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Abstract: While clustered regularly interspaced short palindromic repeats (CRISPR)-based genome
editing techniques have been widely adapted for use in immortalised immune cells, efficient
manipulation of primary T cells has proved to be more challenging. Nonetheless, the rapid expansion
of the CRISPR toolbox accompanied by the development of techniques for delivery of CRISPR
components into primary T cells now affords the possibility to genetically manipulate primary T cells
both with precision and at scale. Here, we review the key features of the techniques for primary T cell
editing and discuss how the new generation of CRISPR-based tools may advance genetic engineering
of these immune cells. This improved ability to genetically manipulate primary T cells will further
enhance our fundamental understanding of cellular signalling and transcriptional networks in T cells
and more importantly has the potential to revolutionise T cell-based therapies.
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1. Introduction

In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9)-based techniques have transformed our ability to genetically manipulate
mammalian genomes. Among the many fields within biomedical research to benefit from the ease of
genetic manipulation using the CRISPR/Cas9 system is the study of the immune system and especially
T cells. As T cells are the central regulators of the adaptive immune system and play a central role in
many disease contexts such as cancer, infectious diseases and autoimmunity, elucidating the cellular
physiology of these cells is of both basic biology and of clinical interest [1]. T cells engineered using the
CRISPR/Cas9 system to increase their antitumor potency and reduce alloreactivity are already showing
great promise in the creation of effective next generation adoptive cell therapies. Additionally, systematic
studies using the CRISPR-based genome-scale editing approach form the basis of unbiased studies that
shed light on fundamental T cell biology, thereby further enabling the design of better therapeutics.

The transition of T cells from their resting to an activated state underpins most functions of
adaptive immune responses. The initial signalling event in T cells occurs when the T cell receptors
(TCR) expressed on the surface of both CD4+ helper T cells and CD8+ cytotoxic T cells interacts with
their cognate antigenic peptides presented on major histocompatibility complex (MHC) molecules
(Figure 1a). The TCR is a surface protein complex consisting of two different polypeptide chains with
α and β chains forming the predominant type of TCR found in humans. The TCRα and TCRβ chains
are encoded by TRA and TRB genes, respectively, which can be subdivided into a variable and a
constant region signified by appending the gene name with either ‘V/D/J’ or ‘C’. The latter region is of
particular importance for genetic manipulation of T cells since its sequence is identical for most T cells
isolated from an individual donor, thus facilitating the reprogramming of antigen specificity. While the
TCRαβ dimer is sufficient to recognise peptide antigens, it does not have its own signalling activity and
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instead associates with CD3 signalling co-receptors: CD3γ, CD3δ, two CD3ε and two CD3ζ (Figure 1a).
MHC molecules can be subdivided into MHC class I (MHCI) and MHC class II (MHCII) recognised
by CD8+ and CD4+ T cells, respectively. MHCI molecule is composed of non-covalently associated
transmembrane α heavy chain and a globular β-2 microglobulin (β2M), whereas MHCII molecule
consist of two transmembrane chains: α and β. In the classical paradigm of T cell signalling, the initial
signalling event from the TCR-CD3 complex upon engagement with the MHC molecules is referred to
as ‘signal one’. Full activation of T cells however requires a secondary signalling event called ‘signal
two’, which is provided by a cell surface receptor CD28, which binds to its cognate ligand on the
surface of an antigen-presenting cell (APC). In vitro, these signals can be mimicked by incubation of
T cells with antibodies against CD28 and CD3 (αCD28/αCD3) immobilized on a glass plate or with
αCD28/αCD3-coated beads (Figure 2) [2]. The surface of a T cell is also populated with a number of
other receptors called immune checkpoints. These receptors modulate the T cell response by providing
co-stimulatory or inhibitory signals. PD-1 and CTLA-4 are classic examples of inhibitory receptors
and in recent years they have received considerable attention because blocking their functions using
monoclonal antibodies can be successfully used to increase T cell responses against various cancers
(Figure 1a) [3]. The intracellular components that govern the signalling event post-engagement of
the TCR and signal modulation by the inhibitory receptors have been of interest to researchers for
many years and the improvement in genetic editing of T cells has directly contributed to enriching our
understanding of their biology.

The use of T cells in adoptive therapies has been a therapeutically lucrative field and is best
exemplified by their applicability in cancer immunotherapy, which has recently gained widespread
interest [4]. Cell-based immunotherapy relies on the genetic engineering to introduce synthetic
transgenes into T cells, and nowhere has this been investigated more than in chimeric antigen receptor
(CAR)-based immunotherapies. CAR T cells are T cells that have been genetically engineered to express
an antigen recognition domain, which usually is a single chain variable fragment (scFv) recognizing a
tumour associated antigen (TAA), fused to an intracellular CD3ζ chain and motifs from costimulatory
proteins such as CD28 or CD137 that together mimic the signalling from the TCR and the co-stimulatory
receptors (Figure 1b). Reliance on scFv for antigen binding allows the genetically engineered CAR
T cells to generate signalling responses independent of the MHC molecules. CAR T cell-based therapies
are revolutionizing treatment of multiple classes of leukemias and lymphomas, however their use in
treatment of solid tumours is still limited [5]. As the techniques for genetic manipulation of T cells
have become more advanced, much effort has been put into improving CAR T cell designs through
gene modifications for enhanced anti-tumour activity.

Before the advent of the CRISPR/Cas9 era, genetic manipulations of T cells were performed
mostly with other genome editing nucleases such as zinc-finger nucleases (ZFNs) and transcription
activator-like effector nucleases (TALEN) [6–8]. While broadly successful, these approaches were
mainly limited by their low efficiency and complex molecular cloning or substantial protein engineering
required for targeting genomic sites [9]. The CRISPR/Cas9 system provides a convenient platform for
targeting genomic loci with ease. The CRISPR/Cas9 technology is derived from the type II CRISPR/Cas
system of the bacterial adaptive immune system, which utilises crRNA (CRISPR RNA), tracrRNA
(trans-activating crRNA2) and a single large multi-domain effector protein (Cas9) to mediate both
target recognition and cleavage. Subsequently, it was shown that the tracrRNA:crRNA duplex can be
engineered as a single piece of chimeric RNA known as the single guide RNA (sgRNA) and by altering
the sequences of the sgRNA, Cas9 endonuclease could be directed to a specific genomic locus to induce
double-strand breaks (DSB) [10]. Such breaks are typically repaired by the cellular non-homologous
end joining (NHEJ) DNA repair mechanism and this error-prone mechanism often results in random
insertions and deletions (indels) at the site of the DSB, which can lead to a frameshift, the consequence
of which can be either a premature STOP codon (pmSTOP) or an open reading frame (ORF) encoding a
dysfunctional protein that is likely to be degraded shortly after translation (Figure 3a–c). In presence
of a homologous sequence in the edited cell, the Cas-induced DSBs can be repaired via a homology
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directed repair (HDR) pathway (Figure 3d–f). In contrast to NHEJ, the outcome of HDR can be
controlled by providing the edited cells with an appropriately designed homology directed repair
template (HDRT). This generally permits alteration of the endogenous sequence or insertion of an
exogenous sequence at the target locus.

Over the years, a number of improvements to Cas-based editing systems have been made.
Endonuclease dead versions of Cas9 (dCas9) fused to transcription activator or repressor domains to
create programmable transcriptional activators and repressors, respectively, are used to genetically
program cells without creating DSBs [11,12]. More recently, Cas-based base editors are being used
for precise genetic manipulations [13]. These enzymes are engineered by fusion of Cas9 nickase—a
mutant version of Cas9 that only creates a single-strand break rather than DSBs—to either an adenine
or a cytosine deaminase domain, which can be used to induce knockouts by mutation of splice sites or
insertion of pmSTOPs into the target gene. A large amount of effort is continuously being put into
expanding the CRISPR toolbox with the aim of increasing gene editing efficiency and precision [13,14].
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co-stimulatory receptor CD28 with B7 are required for full activation of the T cell and can be inhibited 
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surface is PD-1 which is triggered upon by binding to PD-L1 on the apposed cell. (b) Chimeric antigen 

Figure 1. Overview of the different types of receptors present on the surface of T cells and their
interaction partners. (a) The T cell receptor (TCR) complex is composed of eight polypeptide chains:
αβγδ2ε2ζ. The hypervariable loops located at the top of the αβ dimer are responsible for recognition
of antigenic peptides presented by major histocompatibility complex (MHC) I or II on the surface
of an antigen-presenting cell (APC). Upon interactions of peptide-MHC with the TCR, a co-receptor
binds to the side of the MHC. Co-receptors CD8 and CD4 interact exclusively with either MHCI or
MHCII, respectively, and mature T cells express only one of the two co-receptor types. Interactions of
co-stimulatory receptor CD28 with B7 are required for full activation of the T cell and can be inhibited by
CTLA-4 which competes with CD28 for B7 binding. Another inhibitory receptor on the T cell surface is
PD-1 which is triggered upon by binding to PD-L1 on the apposed cell. (b) Chimeric antigen receptors
(CAR) permit the T cell response to be redirected towards a selected surface antigen, for example a
tumour-associated antigens (TAA). The extracellular domain of CARs relies on a single chain variable
fragment (scFv) for antigen recognition. Most commonly, the signalling chains of CARs consist of
intracellular domains derived from co-stimulatory receptors (co-stim) and the ζ chain of the TCR.
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Figure 2. Barriers to editing of primary T cells. There are a number of technical difficulties
that contributed to the delayed start of clustered regularly interspaced short palindromic repeats
(CRISPR)-based editing of primary T cells. Unstimulated T cells are more difficult to edit due to
their limited proliferative potential and reduced susceptibility to gene delivery. Lentiviral delivery of
Cas-encoding genes into T cells is feasible, albeit very low editing efficiencies are achieved via this
method. Presence of various DNA immunosensors in T cells means that bare double-stranded DNA
(dsDNA) serves poorly as a vector for CRISPR components and homology directed repair templates
(HDRT). The double-strand breaks (DSB) induced by Cas nucleases are associated with cellular toxicity
and may eventually lead to cell death. Due to the competition between the non-homologous end
joining (NHEJ) and homology directed repair (HDR) pathways, the HDR-based knockin may lead to
unintended indels in a proportion of edited cells.

The success of manipulating primary T cells using CRISPR systems however had a delayed start
compared to other cell types and required substantial optimisation. Earlier studies demonstrated
that CRISPR/Cas9 gene disruption in primary T cells using lentiviral and adenoviral vectors was
challenging, even though such delivery systems had been highly successful in immortalised cell
lines [15,16]. Despite the initial barriers to genetic manipulation of primary T cells, the expansion
of Cas-based enzymes and delivery systems have now permitted these cells to be edited with both
high accuracy and efficiency. The diverse assortment of CRISPR tools means that there are multiple
considerations to be made prior to the manipulation. Over the years, a number of critical variables
have been identified as being important in determining success of an editing experiment; these mainly
include (i) type of Cas enzyme, sgRNA and optionally the HDRT, and (ii) delivery systems for each of
these components. In this review, we will introduce and discuss the various advances in techniques for
genetically manipulating murine and human primary T cells mainly in terms of these critical variables.
These methods will be assessed in terms of genetic editing of single genes in T cells as well as systematic
unbiased studies using genome-scale screening approaches to shed light on novel cellular processes
involved in T cell signalling, proliferation, and response to cancer cells. Furthermore, we will discuss
the therapeutic application of these genetic editing approaches specifically in the field of T cell-based
immunotherapies and CRISPR-based treatments in HIV-AIDS.
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Figure 3. Summary of the most common strategies for genome manipulation in primary T cells.
In terms of the resulting phenotypes, outcomes of CRISPR-based editing can be divided into knockouts
(a–c) and knockins (d–f). The former results in abolition of the expression of the target gene and relies
on non-homologous end joining (NHEJ) DNA repair pathway to instal indels. The latter can either
result in alterations of the endogenous sequence at the target locus or an insertion of an exogenous
sequence into the target locus. The new sequence is integrated via homology directed repair (HDR)
and its identity is specified by an HDR template (HDRT). Both HDR and NHEJ pathways are initated
by double-strand breaks (DSB). With regard to the number of loci edited per cell and the number of
loci targeted in the cell population as a whole, editing strategies can be broadly divided into three
types. (a,d) Single gene editing involves a genetic alteration at a single locus per cell. (b,e) Multiplexed
editing results in modifications at multiple loci per cell. (c) The pooled knockouts aim to disrupt one
locus per cell on average, however a large number of loci can be targeted in the edited population with
the entire genome being screened in the extreme. (f) The pooled knockins involve the same locus being
targeted in every cell, however the identity of the genetic modification at this locus differs between the
cells in the edited population. Following a pooled knockin, each cell should only have a single species
of HDRT integrated into the target locus on average.
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2. Techniques for Single and Multiplexed Gene Manipulation of T Cells

Careful optimisation of the editing protocol can render most primary T cell subsets amenable to
Cas-based genetic manipulation. However, it is important to note that editing efficiency is not the only
measure of a successful editing experiment and criteria such as off-target activity as well as post-editing
proliferation and cell viability need to be considered. One of the crucial factors influencing the editing
efficiency in T cells is their activation state. Stimulated T cells are more susceptible to CRISPR-mediated
editing, mostly due to their resistance to harsh treatment since the TCR stimulation enhances their
proliferative properties and permissiveness to electroporation as well as viral transduction. Conversely,
these properties are not manifested by resting T cells, thereby making them a non-trivial target for
CRISPR/Cas9 editing (Figure 2) [17–19]. A range of techniques developed for editing of stimulated
T cells can be applied to resting T cells, albeit resulting in significantly lower editing efficiencies.
However, high efficiency editing of resting T cells would be necessary to gain understanding of
processes central to T cell biology such as their activation and differentiation. A number of methods
have been specifically developed to edit resting T cells derived from both mice and humans. The section
below overviews studies that mainly focus on optimising methods to edit single or multiple genes
within both resting and stimulated T cells (Figure 3a,b,d,e).

2.1. Single Gene Knockouts

For a single gene knockout, the key components that need to be introduced into the cell, in principle,
are a single sgRNA complementary to the target gene sequence and a functional Cas endonuclease
(Figure 3a). One of the reasons for the slow progress in editing of primary T cells was the initial
difficulty of introducing these components into the cells. Lentiviral vectors, which are commonly used
to deliver Cas9 into immortalised cell lines, are not optimal for primary T cells due to low transduction
rates [15,16]. Hence the majority of the methods discussed here are mainly based on electroporation to
introduce the CRISPR components.

Human T cells: A commonly used method to introduce Cas9 and sgRNA into a cell is
electroporation of ribonucleoprotein (RNP) complexes composed of Cas9 protein pre-loaded with
sgRNA, a technique initially used to edit activated human T cells by Schumann and co-workers [20].
This pioneering attempt resulted in a limited editing efficiency with indels in the targeted gene
identified in ~55% of the T cell population. Quantification of off-target activity at the top candidate
off-target sites showed that indel rates at these were below the level of significance. This approach of
introducing Cas9 into the cells as a protein and the consequent short-lived endonuclease activity may
have been the reason for the reduction of unintended mutations relative to delivery methods resulting
in constitutive expression of the enzyme. While the transient activity of Cas9 nuclease arising from
electroporation of mRNA or protein is thought to significantly reduce the rates of off-target mutations,
genetic engineering of human T cells for therapeutic purposes necessitates further increase in precision
of editing. As a consequence, a myriad of high precision Cas9 nucleases have been designed, some
of which have been tested in T cells. In a study by Ren and co-workers, a wild-type Cas9 and a
high-precision variant eSpCas9 were used to perform a single gene knockout by the means of mRNA
electroporation [21]. Sequence-based computational analysis of the target and the off-target sites
demonstrated that the use of eSpCas9 reduces the off-target activity to below detection levels while
significantly increasing the rate of indels at the target site. A disadvantage of eSpCas9 is that multiple
reports have shown that eSpCas9 displays a reduced activity when delivered as RNP [22,23]. To address
this, HiFi SpCas9 has been engineered specifically for RNP-based delivery; however, this variant did
not lead to meaningful improvement in on-target editing efficiency compared to conventional Cas9.

Even as some of the high precision Cas9 variants remain to be tested and more of such engineered
enzymes are in the pipeline, one commonly encountered issue with using Cas endonucleases is the
cellular toxicity associated with the resultant DSBs [24]. This has prompted knockout strategies reliant
on modified variants of Cas9 such as the Cas-based base editors to be developed for stimulated T cells.
Base editors have been previously used to generate exonic pmSTOPs in order to prevent translation,
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however it has been demonstrated that pmSTOPs can be readthrough with frequencies going up to
30% for some genes [25]. Webber and co-workers have pioneered an alternative approach, whereby a
BE4 cytosine deaminase delivered as mRNA into stimulated T cells was employed to mutate splice
donor (SD) sites [26]. In this study, mutation of SD site of exon 1 was shown to be more effective for a
single gene knockout than introduction of pmSTOPs across two out of the three tested loci. In these
two instances the proportion of successfully edited cells approached ~80%.

Apart from the development of the high precision Cas9 variants, a number of other factors have
also been optimised for better editing efficiencies including the biological half-life of sgRNA, which
has an influence on editing efficiencies. The intracellular exonuclease activity is known to reduce
the knockout effectiveness by decreasing the stability of sgRNA. Chemical modification of terminal
residues on both 3′ and 5′ ends of sgRNAs have been shown to extend the half-life of sgRNA inside
the cell and the use of such synthetic sgRNAs have also been demonstrated to increase the indel rates
at target loci by ~3-fold when combined with Cas9 protein electroporation for editing of stimulated
T cells. More impressively, such sgRNAs were able to increase the indel rates at target loci from
below the detection threshold up to 50% when electroporated along with Cas9 mRNA [27]. Use of
such chemically synthesised sgRNAs is now a common practice in the field of genomic editing for
cells originating from different lineages [23,26,28,29]. Similarly, extension of the sgRNA half-life by
sequential delivery of in vitro transcribed sgRNAs has been demonstrated by Ren and co-workers.
Their report shows that an additional electroporation step to deliver sgRNAs 24 h following the initial
delivery of sgRNA and Cas9 mRNA by the same means can lead to a ~12-fold increase in the editing
performance [21].

An alternative method of delivery of Cas9 into the cells is to electroporate plasmids encoding
Cas9 rather than the Cas9 mRNA or the RNPs. However, this method of delivery usually yields a
lower editing efficiency as shown by Su and co-workers, who introduced both Cas9 and sgRNA as
plasmids constructs and were able to identify indels only in ~30% of the target sites on average [30].

These examples illustrate some of the approaches to genetic manipulation of activated T cells;
however the protocols for manipulation of resting T cells have required further optimisations.
The earliest reported gene knockout using the CRISPR/Cas9 system in resting T cells was performed by
Mandal and co-workers, in which individual plasmids encoding Cas9 and a single B2M-sgRNA were
electroporated into human CD4+ T cells. This strategy had limited success with the efficiency of the
knockout approaching ~5%. The editing performance was improved by simultaneous electroporation
of T cells with plasmids encoding two distinct B2M-targeting sgRNAs with efficiencies reaching up
to 20% [31]. The original approach relied on conventional sgRNAs which are known to have lower
stability inside the cells. Hendel and co-workers were able to improve the efficiency of editing by
electroporating chemically modified sgRNA along with Cas9 mRNA into resting human T cells to
knockout a gene encoding a chemokine receptor, CCR5, with the editing efficiencies reaching up to
~20% with a single sgRNA [27].

Further improvement in the editing efficiencies in resting T cells was reported by Seki and Rutz,
who optimised the RNP electroporation procedure. Using the P2 buffer in combination with the
EH100 pulse sequence (Lonza nucleofector 4D) to knock out two genes, CXCR4 and CD127, resulted in
CXCR4-and CD127- populations reaching up to ~75% and ~40% of bulk CD4+ T cells, respectively.
Further increases in the knockout efficiencies of both of these genes were observed when three rather
than one sgRNAs were used to target the respective loci, resulting in a proportion of successfully
edited cells approaching ~90%. This study not only outlines one of the most efficient methods for
knockout in resting human T lymphocytes to date, but also recapitulates the notion that using multiple
sgRNAs per target locus can elevate the knockout performance [16].

Murine T cells: While murine T cells have a range limitations with respect to simulating their
human counterparts, they permit in vivo experiments to be conducted. Thus, murine T cells remain
an attractive target of genetic editing. Similar to human T cells, stimulated mouse-derived T cells
in vitro can also be manipulated using electroporation techniques to introduce the CRISPR components.
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A demonstration of this was done by Seki and Rutz, who used electroporation of chemically modified
crRNA:tracrRNA and Cas9 protein to delete multiple genes using CM137 electroporation program
(Lonza nucleofector 4B). Authors have illustrated the capacity of this method to delete Pdcd1 and Ctla4
with the populations of CTLA-4− and PD-1− T cells reaching up to ~90%. In both cases T cells were
restimulated for 48h prior to flow cytometric analysis. Given the high editing efficiencies achieved
using this method, it has become a benchmark for editing of stimulated murine T cells [16].

Similarly to resting human T cells, resting murine T cells have a poor proliferative capacity and
die in the absence of stimulation. To date, two strategies for in vitro knockout in unstimulated murine
T cells have been developed, both of which are based on RNP complex electroporation. The first
strategy involves stimulation of the resting T cells two hours after electroporation and this approach
can lead to editing efficiencies of up to ~60% [16]. Despite the reasonable editing performance, the short
time period between RNP delivery and stimulation means that the protein encoded by the targeted
gene is unlikely to have been degraded by the time the edited T cells are activated. Therefore, this
technique is not suitable to study the role of the disrupted gene in T cell activation and differentiation.
The other strategy takes advantage of the finding that the immediate stimulation can be effectively
replaced by incubation of the T cells with IL-7, which is known to promote T cell survival, before and
after RNP nucleofection. This method can result in ~70% reduction in expression of a target protein in
resting T cells and the incubation with IL-7 leads to no apparent activation of the T cells [16].

Murine cells provide a platform for editing T cells in vivo and Beil-Wagner and co-workers were
first to carry out such a knockout in unstimulated murine T cells [32]. In their study, oocytes were
microinjected with DNA constructs encoding Cd2-targeting sgRNA and Cas9 under control of a U6
and a T cell-specific Cd4 promoter, respectively. Perhaps unsurprisingly, the knockout population
constituted only ~1% of T cells isolated from the transgenic mice. The limited success of this approach
is likely to have been caused by the inability of the knockout population of T cell precursors to undergo
thymic selection, and it is possible that targeting a gene that is not involved in immune cell interactions
would have resulted in a better efficiency.

A more viable strategy to perform in vivo knockouts is to directly edit lymphoid cells isolated from
constitutive Cas9-expressing mice, which circumvents the need to deliver Cas9 into the cells. To this
end, Cas9-expressing mice were developed by Platt et al. by insertion of a Cas9-P2A-EGFP expression
cassette into the Rosa26 locus, which has been leveraged by LaFleur et al. to devise a chimera-based
Cas9-sgRNA delivery system termed chimera immune editing (CHIME) [33,34]. This technique does
not involve direct editing of Cas9-expressing T cells per se, but instead T cell progenitors are edited
prior to differentiation into T cells. Briefly, hematopoietic stem cells (HSC) are isolated from the bone
marrow of a Cas9 transgenic mouse, lentivirally transduced with a relevant sgRNA and transplanted
into irradiated mice. Following the reconstitution of the immune system, T cells are isolated from the
chimeric animals and analysed. When CHIME was used to ablate Pdcd1, ~80% of T cells gained indels
in the target locus and up to ~90% reduction in expression of Pdcd1 was observed following T cell
activation. Mouse strains expressing Cas9-P2A-EGFP have been broadly adopted over the past few
years and now are commonly used to isolate Cas9 expressing cells for editing of single and multiple
genes or even for performing genome-wide screens. Furthermore, novel constitutive Cas9-expressing
mouse strains were developed with improved expression of Cas9 [35].

More recently, Nüssing et al. have developed a method which permits modification of T cells
isolated from mice that do not express Cas9. This technique involves RNP delivery into the resting
T cells followed by transfer into a congenic mouse strain. In their report, P14 T cells bearing a
TCR specific for a lymphocytic choriomeningitis virus (LCMV) antigen were electroporated with
Cd90-targeting RNP and subsequently transferred into acceptor mice. Rather surprisingly, ~80% of
P14 T cells isolated from either LCMV-infected or healthy animals, in which antigenic stimulus was
present and absent, respectively, were CD90-negative, demonstrating the utility of this technique to
edit both activated and resting T cells [36].
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2.2. Multiplexed Knockouts

Multiplexed editing permits multiple genes to be edited in a single cell upon delivery of an array
of sgRNAs and a Cas enzyme, either a nuclease or a base editor (Figure 3b) [26,37–39]. Thus, multiplex
knockouts enable faster generation of more complex T cell products. To date, multiplexed editing has
only been performed in stimulated T cells.

Human T cells: As with single gene knockouts, RNP electroporation is a viable technique for
multiplexed knockouts with the key distinction being that multiple species of RNPs are introduced,
each associated with an sgRNA targeting a different gene. Electroporation of RNPs composed of
in vitro transcribed sgRNAs and Cas9 protein has been used to perform a double knockout (DKO) and
a triple knockout (TKO) in human T cells with the proportion of double negative and triple negative
T cells reaching up to 25% and 15%, respectively [40]. Ren and co-workers have also carried out a
DKO in T cells using electroporation, but they opted to use Cas9 mRNA instead of the Cas9 protein
and incorporated a second electroporation step to deliver another dose of sgRNAs 24 h following
the first nucleofection [21]. This approach led to a ~2.5-fold improvement in the DKO relative to the
study by Liu and co-workers. The potential of Cas9 mRNA in the context of multiplexed knockouts
was further explored by changing the mode of delivery of sgRNAs from electroporation to lentiviral
transduction [41]. Optimisation of the lentiviral sgRNA vector revealed that the efficiency of such a
multiplexed knockout is highly dependent on the identity of the promoters controlling the expression
of the sgRNAs. In addition to the well-established U6 promoter, human H1 and 7SK promoters were
found to yield the best performance. This insight led to an increase in the DKO and TKO efficiencies
up to ~75% and ~40%, respectively.

One of the risks associated with simultaneous induction of DSBs at multiple loci are chromosomal
rearrangements that stem from mismatching of sheared DNA ends by the NHEJ repair machinery.
While in the aforementioned studies chromosomal translocation were not detected or the appropriate
assays were not carried out, it has been reported that multiplexed knockout in T cells may lead to such
genomic defects [42,43]. Therefore, performing multiplexed knockout by means of base editors rather
than Cas nucleases is an attractive alternative that has been explored using both cytosine and adenine
deaminases [26,44].

Multiplexed base editing in human T cells was demonstrated to yield best results, both in terms of
off-target effects and editing efficiencies, when performed by electroporation of the base editor-encoding
mRNA along with synthetic sgRNAs [26,44]. Webber and co-workers used this mode of delivery as
well as electroporation of cytosine base editor (CBE) BE4 RNP to simultaneously knock out TRAC, B2M
and PDCD1 by mutating their splice sites. Optimisation of the BE4 mRNA codon usage and its dose
led to TKO efficiency of ~90%. In contrast, the proportion of TKO T cells was 20% lower when BE4 was
delivered as RNP. The TKO was accompanied by no detectable genomic rearrangements irrespective of
the BE4 delivery mode; however when an identical TKO was performed using Cas9 nuclease instead
of BE4, multiple chromosomal translocations between each of the target loci were observed.

Since the development of base editors, there have been multiple reports demonstrating that
CBEs including BE4, but not adenine base editors (ABE) have a significant propensity to induce
off-target DNA deamination [45–47]. Recently developed ABE8-20m base editor, which is a new
version of the ABE enzyme designed by site-directed evolution, has shown a capacity to carry out
multiplexed knockouts in human T cells when delivered as mRNA [44]. While ABE8-20m was able to
simultaneously induce mutations at the splice site of three genes with efficiency of more than 98%,
the alteration of the TRAC splice site did not result in loss of TCR expression. The discordance between
the editing efficiency on protein and DNA level is likely to be a gene-specific phenomenon which
might be alleviated by targeting a different splice site within TRAC. Given the significant off-target
effects mediated by CBEs, ABEs are a good alternative for DSB-free editing of T cells.

Murine T cells: Efforts to perform a multiplexed knockout in murine T cells have employed two
strategies based on Cas9 nuclease. In vitro DKO was achieved using a knockout strategy developed by
Kornete and co-workers, whereby a plasmid encoding Cas9 linked to GFP via a self-cleaving peptide
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and a single sgRNA was electroporated into primary murine T cells. This was followed by sorting of
GFP+ cells, in this case equivalent to Cas9+ cells, and a re-stimulation [48]. Flow cytometric analysis
indicated that DKO was successful in 50% of the GFP+ T cells.

In addition to single gene knockouts, the editing strategy developed by Nüssing et al. is also
applicable to multiplexed knockouts [36]. Here, LCMV-specific P14 T cells were electroporated with
two distinct RNPs and transferred into acceptor animals which were subsequently infected with LCMV
to stimulate the transferred T cells. Eight days later, ~80% of the transplanted T cells isolated from the
infected mice displayed a double negative phenotype.

2.3. Single Gene Knockins

Cas-based gene knockins rely on HDR machinery to install exogenous DNA segments or alter
endogenous genomic sequences (Figure 3d). The requirement for an HDRT introduces a number of
variables that need to be optimised to fit the T cell-specific constraints. Some of these variables include:
(i) The type of template, (ii) mode of its delivery and (iii) features of the template including the size of
the insert and the flanking homology arms (HA). HDR is constrained to the S/G2/M phases of the cell
cycle, but even then it competes with the NHEJ pathway to repair the DSBs. Consequently, an array
of strategies have been developed for primary T cells to enhance the former type of repair. These
are exemplified by replacement of Cas9 with either Cas12 or Cas9 nickase, enhancing the shuttling
of the HDRT to the nucleus or inhibition of the NHEJ machinery. Given the cell cycle requirements,
HDR-based knockins cannot be performed in quiescent or naive T cells and thus cells need to be
activated prior to editing.

Human T cells: The first demonstration of a knockin in human primary T cells was carried out by
means of electroporation of RNPs and a single-stranded DNA (ssDNA) HDRT to insert a restriction
site into a target locus. Optimisation followed by sequencing of the target gene demonstrated that
lower concentrations of HDRT may increase the number of total HDR events, but at the cost of reduced
HDR to NHEJ ratio. This approach was used to knockin a deleterious restriction site and in effect
ablate CXCR4 in T cells. As a result a successful insertion in up to ~25% of the analysed sequences was
recorded [20].

Due to their size limitations, ssDNA HDRT templates are considered unsuitable for insertions
longer than 100 bp and thus viral or double-stranded DNA (dsDNA) HDRTs have been predominantly
used for the purpose of larger knockins. Adeno-associated viruses (AAV) pose a low risk of genomic
integration and have a packaging capacity of ~4.5 kb [49]. Vakulskas and co-workers used AAV6
transduction to introduce a polycistronic sequence encoding a CD19-specific CAR (CAR19) and a
truncated nerve growth factor receptor (tNGFR) flanked by 400 bp HAs into the TRAC locus [23].
Following delivery of HiFi Cas9 RNP and AAV6 HDRT, surface expression of tNGFR acting as a
surrogate for CAR19 was measured to show that a successful knockin occurred in ~10% of T cells.
A significant enhancement in HDR was observed in a similar study published by Eyquem and
co-workers who also used an AAV vector to replace endogenous TCR with CAR19; however instead of
using a Cas9 variant RNP, conventional Cas9 was delivered as mRNA [28]. Additionally, the HDRT
consisted of an insert lacking the tNGFR expression reporter, flanked by longer 950 bp HAs. These
alterations to the editing protocol led to a 5-fold improvement in the knockin efficiency relative to that
observed by Vakulskas and co-workers. This is consistent with reports suggesting that longer HAs and
shorter inserts are associated with an increase and reduction of the knockin efficiency, respectively [50].

One concern regarding the delivery of dsDNA HDRT by AAV vectors is the presence of
AAV-specific immunity in humans, which could lead to poor engraftment of therapeutic T cells
manufactured using this method [51–53]. Therefore, direct delivery of naked dsDNA would be
preferred for engineering of cell products for clinical applications. However, naked dsDNA is associated
with cellular toxicity. In an effort to resolve this issue, a revised protocol for electroporation-based
delivery of dsDNA HDRT and Cas9 RNPs has been developed [29]. In brief, HDRT and RNPs were
pre-mixed, briefly incubated, resuspended with T cells and electroporated using an EH115 pulse
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sequence (Lonza nucleofector 4D). Optimising the concentration of the dsDNA HDRT was critical to
ensure reasonable cell viability without significantly compromising the knockin efficiency. Similarly,
the order in which the cells, RNP and HDRT were combined had a considerable impact on the cell
survival: mixing of RNP with HDRT prior to addition of cells and electroporation could increase the
editing efficiency by ~3-fold albeit at the cost of reduced T cell viability. The capacity of this method
was tested in an attempt to insert a polycistronic sequence encoding α and β chains of a transgenic
TCR into the endogenous TRAC locus. Integration of an HDRT template composed of a 1.5 kb insert
and 300 bp HAs into a target was successful in ~10% of edited T cells.

Given the success of dsDNA HDRT to mediate insertion of large segments, its potential to replace
ssDNA HDRT as a template for short insertions and point mutations has also been tested. In order
to repair deleterious point mutations in an interleukin receptor encoding gene, Roth and co-workers
designed 600 bp long dsDNA and 120 bp ssDNA HDRTs [29]. Compared to ssDNA HDRT, the use
dsDNA HDRT was able to restore expression of this receptor in 30% more T cells across two donors.

These studies illustrate that there have been significant advancements in methods for generating
knockins in T cells. Nonetheless, the achievable knockin efficiencies mean that the successfully
engineered cell population needs to be enriched following the editing procedure. While the enrichment
may be straightforward for transgenes expressed on the cell surface, selection of cells bearing edits
in genes encoding intracellular proteins may pose technical challenges, especially when using flow
cytometry-based technology that requires membrane permeabilisation prior to antibody staining.

Recently, there has been an outpouring of techniques aimed at improving efficiency of HDR-based
editing in T cells. Cas12a is another member of the CRISPR/Cas nuclease family whose activity in
the presence of HDRT appears to display a stronger preference for HDR over NHEJ than Cas9 [54].
This might be a consequence of the ability of Cas12a to induce DSB outside the target sequence which
permits for re-cleavage following failed attempts to repair the DSBs by the HDR rather than the
NHEJ machinery [54,55]. This property of Cas12a can be leveraged to effectively increase the knockin
efficiency. Delivery of Cas12a mRNA and AAV6 carrying the HDRT as well as crRNA into T cells led
to a successful installation of a ~1 kb insert with ~45% efficiency on both DNA and protein level [38].

An alternative approach to increase HDR is to enhance shuttling of the HDRT to the nucleus where
the editing occurs. While nuclear import of Cas9 can be ensured by addition of one or more nuclear
localisation signals (NLS) to its terminus, promoting nuclear localisation of HDRT is more challenging.
Nguyen and co-workers have shown that knockin efficiency can be improved by appending dsDNA
HDRTs with short DNA sequences, which can be bound but not cleaved by Cas9 [56]. In consequence,
Cas9 RNPs which contain the NLS are enlisted to act as a nuclear shuttle for the tagged dsDNA
template. This strategy has shown a tremendous ability to enhance knockin of large DNA segments
into a range of loci in T cells; in most extreme cases, addition of the tag to the dsDNA template could
increase the HDR efficiency by ~4-fold. Another method that enhances the delivery of the HDRT has
been developed by Gwiazda and co-workers. This technique relies on co-electroporation of mRNA
encoding Cas9 and adenoviral proteins which increase the permissiveness of primary T cells to AAV
transduction. As such, the utility of this approach is restricted to HDRTs delivered by AAV vectors [57].
Nonetheless, this method permits HDR efficiencies to be improved by up to ~2-fold.

In addition to modifying the substrates to favour HDR, the components of the repair pathways
as well as their regulatory networks can be directly modulated to diminish the probability of NHEJ.
Several small molecules have been shown to enhance HDR, but up to now only a few of them
have been validated in T cells [58–60]. XL314 is an inhibitor of a cell cycle kinase CDC7 which was
shown to enhance HDR in primary T cells, possibly by extending the time that the cell remains in
the HDR-permissive phases [61]. Treatment of T cells with XL314 following Cas9 RNP delivery was
able to increase the total knockin rate using ssDNA and dsDNA HDRTs by ~2-fold and ~1.2-fold,
respectively. Moreover, its use increases the HDR to NHEJ ratio as well as the proportion of cells with
biallelic knockins.
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Murine T cells: The methods designed for in vitro knockins in murine T cells are similar to those
for human T cells. As with human T cells, the length of HAs and the insert size are crucial variables
for achieving higher efficiency as shown in two studies [36,48]. Nonetheless, neither of these studies
demonstrates knockin rates comparable to those previously described for human T cells. Systematic
testing of the approaches developed in human T cells or development of mouse-specific strategies for
HDR enhancement will be the key to improving the knockin efficiencies in murine T cells.

2.4. Multiplexed Gene Knockins

Engineering of more complex cell products, especially for therapeutic purposes may require
introduction of multiple genes into a single T cell (Figure 3e). Ability to do so in a single step is
more likely to yield a uniform population of T cells expressing each of the transgenes. However,
the compounding of the individual knockin efficiencies and intrinsic capacity of cells to absorb a
limited amount of the editing agent mean that multiplexed knockins are technically challenging. Here,
we will discuss the recent methods that have addressed these issues.

Human T cells: Early attempts to perform a double knockin (DKI) in primary T cells were carried
out by Dai and co-workers using Cas9 mRNA and AAV6 carrying sgRNAs and HDRTs, albeit with a
very low efficiency of ~3% [38]. The authors however were able to substantially improve the editing
efficiency by using Cas12a instead of the conventional Cas9. Apart from Cas12a favouring HDR over
NHEJ, it also has the advantage that it only requires crRNA for full functionality and its RNAse activity
permits processing of multiple crRNAs from an RNA array, thus a single promoter is sufficient to drive
expression of multiple crRNAs from a viral vector [55]. The authors used AAV-based HDRT templates
along with Cas12a mRNA to generate fusion proteins as well as introduce large genes. In the latter
case, knockin of genes encoding two CARs into two distinct loci was achieved with a ~35% efficiency.

Further improvement in multiplexed editing was achieved by leveraging the method based on
electroporation of Cas9 RNPs and dsDNA HDRT which was developed by Roth and co-workers [29].
Double knockins (DKI) and triple knockins (TKI) using dsDNA HDRTs containing 300 bp HAs have
led to editing efficiencies of up to 20% and 1.5%, respectively. However, the DKI efficiency has varied
considerably between different sets of targeted loci and inserted sequences, thereby highlighting the
need for more robust techniques to be developed for Cas-based multiplexed knockins.

Murine T cells: To date, there has been a single report describing a multiplexed knockin in murine
T cells. In order to induce point mutations in two distinct genes, plasmids encoding Cas9, sgRNAs and
the HDRTs were electroporated into T cells. Disappointingly, the proportion of T cells expressing the
edited genes was ~2%. While the authors did not elaborate on the possible cause of the low efficiency
of the DKI, it is not unlikely that better performance could be achieved by delivering the endonuclease
in the form of mRNA or protein [48].

3. Techniques for Pooled Genetic Manipulation

3.1. Pooled Knockout Screens

Pooled knockout screens permit a systematic identification of genes engaged in a wide range
of cellular processes (Figure 3c). Due to a well-documented involvement of T cells in autoimmune
conditions and cancer immunobiology, there has been a growing interest in the regulatory networks
that underlie their differentiation, proliferation and effector functions. Initial attempts to carry out
pooled genetic screens in T cells relied on RNA interference (RNAi) technology [62,63]. However,
the improved precision of the Cas enzymes led to RNAi being largely superseded by CRISPR/Cas9.
Nonetheless, there is a set of challenges associated with CRISPR/Cas9-based screens in T cells such
as the requirement for uniform expression of the Cas9 enzyme in the cell population and efficient
delivery of sgRNAs. Despite a growing number of methods to accommodate various T cell phenotypes,
each CRISPR/Cas9 screen follows a set framework. In short, sgRNAs and Cas9 are delivered to a cell
population to create a mutant library of cells and positive, negative or marker-based selection screens
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are performed. Negative selection screens are carried out in order to identify the genes that are essential
for the survival and proliferation of the cells. In such screens, cells are mutagenised and the mutant
population is cultured over a period of time. Cells that harbor mutations in genes that are essential for
proliferation will eventually die during this period of time leading to ‘drop-out’ of the cells from the
population. By comparing the abundance of the sgRNA present at the endpoint of the experiment to
the original population, the genes that are essential for the process, i.e., in this case the genes whose
guides are under-represented, can then be inferred. In a positive selection screen, a selective pressure
(e.g., drug) is added to the cells and mutant cells that are enriched are collected to identify the genes
that are responsible for the observed phenotype. In a marker-based screen, the desired phenotype is
usually an expression- or a fluorescence-marker or a drug resistance cassette, based on which selections
can be made. In all cases, the identity of sgRNAs targeting specific genes that are enriched in the
cell population of interest, referred to as hits, is established by deep sequencing followed by analysis
of the relative sgRNA enrichment between the target and control cell populations [64]. It is worth
noting that the composition of the sgRNA libraries can be restricted to refine the screen to a set of
predetermined genes. Thus, a pooled knockout screen can be designed to interrogate the function of a
subset of genes involved in a function of interest as well as all protein-coding genes—often referred
to as a genome-wide screen. In this section, we will examine the techniques developed for pooled
knockouts in different subsets of T cells and discuss the recent emergence of knockin screens.

Human T cells: Lentiviral transduction is an efficient method for delivery of sgRNA libraries
into primary T cells. This is not the case for Cas9 whose delivery via lentiviral transduction is
associated with poor expression and thus it is delivered by electroporation of recombinant protein.
The combination of these two methods, referred to as sgRNA lentiviral infection with Cas9 protein
electroporation (SLICE), has been used to perform genome-wide screens coupled to immunological
and genetic assays. For instance, SLICE was combined with proliferation assays to identify genes
involved in CD8+ T cell activation [65]. This screen has been able to effectively identify well-known
positive and negative regulators of cell activation. SLICE has also been incorporated into a CROP-seq
workflow, whereby following a pooled knockout, CD8+ T cells can be subjected to scRNA-seq [66,67].
As a result, loss-of-function mutations can be linked to a transcriptomic profile associated with a cell
state of interest.

Despite the success of SLICE in CD8+ T cells, Ting and co-workers demonstrated that in CD4+

T cells SLICE may result in inconsistent knockout efficiency between different sgRNAs targeting
the same gene [68]. The authors demonstrated that electroporation of CD4+ T cells with Cas9
RNPs bound to non-targeting sgRNAs, rather than recombinant Cas9 following lentiviral delivery of
targeting sgRNAs, can improve the knockout efficiency and in effect reduce the inter-sgRNA variation.
This feature is fundamental for accurate identification of hits since the sgRNA enrichment analysis
software relies on ranking of multiple sgRNAs targeting the same gene. This method, known as Guide
Swap has been effectively used to perform a genome-wide screen for genes regulating expression of
three well-characterised T cell surface proteins; however, direct comparison of SLICE and Guide Swap
in the same T cell subset has not been performed.

Murine T cells: The advent of Cas9 transgenic mouse strains permitted CRISPR/Cas9-based
pooled knockout screens to be performed in vitro as well as in vivo [33,34]. A major advantage of
using T cells derived from Cas9 expressing transgenic mice is the complete redundancy of the Cas9
delivery step, which is often the bottleneck in performing genome editing at scale. Furthermore,
in vivo knockout screens permit dissection of more complex processes such as anti-cancer immunity
which inherently involve complicated cell-cell interactions and thus are not easily simulated ex vivo.
Despite the limitations of the mouse models with respect to the human immune system, CRISPR/Cas9
screens in mice have led to relevant findings that could be validated in human T cells.

Similarly to human T cells, murine CD8+ T cells are permissive to lentiviral delivery of sgRNA
libraries. Dong and co-workers set out to perform a genome-wide screen to determine genes contributing
to infiltration of tumours by T cells [69]. To this end, OT1 Cas9 CD8+ T cells were transduced with
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a genome-wide sgRNA lentiviral library and subsequently transplanted into immunodeficient mice
bearing OVA-expressing tumours. To analyse the sgRNA enrichment, CD8+ T cells were isolated from
the population of tumor-infiltrating lymphocytes (TIL). Comparative analysis of sgRNA enrichment in
T cells transduced with the genome-wide library relative to a control population led to identification
of genes previously not known to be involved in regulating tumor infiltration. An analogous screen
was also performed to investigate the genes contributing to T cell cytotoxicity; however, instead of
transferring the T cells into mice, T cells were incubated with the cancer cells in vitro. Finally, a T cell
population displaying high density of a degranulation marker was isolated and analysed.

Unlike lentiviruses, AAVs rarely integrate into the host genome and thus are of limited use
for delivery of sgRNA libraries since the sequence of an sgRNA cannot be recovered by standard
sequencing techniques. Nonetheless, AAVs have been readapted for the purpose of pooled knockout
screens in the form of an AAV-Sleeping Beauty (SB) Transposon hybrid system [70]. Upon infection
with the AAV-SB hybrid virus, a strong promoter drives the expression of an SB100X transposase
which subsequently integrates the AAV-delivered insert containing the sgRNA into the host genome.
Advantageously, SB100X-mediated integration displays a preference for “safe haven” regions of the
genome and permits the sgRNA identification by high-throughput sequencing methods. The AAV-SB
system has been used in the context of in vivo CRISPR knockout screens to identify a repertoire of
immunotherapy targets for treatment of immunologically ‘cold’ tumours. Briefly, CD8+ T cells were
transduced with the AAV-SB-based library targeting genes encoding cell surface proteins, transferred
into mice bearing glioblastoma tumours, at the endpoint TILs were recovered and sequenced.

Murine CD4+ T cells are only weakly susceptible to lentiviral infections and in order to carry out
CRISPR/Cas9 screens in this T cell subset retroviral sgRNA libraries have been developed. A pioneering
retrovirus-based screen was performed in naive CD4+ T cells isolated from Cas9 mice to identify genes
involved in regulation of CD4+ T cell differentiation [71]. Unlike in the lentiviral screens, in this instance
T cells were subjected to an antibiotic selection following the delivery of the sgRNA library to increase
the proportion of sgRNA-expressing T cells. Retroviral delivery has also been found to be applicable to
pooled screens in regulatory T cells. In a study by Cortez and co-workers, an sgRNA library restricted
to genes encoding nuclear proteins was used to identify regulators of a master transcription factor
FoxP3 [72]. Here, delivery of the sgRNA library was enhanced by an additional round of retroviral
transduction which obviated the need for antibiotic treatment. The success of retroviral libraries to
dissect the functions of murine CD4+ T cells sets a template for future use of pooled knockouts in this
cell type.

The aforementioned CHIME workflow has also been used for in vivo pooled knockout screens [34].
HSCs were extracted from constitutive Cas9-expressing mice, transduced with an sgRNA library
and transferred into congenic animals. Following immune reconstitution, CD8+ T cells expressing a
fluorescent transduction marker were isolated and injected into recipient mice where T cells can be
subjected to a selection pressure such as a viral infection. Eight days after selection the edited T cells
can be isolated from the recipient mice by means of cell sorting for congenic markers.

3.2. Pooled Knockin Screens

Thus far, the pooled CRISPR/Cas9 screens have been limited to identification of endogenous
genes contributing to various cellular processes and did not have means to evaluate the influence
of exogenous constructs on T cell functions. To this end, a method for pooled knockin screens was
developed which combines simultaneous delivery of a library of dsDNA HDRTs and Cas9 RNPs by
electroporation (Figure 3f) [73]. The HDRTs are integrated into a single locus specified by the sgRNA
to generate a T cell population expressing on average one insert per cell. The delivery of the library is
followed by assays to evaluate the impact of each construct on T cells; however, rather than analysing
the endogenous gene depletion as in the case of the pooled knock-out screens, enrichment of the
inserts is measured instead. It was demonstrated that the pooled knockin screens can be coupled to
proliferation assays as well as scRNA-seq, both in vitro and in vivo. Together, these methods and the
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pooled knockin have been applied to screen heterologous immunoreceptors and transcription factors
for their capacity to improve anti-cancer activity of human T cells.

4. Clinical Applications of Edited Primary T Cells

4.1. Editing of T Cells for Cancer Immunotherapy

Among the many important immune functions, the role T cells play in cancer progression is one
of most extensively studied. In the early stages of development of tumour cells, cytotoxic CD8+ T cells
have the potential to recognize and eliminate immunogenic cancer cells. Cancer cells however can
avoid clearance mediated by T cells mainly by impairing their effector functions and proliferative
capacity [74]. This is often achieved by a number of mechanisms; one such mechanism involves
the engagement of inhibitory receptors (IR) of T cells to downregulate their activity. For example,
some cancer cell types express PD-L1 on their surface, which is a ligand for the negative regulator
of T cell function PD-1. The engagement of PD-1 with PD-L1 leads to inhibition of T cell signalling
thereby effectively decreasing anti-tumor activities such as T cell migration, proliferation and secretion
of cytotoxic granules. The past few years has seen a number of therapeutics being developed to
counteract this immune evasion mechanism. Immune checkpoint blockade (ICB) of mainly PD-1 and
CTLA-4 has been shown to increase the immune response of cytotoxic T cells towards different types
of solid tumours. Nonetheless, there is a range of malignancies that remain unresponsive to this line of
immunotherapy and efforts are being continuously made to improve immunotherapy approaches [5].

The ability to genetically manipulate T cells has led to a revolution in the field of oncoimmunology,
hallmarked by the approval of T cell-based therapeutics for treatment of B cell malignancies. T cells
engineered using early gene editing technologies such as TALENs or ZFNs made headway in the
direction of T cells with enhanced therapeutic potential, but the ease of reprogrammability offered by
Cas-based tools has significantly advanced the field. In this section, we will briefly review the specific
applications of Cas enzymes in the context of therapeutic T cells. For a more detailed discussion of
gene editing in the context of immunotherapies readers are directed to other excellent reviews [75–77].

Delivery of TAA-specific receptors: The cytolytic capacity of T cells can be redirected against
malignancies by endowing them with a receptor specific to a relevant TAA. This receptor can either be
a TCR or a CAR with the key distinction between the two being their ability to target different types of
antigens—the former can recognise cytoplasmic neoantigens, whereas the latter is restricted to cell
surface proteins. Treatments relying on infusion of patients with either physiological or gene-edited
T cells is referred to as adoptive cell therapy (ACT); here this term will be used in reference to CAR and
TCR-transgenic T cells.

Traditionally, TAA-specific TCRs and CARs have been introduced into autologous T cells by
retroviral or lentiviral transduction. The semi-random integration of the viral vectors may lead to
oncogenic transformation or a heterogeneous expression of the receptor across the engineered T cell
population. Furthermore, the expression of the endogenous TCR is downregulated following antigenic
stimulation—this safeguard against a detrimental immune response is not conferred by the viral
delivery of the TAA-specific receptor [78]. Additionally, the overexpression of the virally delivered
CAR has been demonstrated to lead to T cell exhaustion stemming from tonic signalling. These issues
have been addressed by HDR-mediated integration of constructs encoding TAA-specific receptors into
TRAC or TRBC. To do so, either of the two TCR loci can be targeted by Cas delivered as mRNA or
RNP [23,28,29,38]. Effective delivery of HDRTs encoding a TAA-specific receptor was demonstrated
using AAV transduction as well as dsDNA electroporation. However, given the evidence suggesting
pre-existing immunity to AAVs in humans, the latter mode of HDRT delivery may prove to be safer in
clinical settings.

It must be noted that conditional on the HDRT design and the position of the sgRNA target
sequence within the locus, HDR-mediated insertion of the TAA-specific receptors can be engineered



Methods Protoc. 2020, 3, 79 15 of 27

to lead to a concurrent disruption of the gene at the target locus. Thus, the knockin can be handily
coupled to knockout of other genes whose deletion may lead to improved clinical efficacy of ACT.

Beyond enabling physiological regulation of expression of the TAA-specific receptor, Cas-based
editing has been used to resolve the issue of TCR chain mispairing. Following viral delivery, chains
of the transgenic and endogenous TCR can form hybrid receptors composed of a transgenic TCRα
and endogenous TCRβ and vice versa. Such mixed TCR dimers have unpredictable, potentially
autoreactive specificities which can lead to graft versus host disease (GvHD). Additionally, the presence
of the endogenous TCR reduces the surface expression of the transgenic TCR and in consequence
curtails antigen sensitivity of the engineered T cell. While a knockout of a single endogenous TCR
chain can partially restore the sensitivity of TCR-transgenic T cells, it does not prevent formation of the
mixed TCR dimers [79,80]. Therefore, disruption of both TRAC and TRBC loci in TCR-transgenic T cells
is highly desirable. To this end, dsDNA HDRT and Cas9 RNP electroporation has been effectively used
to knockin a polycistronic construct encoding both transgenic TCR chains into one of the TCR loci
and perform a knockout at the other loci [29,80]. An alternative editing strategy, albeit less efficient,
relies on a multiplexed knockin of individual transgenic TCR chains into the two endogenous TCR
loci [29,80]. Both approaches have been demonstrated to eliminate the chain mispairing as well as
confer native-like control of transgene expression.

Recently, a first clinical trial of CRISPR-edited TCR-transgenic T cells was completed [81]. In this
study, TRAC and TRBC were deleted by means of Cas9 RNP electroporation prior to lentiviral
transduction of a transgenic TCR to preclude the formation of mixed TCR dimers. Consistently,
no adverse effects associated with GvHD were reported. Given the evidence for widespread immunity
to Cas9 [82], the authors have further shown that neither of the patients mounted an immune response
towards the protein following the T cell infusion. These findings are likely to further reinforce the
status of RNP electroporation as a preferred mode of Cas9 delivery for manufacturing of therapeutic
cell products.

CARs employed in both of the clinically approved T cell therapies recognise a B cell antigen known
as CD19. Despite their success in the clinic, targeting a single TAA is associated with a risk of antigen
escape and relapse. To ensure long-term remission, CAR T cells expressing two distinct TAA-specific
receptors have been engineered to target antigens co-expressed on the surface of neoplastic cells.
Manufacturing of such dual CAR T cells with the CAR transgenes integrated into the TCR loci can be
streamlined by means of multiplexed knockins [29,80].

Ablation of immune checkpoints: Exposure of T cells to the immunosuppressive tumour
microenvironment (TME) is associated with T cell dysfunction characterised by impaired effector
functions, persistence and failure to infiltrate the tumour. ICB serves to reinvigorate such exhausted
T cells and has led to unprecedented clinical outcomes in patients with solid tumours. In contrast,
the clinical success of ACT has been largely limited to blood cell malignancies.

While clinical trials combining ACT and ICB are underway, systemic administration of ICB
antibodies can lead to adverse effects associated with an overactivated immune system [83].
To circumvent the side effects, ICB can be applied in a more localised manner by deletion of IRs in
the engineered T cells. Mirroring the antibody-mediated ICB, inhibition of the PD1-PDL1 signalling
axis was predominantly tested in preclinical and clinical trials of ACT-based ICB. Ablation of PD-1
in CAR T cells using either Cas9 RNP or mRNA electroporation has been demonstrated to enhance
the clearance of PD-L1 expressing tumours in mice [21,84]. Furthermore, the safety of PD-1 deficient
TCR-transgenic T cells was demonstrated in a clinical setting [81].

Augmentation of intracellular signalling: Even though ICB has proved to be an effective therapy
for a small group of cancers, there is a significant subset of patients whose tumours remain refractory
to this line of treatment. This could be aided by identification of novel targets for antibody-based
immunotherapy, however only a fraction of the proteome is located on the T cell surface and thus is
accessible to antibodies. By contrast, genetic editing of T cells provides access to a wide spectrum of
intracellular signalling components whose disruption could potentially improve anti-tumour activity
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of T cells. Identification of novel cytoplasmic targets has been aided by in vivo and in vitro pooled
knockout screens with a number of candidates validated in tumour xenograft mouse model [69,70].
For instance, Wei and co-workers found that a deletion of an RNase called REGNASE-1 can augment
the capacity of cancer-specific T cells to control tumour growth by enhancing their ability to infiltrate
and persist within the malignant tissue [85]. Similarly, a knockout of a transcription factor GATA-3
leads to improvements in the cytolytic properties of T cells [86]. Evidence showing that simultaneous
knockout of multiple intracellular targets synergistically enhances the anti-tumour potential of ACT
highlights the need for development of techniques for more robust multiplexed editing [85].

Reduction of fratricide: The progress in development of ACT for T cell malignancies has been
stymied by lack of appropriate TAAs. Since antigens such as CD5 and CD7 are ubiquitously expressed
on the surface of healthy as well as neoplastic T cells [87–89], CAR T cells targeting these antigens
display fratricidal activity affecting their therapeutic potential [90–92]. To circumvent these limitations,
Cas9-mediated disruption of these TAAs has been tested. For instance, ablation of CD7 in autologous
CAR T cells targeting this surface receptor significantly reduced the fratricide and improved survival
of tumour xenograft mice treated with such T cell products [90,91].

Universal allogeneic CAR and TCR-transgenic T cells: The manufacturing process of ACT
is logistically challenging and requires substantial resources that hinder widespread access to the
treatment. Furthermore, patients displaying low white blood count may not be able to donate a
sufficient number of T cells for production of a T cell-based therapeutic. These challenges could
be resolved by engineering of universal allogeneic ACT which would obviate the need for use of
autologous T cells [93]. Production of such ‘off-the-shelf’ cell products requires the cell surface
expression of the HLA, which is the human version of the MHCI, and endogenous TCR to be disrupted.
Knockout of the former molecule is necessary since the patient’s immune system may mount a response
against the allogeneic HLA leading to rejection of the engineered T cells, whereas the endogenous TCR
needs to be ablated because it may recognise alloantigens and induce the GvHD [94–96]. While both
TCR and HLA form complexes composed of multiple polypeptide chains, knockout of a single
constituent is sufficient to abolish surface expression of either protein [97]. Due to the polyallelic nature
of the heavy chain of HLA, B2M is a preferable knockout target whose disruption abolishes surface
expression of all HLA alleles [97].

4.2. Editing of T Cells for Antiretroviral Therapies

HIV is a blood-borne virus which primarily infects CD4+ T cells. To gain entry into the cell,
viral envelope glycoproteins bind to the CD4 molecule and either CCR5 or CXCR4, depending on the
tropism of the HIV strain. Subsequently, the HIV single-stranded RNA genome is retrotranscribed to
dsDNA and integrated into the host genome where it can either be actively expressed, killing the host
cell in the process or can adopt a latent state with a potential for reactivation. The latent reservoir is
predominantly located in CD4+ memory T cells, but it has also been found in other tissues. Treatment
of HIV patients using a cocktail of small molecule inhibitors termed highly-active antiretroviral therapy
(HAART) can effectively suppress viral replication allowing the acquired immunodeficiency syndrome
to be averted. Nonetheless, the treatment is not curative since it does not lead to eradication of the
latent reservoir which gradually reactivates following interruption of HAART. However, elimination
of the latent reservoir could be achieved by in vivo delivery of gene editing tools to induce inactivating
indels in the HIV genes or excision of the provirus by cutting its flanking sequences. Removal of the
provirus from the latently infected cells is not the sole path to achieving long-term remission. It has
been postulated that editing of autologous CD4+ T cells to disrupt the viral entry co-receptors followed
by infusion of the CCR5- or CXCR4-deficient T cells into the patients could lead to elimination of the
reservoir by repopulating the lymphoid system with HIV-resistant cells. Here, we will summarise how
the CRISPR/Cas9 editing technology has led to progress in the development of a curative HIV therapy
and the associated technical challenges. We direct readers seeking a more comprehensive discussion of
the field towards the following reviews [98,99].
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Eradication of the latent HIV reservoir: The HIV ~10 kb provirus is flanked by long terminal
repeats (LTRs) whose sequences are identical at the time of integration, but diverge in the course
of infection. Nonetheless, the high degree of sequence identity between the 5′ and the 3′ LTRs
permits excision of the provirus using a single sgRNA, thus making the LTRs a convenient target
for Cas-based editing. The feasibility of LTR targeting by Cas9 to remove the provirus ex vivo has
been first demonstrated in Jurkat T cell lines modified to act as surrogates of latent infection [100,101].
Replicating this editing strategy, Kaminski and co-workers used lentiviral vectors to deliver the CRISPR
components to primary CD4+ T cells obtained from HIV-positive patients [102]. As a result of this
treatment, the copy number of the provirus was reduced by up to 90%. In addition to employing
Cas9 to cleave the provirus, it can be also be efficiently used to degrade the intermediate HIV dsDNA
genome prior to its integration and establishment of the viral reservoir [103]. While this strategy can
lead to effective protection of primary CD4+ T cells ex vivo, it has a limited potential in the clinic since
it requires constitutive expression of the Cas9 endonuclease. As a consequence, the preclinical in vivo
studies have largely focused on excision of the provirus by the transient introduction of Cas9 and
sgRNAs into latently infected cells.

The key challenge of in vivo elimination of the viral reservoir is the systemic administration of Cas9
to the T cells containing the provirus. To this end, injections of model animals with CRISPR-encoding
AAV vectors have been used to deliver the endonuclease and sgRNAs. The limited packaging capacity
of AAVs necessitates the use of smaller Cas9 orthologs such as SaCas9 rather than the more widely
adopted SpCas9 [49]. To improve the efficacy of the treatment a second sgRNA targeting the viral gene
Gag is typically used in the in vivo setting in addition to the LTR-specific sgRNAs. Such CRISPR-based
therapy needs to be stringently tested for any off-target activity of Cas9.

In a proof-of-concept study, AAV9-packaged Cas9 and sgRNA were deployed to eliminate a
replication incompetent provirus in a mouse model [104]. This strategy was also tested in an improved
model of human HIV infection, namely humanised mice inoculated with a replicating HIV strain [105].
While both studies demonstrated that AAV-delivered CRISPR is capable of reducing the viral reservoir
in a range of tissues, neither reported a complete eradication of the latent infection. More recently,
Dash and co-workers combined AAV9-packaged CRISPR with a novel type of antiretroviral therapy to
control the HIV infection and eliminate the viral reservoir in humanised mice [106]. Such treatment
has been successful in a number of animals with no Cas9-associated off-target effects detected by
whole-genome sequencing.

Disruption of the viral entry co-receptors: Entry of the virus into a cell requires the envelope
glycoprotein of HIV to sequentially engage CD4 and one of the co-receptors—either CCR5 or CXCR4.
While ablation of CD4 expression would confer HIV-resistance onto the edited T cells, CD4 is an
essential surface receptor for immune function and development. Editing of the co-receptor genes,
CCR5 in particular, is an alternative pathway to generate HIV-resistant autologous T cells which can be
transplanted into HIV-positive patients. This strategy to achieve a long-term remission of the virus
was pursued ever since an HIV-positive leukaemia patient was effectively cured by a bone marrow
transplant from a CCR5∆32/∆32 donor [107]. The homozygous 32 bp deletion in CCR5 is present in the
Caucasian population at low frequency and is associated with a complete loss of the co-receptor surface
expression, thereby showing that CCR5 can be safely ablated without impairing the function of T cells.
The first genetically modified CCR5-deficient T cells that were transplanted into patients were edited
using the ZFN technology [108]. While the patients enrolled in the trial did not experience any side
effects related to potential off-target activity of the editing agent, CRISPR/Cas9 has a superior precision
and thus is better suited for production of edited autologous cell products [108]. Consequently, there are
multiple studies reporting Cas9-based editing of both co-receptors, individually and simultaneously,
in primary CD4+ T cells.

Cas9 has been successfully used ex vivo in primary CD4+ T cells to disrupt the expression of CCR5
by the introduction of indels at the sgRNA target site as well as introduction of the CCR5∆32 allele by
excision of a relevant gene fragment [109,110]. These edits were achieved using CRISPR components
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delivered by adenoviral and lentiviral vectors, respectively. Similarly, CXCR4 was ablated in primary
CD4+ T cells by plasmid-deployed SpCas9 [111]. While it is widely accepted that transduction
and transfection are inadequate modes of Cas9 delivery due to the resulting low editing efficiency,
the co-receptor-deficient T cells generated in the aforementioned studies have displayed a reduced
susceptibility to the virus. However, ablation of a single co-receptor may not confer HIV resistance
onto the in vivo edited T cells since HIV is capable of shifting its tropism from CCR5 to CXCR4 over
the course of infection [112]. To address this, Cas9 has been used to simultaneously knockout both
co-receptors in primary CD4+ T cells with the resulting cell populations showing protection against
CCR5- and CXCR4-tropic HIV strains [113,114].

With the prospect of CXCR4 and CCR5 editing in vivo, several smaller Cas variants that can
be more efficiently packaged into AAV vectors have been tested. SaCas9 has been used to knock
out CXCR4, whereas more recently CCR5 was ablated by Cas12a [115,116]. In vivo knockout of the
co-receptors would permit a significant reduction in the cost of such treatment if it is approved for
clinical use in the future.

Infusion of patients with CCR5-deficient autologous T cells is unlikely to lead to side effects
as CCR5∆32/∆32 individuals do not suffer from any major pathophysiologies. By contrast, multiple
functions of CXCR4 in the human immune system have been reported and Cxcr4-deficient mice die
early in development. Thus, site-specific manipulation of CXCR4 that blocks viral entry, but not its
interactions with the physiological ligand is desirable. To this end, Tian and co-workers identified
mutations in CXCR4 that selectively obstruct binding of the HIV envelope glycoprotein [117]. Delivery
of CRISPR components along with appropriate HDRTs into primary CD4+ T cells should yield
CXCR4-mutant cells that could be safely transferred into patients. HDR-based manipulation of
CXCR4 has been previously demonstrated in CD4+ T cells, albeit not with the purpose of inserting
the HIV-blocking mutations [19]. Ideally, the knockin of the HIV-blocking point mutation into
CXCR4 would be combined with a knockout of the other co-receptor; editing strategies such as the
one developed by Dai and co-workers could enable the multiplexed edit with high efficiency and
speed [38].

5. Summary and Future Directions

As is evident from many studies discussed here electroporation has become the method of choice
for Cas9 delivery for in vitro knockouts in both murine and human primary T cells. While the procedure
has become very well optimised and further improvements are continuously being made, its effects on
T cell function have been poorly characterised. In a recent study, analysis of gene expression profiles of
resting T cells following an electroporation demonstrated a dramatic dysregulation of genes involved
in T cell activation [118]. An alternative Cas9 delivery method termed microfluidic squeezing markedly
reduces the dysregulation of the immune signalling pathways without the loss of efficiency [118].
Notwithstanding these findings, microfluidic squeezing has not been widely adopted perhaps due to
limited commercial availability of the microfluidic devices.

The advancements in the field of genome editing have been very useful for improving the
techniques available for editing of primary T cells. As we have discussed, apart from the conventional
Cas9, many strategies for effective editing of primary T cells are reliant on CBEs or ABEs. The newly
described prime editor, which is a catalytically impaired Cas9 endonuclease fused to an engineered
reverse transcriptase, has been shown to be capable of directly writing new genetic information into a
specified locus without creating DSBs or having the limitations of CBEs or ABEs of being able to only
convert C to T and G to A, respectively [119]. Prime editors are yet to be used for editing of primary
T cells and currently the utility of prime editors is thought to be restricted by delivery options, as these
enzymes tend to be much larger than conventional Cas9. However, as delivery techniques improve,
this would be a very powerful tool for creating precise edits for primary T cells, which would be highly
desired for therapeutic applications.
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Currently, engineering of TCR-transgenic and CAR T cells predominantly relies on retroviral
or lentiviral delivery of the constructs encoding the TAA-specific receptors. However, targeting of
the receptor-encoding constructs to endogenous TCR loci confers multiple advantages which could
ultimately translate into better clinical outcomes and reduced adverse effects of ACT. We discussed a
number of CRISPR-based techniques that have emerged, which permit a knockin of large exogenous
sequences with high precision in primary T cells [28,29,38]. Findings showing that TCR-transgenic
T cells manufactured using the CRISPR/Cas9 system do not induce Cas-specific immune responses
will permit these techniques to be more readily adopted in the clinic. These developments suggest
that the use of integrating viral vectors for introduction of transgenes into therapeutic T cells will be
superseded by Cas-induced insertions of templates delivered by either non-integrating viral vectors or
naked dsDNA. Continued efforts to enhance the efficiency of Cas-based knockin by means of small
molecules or improved design of HDRTs and Cas enzymes are likely to accelerate this transition [120].

The use of unbiased pooled CRISPR knockout screens have shown promise in dissecting cellular
processes involved in basic T cell biology including proliferation, differentiation and cell killing.
However, introducing thousands of sgRNAs into primary T cells at high complexity is not a
straightforward task and only a few studies have been able to do this with high efficiency. In this
regard, the recently described Cas12a endonuclease-based screen could provide an alternative platform
for performing pooled screens for genome-wide dissections of cellular processes. Cas12a is known to
be self-sufficient for multiplexed gene editing as it does not require additional cellular components to
process the polycistronic guide precursors. Consequently, the genome-wide library based on Cas12a,
called the ‘Mini-human’ library, is a fifth of the size of the libraries used for SpCas9 [121]. Cas12a is
also smaller in size than SpCas9 and as discussed previously it has already been shown to be efficient
in editing primary T cells [38]. Hence, this smaller-sized Cas12a-based genome-wide library could
potentially be highly useful for improving techniques for performing pooled screens in T cells.

The ability to genetically manipulate primary T cells using the CRISPR/Cas9 system has undergone
remarkable progress in the last few years, and for researchers entering this field a wide range of
options is now available (major techniques summarised in Table 1). Given the therapeutic interest in
genetically modified T cells for treatment of diseases such as cancer and autoimmunity, it is likely that
this trend will continue, with more techniques emerging for improving the efficiency of primary T cell
manipulation while enhancing the precision of editing.
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Table 1. Summary of all the edit types performed in primary T cells and methods used to deliver Cas enzymes.

Mode of Delivery

Electroporation Viral Endogenous

RNP mRNA DNA Lentivirus Adenovirus AAV Cas9 mice

Knockouts

Single
gene

Seki and Rutz 2018 [16]
Schumann et al. [20]
Vakulskas et al. [23]

Hendel et al. [27]
Nüssing et al. [36]

Shifrut et al. [65]Ye et al. [70]
Rupp et al. [84]

Gomes-Silva et al. [90]

Ren et al. [21]
Hendel et al. [27]

Gaudelli et al. [44]
Gwiazda et al. [57]
Cooper et al. [91]

Hendel et al. [27]
Su et al. [30]

Mandal et al. [31]
Kornete et al. [48]

Hou et al. [111]
Liu et al. [113]

Legut et al. [79]
Singer et al. [86]

Kaminski et al. [102]
Qi et al. [109]

Li et al. [110]
Liu et al. [116]

Wang et al.
[115]

LaFleur et al. [34]
Chu et al. [35]

Dong et al. [69]
Ye et al. [70]

Multiplexed

Webber et al. [26]
Nüssing et al. [36]

Stadtmauer et al. [81]
Yu et al. [114]

Ren et al. [21]
Webber et al. [26]

Ren et al. [41]
Gaudelli et al. [44]
Gwiazda et al. [57]

Liu et al. [40]
Kornete et al. [48]

Liu et al. [113]

Pooled Shifrut et al. [65]
Ting et al. [68]

LaFleur et al. [34]
Dong et al. [69]

Ye et al. [70]
Henriksson et al. [71]

Cortez et al. [72]
Wei et al. [85]

Knockins

Single
gene

Schumann et al. [20]
Vakulskas 2018 [23]

Roth et al. [29]
Nüssing et al. [36]
Nguyen et al. [56]
Wienert et al. [61]
Schober et al. [80]

Eyquem et al. [28]
Gwiazda et al. [57] Kornete et al. [48]

Mutliplexed
Roth et al. [29]

Nguyen et al. [56]
Schober et al. [80]

Dai et al. [38] Kornete et al. [48]

Pooled Roth et al. [73]
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