually no cost, adding several

new validation experiments can certainly be costly.

This problem is common to many fields of science besides

genomics. It is particularly useful for event detection in one

dimensional signal analysis. For example, the time course of one

dimensional ECG or EEG signal can be divided into time

segments, denoted as negatives, where the signal is regular (no

event) and time segments, denoted as positives, where it is irregular

(event). Similarly, in genomics experiments such as ChIP-seq

analysis the density of the reads along the genome constitute a one-

dimensional signal. In this scenario the genome coordinates can be

segmented and divided into two sets: the set of segments for which

a protein-DNA binding take place (event), and the set of segments

for which there is no binding (no event). With the advent of high-

throughput approaches, it is compelling to have a procedure for
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the design of a minimal set of validation experiments that enable

comparison of several algorithms in a cost-effective fashion. These

validation experiments should constitute an independent valida-

tion set to help choose between existing algorithms rather than

fine-tune a novel method. We term this procedure validation

discriminant analysis (VDA) and we propose an algorithmic

framework intended to provide a very small set of experiments to

discriminate different algorithms with high confidence and assess

their performance. Our studies indicate that our proposed method

for VDA is superior in convergence and discriminatory power to

validation sets constructed by random selection.

VDA is a general approach, not limited to any field of science, and

is most beneficial when one analytical method has to be chosen from

a pool of available existing algorithms to make predictions where

independent experimental validation is expensive. To the best of our

knowledge, our algorithm for VDA is the only tool for designing cost

efficient sets of validation experiments capable of discriminating

between several algorithms and of estimating their accuracy.

Results

Selecting predictions to rank algorithmic performances
The main purpose of VDA is to judiciously select a compact set

of instances for independent experimental validation in order to

reliably rank the predictive power (performance) of a group of

algorithms. In the present study we focus on ranking algorithms

that are designed to predict the presence or absence of a certain

phenomenon (See section A of Appendix S1).

Often algorithms can be fine-tuned by changing some parameters

at run-time. For the present study, we will assume a black-box

approach, where the methods used have optimal default parameters

and thus fixed sensitivity and fixed specificity. Using a black-box

approach reduces the Receiver-Operator Curve (ROC), a frequently

used indicator of performance, to one point, the operative point. The

corresponding Area Under the Receiver Operator Characteristic

Curve (AUCROC) at the operative point can be computed using the

common trapezoidal interpolation and the result is equal to the

balanced accuracy, which is the average of sensitivity and specificity.

The AUCROC at the operative point is hereby denoted by p. The

function p is a measure of algorithmic performance and it can be

calculated for the i-th algorithm as follows:

pi~
1

2

TPi

P
z

TNi

N

� �
, ð1Þ

where TPi and TNi are the number of true positives and true

negatives of the i-th algorithm, corresponding to the total number of

correct predictions that an event occurred, or did not occur

respectively; P and N are the number of positives and negatives as

determined by experimental validation.

We rank the performance of algorithms by detecting differences

between their AUCROCs. These differences can be estimated by

performing validation experiments for a subset of instances and

compare the readout of these validations with the predictions of the

algorithms in this subset of instances. Therefore, the best validation

set contains the instances that have a high probability of resulting in

significant absolute differences between many pairs of AUCROCs,

where the absolute difference between a pair of AUCROCs is

denoted by Dpij

�� �� and defined, for two algorithms i and j, as
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Importantly, TPi~TPijjzzTPijj{, where TPijjz is the

number of true positives that are predicted correctly by both

algorithms, and TPijj{ is the number of true positive predictions

for the i-th algorithm that are false negatives for the j-th algorithm.

The absolute difference Dpij

�� ��, therefore, can be rewritten as

Dpij

�� ��~ 1

2

TPijj{{TPjji{
P

z
TNijj{{TNjji{

N

����
����, ð3Þ

where TPjji{and TNjji{are the true positives and true negatives

for the j-th algorithm for experiments in which the i-th and j-th
algorithm have opposite predictions. Equation 3 recapitulates the

fundamental point that the difference in performance between two

algorithms can only be determined by experimental validation of

discordant predictions.

Due to the operative cost of validation, validation outcomes, namely

TPijj{, TNijj{, TPjji{ and TNjji{, are not known a priori. On the

other hand, their sum Hij~TPijj{zTNijj{zTPjji{zTNjji{ is

known and it is equal to the number of discordant predictions between

the i-th and j-th algorithm. We define Hij as the Hamming distance

between the predictions of the two algorithms. The set of predictions

whose experimental validation results in a non-zero absolute difference

of performances Dpij

�� ��, is a subset of all predictions, including those not

selected for validation, that contribute to the Hamming distance Hij . It

is important to remark that Dpij

�� �� is not a measure of algorithmic

performance, which should be instead computed as described below in

Equation 5.

Given a set of M algorithms, we define the set U’ of detectable

predictions as the collection of all instances where at least one

algorithm inferred the occurrence of an event. It is important to

note that the set U’ depends on the chosen algorithms and that the

set U of all possible occurrences of events, regardless of the

algorithm chosen, could be too large to explore or even unknown.

In this regard, U’ is a subset of U. Importantly, we define the set D

of all instances for which at least two algorithms give discordant

predictions, with D(U 0(U . Differences in performance can only

be detected by validating instances from the subset D.

Random sampling from the set D can generally result in a

validation set whose experimental validation discriminates algo-

rithmic performances. However, alternative selection strategies

may enable us to achieve the same discrimination power as

random sampling with fewer experimental validations. We call the

identification of compact yet algorithmically discriminative

validation sets VDA (for Validation Discriminant Analysis).

Ranking algorithm using the VDA set
The main purpose of a VDA validation set is to enable ranking of

algorithms based on their performance. In the present study we used

the AUCROC at the operative point as a measure of performance

as described in Equation 1. In Equation 5 below, we discuss an

important modification of Equation 1 to enable robust estimation of

AUCROC scores when validation experiments cannot be performed

on all instances and sampling is used to design validation sets.

Greedy Algorithm for VDA
Greedy VDA (GVDA) is an iterative procedure that utilizes the

predictions made by M algorithms to sort instances according

to their potential to maximize discrimination between the M

algorithms. For a validation study comprising of X validation

experiments, we select the first X sorted instances. Validation of

these X selected instances enables quick convergence to the true

ranking of algorithmic performances. Stability in ranking can be

Ranking Algorithms with Fewer Validations
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fine-tuned by selecting a larger number of instances for

experimental validations. GVDA iteratively selects the prediction

that maximizes the minimum Hamming distance Hij in the

validation set between all pairs (i,j) of algorithms. Among the

available choices, GVDA selects the instance that will also

recursively increase the other Hamming distances between the

other pairs of algorithms in the validation set, starting from the

smallest Hij . These requirements can be elegantly satisfied by

selecting at the n-th iteration the instance sn such that

sn[ argmin
t[Zn

XM
i~1

XM
j~1

1

M2

� �dij tð ÞzHij (Vn)
 !

, ð4Þ

where Vn is the set of instances that have already been included in

the VDA set, Zn is the difference set between the set of discordant

predictions D andVn, Hij(Vn) is the Hamming distance between

the i-th and the j-th algorithm in the set Vn, and dij tð Þ is an

indicator variable that takes the value 1 if the i-th and j-th
algorithm have a discordant prediction for the instance t, and 0

otherwise. If several choices are available with the same score,

GVDA selects one at random. To reduce the search space, we

group all available instances into clusters. All the instances within a

given cluster share the same fingerprint: an M-dimensional binary

vector whose i-th element indicates whether the prediction made

by the i-th algorithm for each of these instances is classified as

positive (1) or negative (0). A step-by-step example of GVDA is

presented in section B of Appendix S1. The complexity of GVDA

is quadratic in the number of algorithms and linear (at each

iteration) in the number of fingerprints. The subsets based on

GVDA sorting are designed to be better than or equal to randomly

sampled subsets of equal size in terms of discriminatory power.

However, for a chosen subset size X, the possibility of a more

discriminatory subset of instances than the one identified using

GVDA cannot be entirely excluded.

Exhaustive Algorithm for VDA
Exhaustive VDA (EVDA) is an algorithm for VDA designed to

identify the best validation set of a given size. This algorithm is

particularly useful in laboratory settings where the number of

possible validations is subject to budgetary limitations. EVDA is

similar to GVDA in design, although it implements a dynamic

programming exhaustive recursive search with branching and

memoization [19]. EVDA takes the desired minimum Hamming

distance h and a set of possible experiments D as input and returns

the smallest subset Vh~EVDA(D,h) that satisfy that condition.

The set Vh is then sorted by iteratively calculating the subsets

Vi{1~EVDA(Vi,i{1) and concatenating the obtained subsets in

the following order Vh,sorted~ V1,V2{V1,:::,Vh{Vh{1ð Þ. If h is

not specified, EVDA uses the minimum Hamming distance

between two algorithms. EVDA has quadratic complexity in the

number of algorithms, and exponential complexity in the number

of instances, making it unsuitable for large datasets, such as the

one used in the present study. It should be noted that the degree of

improvement from GVDA to EVDA is rather limited. For these

reasons, in the present study we only use the GVDA algorithm.

VDA set and random sampling enable estimation of the
same AUCROC

Validation Discriminant Analysis is a non-random sampling

procedure to select instances for experimental validation. Due to

the built-in selection bias, a correction is needed to enable accurate

estimation of algorithmic performances. Notably, given a partition

set of the data, namely a group of non-overlapping and non-empty

sets of instances, such that the union of these sets corresponds to

the entire data, the AUCROC in Equation 1 can be rewritten as

the AUCROC of weighted averages of TP and TN over the

partition set of the data (See section C of Appendix S1 for

derivation and an illustrative example). For a given algorithm:

p~
1

2

P
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where W is the partition set of U; W 0 is the subset of W for which

at least one validation experiment is available; Ck is the cardinality

of the k-th partition of U, namely the number of instances in the

partition; P0k and N 0k are the experimentally validated positives

and negatives in the k-th partition; TP0k and TN 0k are the

confirmed true positives and true negatives in the k-th partition of

U. In the case of partial experimental validation, only a subset of

instances from each partition is tested.

VDA set enables correct AUCROC ranking with an equal
or better rate compared to random sampling

To study the rate of convergence rate to the correct AUCROC

estimation, we consider two groups of RDFA algorithms, RDFA(a)

and RDFA(b) with awb, and we show that using VDA it is possible to

discriminate the two groups of algorithms at a quicker rate than using

random sampling. These two groups of algorithms can be

represented as lines in the ROC plane parallel to the diagonal at

distance ka~2a{1 and kb~2b{1, respectively. Without loss of

generality, we can consider two specific RDFAs such that

TP=Pð Þ= N{TNð Þ=Nð Þ~a and, according to Equation 1, write

the rate at which the two AUCROCs diverge as a function of the

number of negatives in the validation set: TNa=Nð Þ{ TNb=Nð Þw0.

From the definition of discordant predictions, the following

inequalities are derived:

TNajb{{TNbja{

TNajb{zTNbja{

§

TNajb{{TNbja{

N
§0: ð6Þ

These inequalities indicate that on the set D, the two

AUCROCs diverge faster (left term) than on the full set of all

available predictions (middle term), corresponding to a standard

agnostic random sampling approach. However, if the AllTrue and

AllFalse algorithms are also included to guarantee correct

AUCROC estimation, the rate for the difference (a{b) becomes

TNajb{{TNbja{

TNajb{zTNbja{zTNa{jb{

§0, ð7Þ

where TNa{jb{ is the number of negatives that are wrongly

predicted by both algorithms and that are selected by the VDA

procedure in order to discriminate from the AllTrue and AllFalse

algorithms. In general, the rate in Equation 7 may not be better than

the middle term in Equation 6. However, we expect it to be better for

VDA based on the following considerations. First, since TNa{jb{ is

selected to increase the Hamming distance between at least any two

algorithms, the average rate of divergence between all algorithms in

Equation 7 will always be superior to the average rate of divergence of

Ranking Algorithms with Fewer Validations
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the middle term in Equation 6. Second, in the case of large disparities

in the sizes of partitions, random sampling will sample from each

partition with probability proportional to its size, thus requiring a

large number of validations to explore some configurations of

predictions. A VDA approach will instead sample from the relevant

partitions uniformly, regardless of their actual frequency, allowing

quick and uniform exploration of the differences between algorithms.

VDA exhibits superiority for data with largely imbalanced
partitions

To test the validity of the VDA approach in ranking and

discriminating algorithmic performances, we want to confirm that

VDA is at least equal to random sampling in terms of cost, and we

therefore test the conditions in which a VDA approach can offer a

valuable improvement. We first verify that VDA and random

sampling have the same performance on a dataset with well-

balanced partitions, such that the number of predictions in each

partition is roughly the same. Specifically, we simulate 200 sets of

predictions of 6 RDFA algorithms (Random Detectors with Fixed

AUCROC, see Methods for definition) with increasing AUCROC

performances between 0 and 1 and with varying ratios between

positives and negatives. It is easy to verify that when the

performances of the 6 RDFA algorithms are equally spaced in

the interval ½0,1�, the partitions obtained by fingerprinting are well

balanced. We evaluate how the Kendall correlation of the

predicted AUCROC improves as a function of the number of

validated predictions and find that there is no significant difference

between the VDA and the random sampling strategy (Figure 1A).

However, in datasets where the partitions are not balanced the

VDA approach shows remarkable improvement in estimating

correct ranking of performances as demonstrated by selecting

RDFA target performances at random between 0 and 1

(Figure 1B).

Comparing algorithms with identical performances using
VDA

We demonstrate the discriminatory power of VDA approaches

for independent RDFA algorithms. Another desirable property of

validation sets is the ability to detect whether two algorithms have

identical performances, thus letting the researcher chooses freely

without loss of quality. To compare the ability of a VDA approach

in detecting converging performances, we simulate predictions

from IDRE algorithms (Identical Detectors with Random Errors,

see Methods for definition) with identical performances and

compare the distribution of differences between the true and

estimated AUCROC to the error obtained from random

sampling. As expected, in this constructed dataset where all

algorithms have the same performance, the VDA set has wider

error distributions than random sampling and slower convergence

(Figure 2A). The same result holds true for the case in which only a

fraction of algorithms have identical performances (Figure 2B).

This is a direct consequence of our GVDA algorithm implemen-

tation, such that the validation set is chosen to maximize

differences between algorithms. Remarkably, the median error

from random sampling is always within the 95% confidence

interval of the error from the VDA validation set.

Implementation of VDA to discriminate between gene
expression profiles of melanoma samples and profiles of
other malignancies

The RDFA and IDRE algorithms are extremely useful for

studying convergence of validation set selection algorithms.

Figure 1. Comparison between VDA and random selection strategies in identifying validation experiments that enable correct
ranking of algorithmic performances. The Kendall t-statistics between the inferred ranking and the true ranking of AUCROCs is used to assess
the goodness of performance inference. The statistics from the VDA validation set are shown in black and the statistics from the randomly sampled
validation set are shown in red. The medians of the t-statistics for each size of the validation set are shown as a bold line. The shaded regions
correspond to the area between the first and the third quartiles. A. VDA and random selection of validation experiments have equivalent
performances ranking 6 RDFA algorithms when the data can be partitioned into well-balanced subsets. B. VDA is superior to random sampling in
correct ranking of performances of 6 RDFA algorithms when the data is not partitioned into well-balanced subsets. The trend of the fifth percentile
(dotted lines) shows that VDA has a slower worst-case convergence to correct ranking than random sampling.
doi:10.1371/journal.pone.0026074.g001

Ranking Algorithms with Fewer Validations
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However, these are classes of methods with limited practical use.

To demonstrate a practical application VDA in a common

experimental setting we compare gene expression profiles of one

tumor type to other tumor types. Genes with high expression levels

in tumors are often considered candidate targets for novel drugs

[20–23]. We assume that a dataset of gene expression profiles of

tumor samples has been affected by mislabeling of the cancer class.

Prior to repeating all experiments, it may be a good idea to verify if

a machine-learning tool can recover the missing label. This can be

done by training selected machine-learning tools on a set of

correctly labeled data, inferring the cancer class for the mislabeled

samples and designing a few experiments, i.e. validating the tumor

type by immuno-histochemistry on the remaining part of the

sample, or on the accompanying tissue to establish the organ of

origin, instead of repeating the entire study, in order to validate the

predictions. Repetition of all the experiments can be very

expensive, therefore it is desirable to minimize the number of

required validations.

We use 20 randomly selected predictions to train seven state-of-

the-art machine-learning algorithms to predict whether the cancer

class is melanoma. In contrast to other tumors, primary melanoma

lesions can be detected early, when the tumor is very small and

thus very little material may be available for additional high-

throughput analysis. We then collect the predictions for the

remaining 178 cases and determine whether the use of a VDA

approach is beneficial in terms of cost, relative to a random

sampling strategy to select predictions for validation. We conduct

this simulation 500 times, each time using a different training set of

20 predictions selected at random. Since KNN and SVM are

affected by the dimensionality of the data, we reduce the set of

genes to a pool of 100 genes, selected at random for every

simulation. Despite this arbitrary choice, the top algorithms held

Figure 2. Distributions of maximum absolute error in inferring the AUCROC performance of IDRE algorithms for a fixed number of
validations. A-B. The current implementation of VDA leads to larger absolute errors in the estimation of the AUCROC performance. This is due to the
design of the current implementation that tries to enforce differences between algorithms. The statistics from the VDA validation set are shown in
black and the statistics from the randomly sampled validation set are shown in red. The median absolute AUCROC error for each IDRE error
probability is shown as a bold line. The shaded regions correspond to the 95% confidence interval A. Distribution of maximum absolute differences of
AUCROC performances between 5 IDRE algorithms with true AUCROC of 0.7. As expected the median absolute AUCROC error of random sampling
increases as the probability of errors in the IDRE increases. The same is true for the VDA, although the AUCROC errors are on average three times
larger than the random sampling. The distortions in the VDA trend are probably due to the deterministic nature of the selection procedure. B.
Distribution of maximum absolute differences of AUCROC performances between 5 IDRE algorithms with a true AUCROC of 0.7. In this case, we
added 5 additional RDFA algorithms (AUCROCs = {0.1, 0.3, 0.5, 0.7, 0.9}) as a confounding effect. The VDA selection exhibits larger distortions due to
the smaller number of experiments used to actually discriminate between IDRE algorithms, since some of the selected experiments are now used to
discriminate between the additional RDFAs algorithms.
doi:10.1371/journal.pone.0026074.g002

Ranking Algorithms with Fewer Validations
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good performances, suggesting that tumors from different organs

exhibit global differences in their gene expression profiles

(Figure 3B).

Using our GVDA algorithm we achieve a good correlation with

the true ranking of the algorithms (t= 0.5, Kendall t statistics)

faster than using a random selection strategy in at least 80% of the

tests (Figure 3A, left). This is also reflected in the high agreement

between performance estimates obtained after 20 validations and

the performance obtained by validating all instances (see section D

of Appendix S1). The VDA set exhibits smaller variances and

estimates that are closer to the true performances (Figure 3B).

However, some algorithms have similar performances (Figure 3B),

leading to a slower convergence of the VDA approach to the exact

ranking (Figure 3A, right). Importantly, the difference in number

of additional experiments required by the randomly selected

validation set to achieve a good correlation (t= 0.5) is larger than

the additional experiments required by the VDA validation set to

achieve perfect ranking. Also, with as little as 20 validation

experiments, the VDA validation set can already give an

indication that SVM is probably the best algorithm for the task.

Discussion

The present study shows how sampling strategies other than

random sampling can yield better results in the context of

evaluating machine learning applications to biological and medical

fields. The novelty and strength of this alternative sampling

strategy are in the design of validation sets that maximize the

difference in predictions between algorithms of interest. In contrast

to other performance assessment techniques, such as cross-

validation, the VDA procedure is intended to serve as a guide in

the design of independent validation datasets to test the

Figure 3. Comparison of performance inference of VDA and random sampling (RANDOM) strategies on experimental data. A-B. VDA
and random sampling (RANDOM) were used to select predictions to validate the ability of seven algorithms, plus a random classifier (Random1), to
infer melanoma status (versus non melanoma) from gene expression profiling data (see Results). A. Probability distribution of achieving a target t-
statistics between the inferred ranking of performances and the true performances with at most a fixed maximum number of validation experiments.
VDA (in black) is more powerful than random sampling (in red) at enabling a t= 0.5, or better. In particular a VDA validation set can achieve t.0.5
with less than 30 experiments in more than 70% of the tests, while random sampling may result in twice as many validations to achieve the same
performance (left panel). However, to obtain higher correlations (t.0.99), additional experiments are needed, and VDA would require, on average, 10
more validations (right panel). B. Boxplots of algorithmic performances for each of the algorithms used in the tests across 500 tests. With only 20
validations, VDA (pink) shows estimated performance distributions that are very close to the actual AUCROC distributions of the algorithms (grey). As
expected, random sampling (RANDOM, green) exhibits higher variance in the AUCROC estimation than VDA (pink) at 20 validations. Interestingly,
SVM with a polynomial kernel was on average better than the other algorithms.
doi:10.1371/journal.pone.0026074.g003

Ranking Algorithms with Fewer Validations
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performance of existing algorithms. Using the validations from the

VDA dataset to fine-tune internal parameters of any algorithm is

strongly discouraged, as it may lead to biases in the application of

Equation 5 as well as overfitting estimates of accuracy.

The VDA procedure borrows principles from importance

sampling in Monte Carlo simulations [24] and from active

learning [25,26]. Similar to importance sampling, a more efficient

sampling technique replaces the original mechanism; this achieves

quicker variance reduction in the estimation of the desired

quantity. This change of sampling technique requires that the

function for estimating the desired quantity is modified accord-

ingly. In this sense, we reformulate the AUCROC estimator

(Equation 5) to reflect the fact that the VDA sampling strategy

explores different partitions of the data according to their ability to

discriminate between algorithms. In active learning, the ground

truth of a set of predictions is demanded from the oracle in order

to improve a classifier or a learning task. Similar to the predictions

in the VDA validation set, these predictions have the expectation

of leading to maximum performance gain, such as increasing the

discriminatory power (see section D of Appendix S1). However,

VDA is generally not intended to be an online or dynamic

procedure, nor is its selected validation set supposed to be used to

optimize any parameters.

Recent developments in machine learning have suggested that

the use of combinations of suboptimal algorithms, or weak

learners, may result in a super-algorithm with improved

performance [27,28]. The possibility to build such classifiers is

not in contrast to the basic idea of using VDA. As there is a

combinatorially large number of ways to combine algorithms

together, VDA should still be employed to assess and compare the

performances of the super-algorithms of interest, while carefully

avoiding the use of VDA validation dataset to build such super-

algorithms, which would overfit the super-algorithms to the

validation data.

In summary, the main advantage of VDA relative to random

sampling is that VDA constructs a partition set of the predictions

based on global comparisons between algorithms. In many

practical applications such a partition will contain largely

unbalanced subsets. VDA-based sampling from these subsets

enables quicker evaluation of different algorithmic configurations.

In addition, VDA ignores uninformative subsets, or subsets that

are too small to determine a significant change in the performance

estimate, thus effectively reducing the number of samples needed

to provide reliable ranking of performances.

Methods

Datasets
In the present study we use a publicly available dataset of tumor

gene expression that is frequently used to test machine learning

applications [29]. The dataset comprises 16,063 genes and 198

instances, corresponding to 198 tumor samples. The instances are

divided into 14 cancer classes. We use this dataset as an illustrative

example. The algorithms’ task is to predict whether the tumor

sample was melanoma rather than a different type of cancer.

Algorithms
In the present study we employ four standard machine-learning

methods implemented in the R statistical software (http://www.

r-project.org/). These methods are k-nearest-neighbors (function

knn in the package class), support vector machines (function ksvm

in the package kernlab), logistic regression (function glm), and

linear discriminant analysis (function lda in the package MASS of

R statistical software). These four methods are used in the

illustrative example of predicting whether a tumor sample was

melanoma based on its gene expression. In addition we designed

two groups of ad hoc methods to study convergence rates and

discriminatory power of the VDA approach. These groups of ad

hoc methods are described below.

Random detectors with fixed AUCROC - RDFA
RDFA(a) methods are used to study the speed and robustness of

ranking of the algorithmic performances under different sampling

strategies. The use of RDFAs simulates the use of independent

algorithms. RDFAs are constructed such that their AUCROC is

equal to a, although the ratio TP=P and TN=N may be different

for equal choices of a. An RDFA prediction is constructed by

selecting a random set s of instances from U’, with P positives and

N negatives. A random number TN of negatives is assigned the

correct class label, such that TP~ 2a{TN=Nð Þ:P is an integer.

Finally, a number TP of positives is assigned the correct class label.

The advantage of using this class of methods is that the reported

results are independent of any property of the measured signal and

any other method in the class.

Identical detectors with random errors – IDRE
IDRE(p,a,n) methods correspond to the classifier whose

predictions have been corrupted by errors with the probability p.

The purpose of this class of methods is the study of robustness to

noise and convergence rates. We construct each group of n

IDRE(p,a,n) predictors from one RDFA(a) realization, switching

the predicted label in random fractions p of the instances.

Implementation and availability
GVDA and EVDA have been implemented in Java and are

freely available at http://sourceforge.net/projects/klugerlab/files/

VDA/

Supporting Information

Appendix S1 Technical appendix. A technical appendix

consisting of four sections: A) The validation problem, B) Choice

of validation set using the greedy VDA algorithm, C) Estimation of

the AUCROC for a VDA set, and D) Recommended sizes for

VDA validation sets.

(PDF)
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