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Background: Dietary creatine supplementation (CrS) is a practice commonly adopted by physically active
individuals. However, the effects of CrS on systemic microvascular reactivity and density have never been reported.
Additionally, CrS is able to influence blood levels of homocysteine, resulting in presumed effects on vascular
endothelial function. Thus, we investigated the effects of CrS on the systemic microcirculation and on

Methods: This open-label study was performed on a group of 40 healthy male, moderately physically active subjects
aged 27.7 £ 134 years who received one week of CrS at a dose of 20 g/day of commercially available micronized
creatine monohydrate. Laser speckle contrast imaging was used in the evaluation of cutaneous microvascular
reactivity, and intra-vital video microscopy was used to evaluate skin capillary density and reactivity, before and

Results: CrS did not alter plasma levels of homocysteine, although CrS increased creatinine (p = 0.0001) and decreased
uric acid (p = 0.0004) plasma levels. Significant changes in total cholesterol (p = 0.0486) and LDL-cholesterol (p = 0.0027)
were also observed along with a reduction in plasma levels of T3 (p =0.0074) and an increase in T4 levels (p = 0.0003). Skin
functional capillary density (p = 0.0496) and capillary recruitment during post-occlusive reactive hyperemia (p = 0.0043)
increased after CrS. Increases in cutaneous microvascular vasodilation induced by post-occlusive reactive

Conclusions: Oral supplementation with creatine in healthy, moderately physically active young adults improves
systemic endothelial-dependent microvascular reactivity and increases skin capillary density and recruitment.
These effects are not concurrent with changes in plasma homocysteine levels.

Keywords: Laser speckle contrast imaging, Intra-vital video-microscopy, Capillary recruitment, Post-occlusive

Introduction
Creatine supplementation (CrS) is a widely used practice
implemented by athletes and physically active individuals
with the goal of improving anaerobic power and to stimu-
late the process of protein synthesis and musculoskeletal
hypertrophy [1].

CrS has antioxidant and cytoprotective activities [2]
that, combined with the ability to restore intracellular
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energy levels, have also led to the introduction of this
practice in therapies for the management of cardiovascu-
lar, neurologic, metabolic and muscle disorders [3-8].

In pathophysiological states wherein the intracellular
levels of creatine are reduced, CrS has been shown to
exert important neuromodulator action contributing to
the treatment of anxiety disorders and schizophrenia and
potentially to the prevention of Parkinson’s, Alzheimer’s
and Huntington’s diseases [4].

Similarly, CrS has been used to treat muscular dystrophy
and the idiopathic inflammatory myopathies in skeletal
muscle diseases [3], to improve sarcolemma stabilization,
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arrhythmia frequency and contractile function in myocar-
dium [7] and, in association with physical exercise, to in-
crease glycemic control in patients with type 2 diabetes
mellitus [9].

Nevertheless, few studies have investigated the direct
effects of CrS on vascular function. In this context,
it has been shown that creatine is capable of exerting
anti-inflammatory actions on vascular endothelium [10]
and lowering arterial stiffness evaluated after resistance
exercise [11].

Considering that the synthesis of endogenous creatine is
responsible for increasing hepatic demand on methylation
reactions influencing homocysteine synthesis, it has been
suggested that CrS is capable of reducing homocysteine
blood levels, exerting positive influences on vascular endo-
thelial function [12,13]. Paradoxically, studies in humans
suggest that CrS does not alter macrovascular reactivity
but instead causes significant elevation of serum homo-
cysteine in normohomocysteinemic subjects and reduc-
tions in hyperhomocysteinemic individuals [14,15].

The assessment of systemic microvascular reactivity has
already been proven to be essential in the investigation of
the pathophysiology of cardiovascular and metabolic dis-
eases [16]. Additionally, the cutaneous microcirculation is
now considered as an accessible and representative vascu-
lar bed for the assessment of systemic microcirculatory re-
activity and density [16,17]. In this context, laser speckle
contrast imaging (LSCI) provides an innovative approach
for the non-invasive evaluation of systemic microvascular
endothelial function [17,18]. LSCI has already been shown
to be an effective noninvasive technique in the evaluation
of systemic microvascular reactivity in patients presenting
with cardio-metabolic diseases [18]. Moreover, capillary
density and reactivity, and thus tissue perfusion, are
known to be closely correlated with cardiovascular and
metabolic diseases, including arterial hypertension, dia-
betes, obesity and metabolic syndrome [19-21].

Given the absence of studies that elucidate the effects of
CrS on systemic microvascular reactivity and density and
to clarify the influences of this procedure on changes in
plasma homocysteine levels, the present study aims to in-
vestigate the effect of CrS on the microcirculation and on
homocysteine levels in healthy young individuals. Regard-
ing the microcirculatory effects, we used LSCI coupled
with physiological and pharmacological provocations
in the evaluation of cutaneous microvascular reactivity
and intra-vital video microscopy to evaluate skin capillary
density and reactivity.

Methods

Subjects

This open-label study was performed on a group of 40
healthy male subjects aged 27.7 + 13.4 years, recruited
among the students of the School of Physical Education
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and Sports Sciences of the Estdcio de S& University, Rio
de Janeiro, Brazil. The volunteers had negative family
histories for cardiovascular and metabolic diseases, waist
circumferences of 81.1+12.0 ¢cm and normal values
for their lipid and glycemic profiles, according to the
guidelines of the Brazilian Society of Cardiology (total
cholesterol < 200 mg/dL; LDL-cholesterol < 160 mg/dL;
triglycerides < 150 mg/dL and blood glucose < 100 mg/dL
[22]). The study subjects were not highly trained and had
not consumed any dietary supplement (creatine included)
or medications for >3 months before the study; moreover,
they were not instructed to follow a specific diet regimen.
Even if the study subjects were not athletes, they were all
physically active and were engaged in fitness programs in-
volving aerobic activity and strength training at least three
times a week. The present study was undertaken in ac-
cordance with the Helsinki declaration of 1975, as revised
in 2000, and was approved by the Institutional Review
Board (IRB) of the National Institute of Cardiology of Rio
de Janeiro, Brazil under protocol number 53301, approved
on September 2012. Once considered eligible, all of the
subjects read and signed the informed consent form ap-
proved by the IRB.

Research design
All evaluations were performed in the morning between
8 and 12 AM after a 12-hour fast. The subjects were also
asked to refrain from smoking and to abstain from
caffeine- and alcohol-containing beverages for 12 hours
before the study. All procedures followed the same se-
quence, beginning with the collection of blood samples
and followed by clinical and physical evaluation, con-
cluding with the microcirculatory evaluation by LSCI
and intra-vital capillaroscopy. The same procedures were
repeated after one week of creatine supplementation.
Anthropometric evaluation consisted of measurements
of weight, height and waist circumference (cm) and cal-
culated body mass index (kg/m?). Systolic, diastolic and
mean blood pressures were determined using a sphyg-
momanometer. The brachial systolic (SAP) and diastolic
(DAP) blood pressures were measured twice, 1 minute
apart, using a mercury sphygmomanometer, and the
mean values were recorded as the patients’ clinical blood
pressure. Mean arterial pressure (MAP) was calculated
as DAP + 1/3 (SAP-DAP).

Laboratory measurements

Blood specimens were collected before and after one week
of creatine supplementation, and plasma samples were
stored at -80°C until their utilization. Fasting glucose, total
cholesterol, HDL cholesterol, triglycerides, creatinine, uric
acid, transaminases, and high sensitivity CRP were deter-
mined by photometric colorimetric optical system (Cobas
Mira systems, Roche Diagnostic Corporation, Indianapolis,
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IN, USA). LDL cholesterol was calculated by Friedewald’s
formula. Plasma levels of homocysteine and fibrinogen
were determined using an ELISA kit according to the
manufacturer’s instructions (Cayman Chemical, Ann Arbor,
M]I, USA).

Oral creatine supplementation

The subjects received 20 g/day of commercially available
micronized creatine monohydrate with 99% purity by
HPLC (Power Pure, Nutrisport, Sdo Paulo, Brazil) for 1
week divided into 4 equal doses of 5 g, corresponding to
the loading dose of the supplement according to previous
reports [1,23]. This study protocol has already been shown
to significantly increase plasma and intramuscular levels
of creatine without causing important side effects [23,24].

Evaluation of skin microvascular reactivity using laser
speckle contrast imaging

Microcirculatory tests were performed after a 20-minute
rest in the supine position in a temperature-controlled
room (23 +1°C). Microvascular reactivity was evaluated
using a laser speckle contrast imaging system with a laser
wavelength of 785 nm (PeriCam PSI system, Perimed,
Jarfalla, Sweden) in combination with iontophoresis of
acetylcholine (ACh) for noninvasive and continuous meas-
urement of cutaneous microvascular perfusion changes (in
arbitrary perfusion units, APU) [18,25]. The image acqui-
sition rate was 8 images/sec, and the distance between the
laser head and the skin surface was fixed at 20 cm, as rec-
ommended by the manufacturer’s manual. Images were
analyzed using the manufacturer’s software (PIMSoft, Peri-
med, Jarfilla, Sweden). The skin sites for microvascular
flow recordings were randomly chosen on the ventral sur-
face of the forearm avoiding hair, broken skin, areas of
skin pigmentation and visible veins. The drug-delivery
electrode was secured using an adhesive disc (LI 611,
Perimed, Jarfalla, Sweden). Two measurement areas (cir-
cular regions of interest) of approximately 80 mm? were
determined. One of the measurement areas was within the
electrode (acetylcholine), and the second (post-occlusive
reactive hyperemia, PORH) was adjacent to the electrode.
A vacuum cushion (AB Germa, Kristianstad, Sweden) was
used to reduce recording artifacts generated by arm move-
ments. ACh 2% w/v (Sigma Chemical CO, MO, USA)
iontophoresis was performed using a micropharmacology
system (PF 751 Perilont USB Power Supply, Perimed,
Sweden) with increasing anodal currents of 30, 60, 90,
120, 150 and 180 pA for 10-second intervals spaced 1 mi-
nute apart (the total charges were 0.3, 0.6, 0.9, 1.2, 1.5 and
1.8 mC, respectively). The dispersive electrode was at-
tached approximately 15 cm away from the electrophor-
esis chamber. Of note, the drug was not injected but
rather was placed in contact with the skin surface. During
the PORH test, arterial occlusion was performed with
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suprasystolic pressure (50 mmHg above systolic arterial
pressure) using a sphygmomanometer for 3 min. Follow-
ing the release of pressure, the maximum flux was mea-
sured. Measurements of skin blood flow were divided by
the mean arterial pressure to yield the cutaneous vascular
conductance (CVC) in APU/mmHg. The amplitude of the
PORH responses was expressed as the peak CVC minus
the baseline CVC.

Capillaroscopy by intra-vital microscopy

The microcirculatory tests were performed in an undis-
turbed quiet room with a defined stable temperature
(23 £ 1°C) after a 20-minute rest in the supine position.
The period of acclimatization lasted until the skin
temperature had stabilized. We had previously shown
that after 15-20 minutes of acclimatization, the skin
temperature stabilizes at approximately 29°C [26].

The dorsum of the non-dominant middle phalanx was
used for image acquisition, while the patient was maintained
comfortably in a seated position. The room temperature
was monitored and adjusted if necessary using air condi-
tioning, considering that the outdoor temperature was
usually > 25°C. The arm was positioned at the level of the
heart and immobilized using a vacuum cushion (a spe-
cially constructed pillow filled with polyurethane foam
that can be molded to any desired shape by creating a vac-
uum, from AB Germa, Kristianstad, Sweden).

Capillary density, i.e., the number of perfused capillaries
per square millimeter of skin area, was assessed by high-
resolution intra-vital color microscopy (Moritex, Cambridge,
UK), as previously described and validated [19,20,26]. We
used a video-microscopy system with an epi-illuminated
fiberoptic microscope containing a 100-W mercury vapor
lamp light source and an M200 objective with a final mag-
nification of 200X. Images were acquired and saved for
subsequent off-line analysis using a semi-automatic inte-
grated system (Microvision Instruments, Evry, France).
The mean capillary density for each patient was calculated
as the arithmetic mean of visible (i.e., spontaneously per-
fused) capillaries in three contiguous microscopic fields
of 1 mm? each. For PORH, a blood pressure cuff was then
applied around the patient’s arm and inflated to suprasys-
tolic pressure (50 mm Hg greater than the systolic arterial
pressure) to completely interrupt the blood flow for 3
minutes. This occlusion time has already been shown to
effectively recruit capillaries in an endothelium-dependent
manner [26]. After cuff release, images were again ac-
quired and recorded over the subsequent 60-90 seconds,
during which time the maximal hyperemic response was
expected to occur.

The mean number of spontaneously perfused skin capil-
laries at rest is considered to represent the functional ca-
pillary density, as previously described [27]. Alternatively,
the number of perfused capillaries during post-occlusive
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reactive hyperemia represents functional capillary recruit-
ment, resulting from the release of endothelial mediators
and consequent arteriolar vasodilation [27].

Statistical analysis

The results were presented as the means + SEM. For
values that did not follow a Gaussian distribution, the
medians (25th - 75th percentile) are presented (Shapiro-
Wilk normality test). The results were analyzed using
two-tailed paired Student’s ¢ tests or Wilcoxon matched-
pairs tests, respectively. P values <0.05 were considered
statistically significant.

Results
Clinical, anthropometric and laboratory data
Table 1 shows the effects of creatine supplementation on
the clinical and anthropometric data of the healthy volun-
teers. After one week of supplementation, an increase in
total body mass (74.9 + 1.8 vs. 754+ 1.8 kg, p = 0.0020)
and body mass index (252+04 vs. 254+05 kg/m?,
p =0.0045) were observed along with a significant reduc-
tion in mean arterial pressure (92.1 +1.1 vs. 89.8+1.1
mmHg, p=0.0255). CrS did not alter plasma levels of
homocysteine [10.5 (8.2-13.0) vs. 10.1 (8.8-12.3) umol/L]
but increased creatinine (0.92 + 0.02 vs. 1.03 £ 0.03 mg/dL,
p=0.0001) and CK-MM [253 (146-567) vs. 344 (128-653)
U/L, p =0.0296] levels and decreased uric acid (4.9 + 0.2
vs. 4.3 +0.2 mg/dL, p=0.0004) plasma levels (Table 2).
Fibrinogen levels were also decreased after CrS [282 (256-
306) vs. 254 (227-284) mg/dL, p=0.0177). The plasma
lipid profile was also altered after CrS, with significant
changes in total cholesterol [174.0 (143.5-204.0) vs. 174.0
(140.0-197.5) mg/dL, p = 0.0486] and LDL-C [115.0 (88.0-
142.5) vs. 103 (81.0-130.0), p = 0.0027]. We also observed
significant changes in total plasma proteins (7.3 + 0.06 vs.
7.2+0.07 g/dL, p=0.0282) and globulins (3.1 +0.06 vs.
3.0 £ 0.08, p = 0.0588).

Finally, after CrS a reduction in plasma levels of T3
(1.08 + 0.03 vs. 1.02+0.03 ng/dL, p=0.0074) and an

Table 1 The clinical and anthropometric characteristics of
the study subjects (n = 40) before and after one week of
oral creatine supplementation

Characteristics Before After p value
creatine creatine
Body mass (kg) 749+18 754+18 0.0020
Body mass index (kg/m?) 252+04 254+05 0.0045
Systolic blood pressure (mmHg) 1247415  1229+15 0.1829
Diastolic blood pressure (mmHg) 756+ 1.2 741 +14 0.3085
Mean blood pressure (mmHg) 92111 89.8+ 1.1 0.0255
Heart rate (beats/min) 56.7+15 575+14 0.4904

The results were presented as the mean + SEM.
p values were estimated using two-tailed paired Student’s t tests.
Bold values denote significant differences.
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increase in T4 levels (1.08 £0.02 vs. 1.1 £0.02 ng/dL,
p =0.0003) were observed.

Microcirculatory parameters

Video-capillaroscopy

Functional capillary density (basal capillary density) of
the healthy volunteers was significantly increased after
one week of CrS (114+4 vs. 119+4 capillaries/mmz,
p =0.0496). An increase in capillary recruitment during
post-occlusive reactive hyperemia (119 + 4 vs. 126 + 4 ca-
pillaries/mm?, p = 0.0043) was also observed (Figure 1).

Microvascular flow and reactivity

Microvascular responses to acetylcholine (Ach) stimulation
One week of CrS did not alter microvascular vasodila-
tion induced by skin iontophoresis of ACh (Figure 2).
Peak values of cutaneous vascular conductance (CVC)
were 0.63 +0.03 before and 0.65+0.03 APU/mmHg
after CrS; increases in CVC after ACh were 0.40 £ 0.03
vs. 0.40 £ 0.02 APU/mmHg and the area under the curve
of ACh-induced vasodilation was 8212 + 831 vs. 7089 +
784 APU/s.

Microvascular responses to post-occlusive reactive
hyperemia (PORH)

After one week of CrS, we observed significant increases
in microvascular vasodilation induced by PORH (Figure 3).
Peak values of CVC were 0.81 + 0.03 before and 0.87 +
0.02 APU/mmHg after CrS (p = 0.0078); increases in CVC
after PORH were 0.49 +0.02 vs. 0.54 + 0.02 APU/mmHg
(p=0.0097) and the area under the curve of PORH-
induced vasodilation was 1671 + 146 vs. 2089 + 146 APU/s
(p =0.0044).

Discussion

The main findings of this study are as follows: i) oral
supplementation with creatine monohydrate in healthy,
moderately physically active young adults improves sys-
temic endothelial-dependent microvascular reactivity; ii)
the supplementation also increased skin capillary density
and recruitment, which are dependent on microvascular
endothelial function; and iii) blood pressure was also re-
duced after the supplementation.

The aforementioned changes occurred simultaneously
with an increase in total body mass, most likely associated
with fluid retention caused by the intracellular osmotic ef-
fect of creatine [6]. Similarly, we observed significant in-
creases in creatinine and creatine kinase (MM fraction),
and decreases in plasma levels of total proteins (caused by
a decrease in globulins), uric acid, total cholesterol and
LDL-cholesterol.

Our results also demonstrated that, unlike the results
of previous studies [13,14], CrS neither reduced nor in-
creased serum homocysteine levels. In this regard, it
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Table 2 The laboratory characteristics of the study subjects (n = 40) before and after one week of oral creatine

supplementation

Characteristics Before Creatine After Creatine p value
Homocysteine (umol/L) 10.5 (8.2-13.0) 10.1 (8.8-12.3) 04434
Uric acid (mg/dL) 49+02 43+02 0.0004
Urea (mg/dL) 345+15 357+20 0.2482
Creatinine (mg/dL) 092+0.02 1.03+0.03 0.0001
CK-MB (U/L) 18.0 (11.5-25.0) 18.0 (13.0-27.0) 0.7601
CK-MM (U/L) 253 (146-567) 344 (128-653) 0.0296
Troponin (ng/mL) 0.0017 +0.0006 0.0029 +0.0010 04082
AST (U/L) 33618 364+23 0.1718
ALT (U/D) 31.1+26 300+21 04380
Lactate dehydrogenase (U/L) 200.0 (159.5-335.0) 215.0 (166.0-315.5) 0.5694
Alkaline phosphatase (U/L) 59.0 (53.0-76.0) 58.0 (49.5-77.0) 0.5875
Fibrinogen (mg/dL) 282 (256-306) 254 (227-284) 0.0177
Triglycerides (mg/dL) 67.0 (56.6-91.5) 65.0 (51.5-91.0) 0.7420
Total cholesterol (mg/dL) 174.0 (143.5-204.0) 174.0 (140.0-197.5) 0.0486
HDL-C (mg/dL) 433+18 446+ 2.1 0.1999
LDL-C (mg/dL) 115.0 (88.0-142.5) 103 (81.0-130.0) 0.0027
Fasting glucose (mg/dL) 865+10 860+ 14 0.7298
Glycated hemoglobin (%) 53+007 53+0.09 0.7980
hs-CRP (mg/dL) 0.07 (0.04-0.19) 0.07 (0.04-0.18) 0.7645
Total protein (g/dL) 73+0.06 72+007 0.0282
Albumin (g/dL) 4.2 +£0x.04 42+004 06203
Globulins (g/dL) 3.1+£006 30+008 0.0588
TSH (pUI/mL) 2.1 (14-3.0) 2.1 (1.5-27) 04788
T3 (ng/dL) 1.08+0.03 1.02£0.03 0.0074
T4 (ng/dL) 1.08 +0.02 1.1+002 0.0003

The results are presented as the mean + SEM. For values that did not follow a Gaussian distribution, the medians (25™ - 75" percentile) are presented (Shapiro-

Wilk normality test).

HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol, CK-MB: Creatine Kinase-MB; CK-MM: Creatine Kinase-MM; AST: Aspartate

transaminase; ALT: Alanine transaminase; hs-CRP: high-sensitivity C-reactive protein; TSH: thyroid stimulating hormone; T3: triiodothyronine; T4: thyroxine.
p values were estimated using two-tailed unpaired Student’s t tests or Wilcoxon matched-pairs tests, as appropriate.

Bold values denote significant differences.

should be emphasized that our sample involved young
and physically active individuals, justifying further inves-
tigation to elucidate the influence of CrS on plasma
levels of homocysteine among patients with cardio-
metabolic diseases. Creatine supplementation is primar-
ily indicated in athletes; nevertheless, it is widespread
practice to use nutritional supplements (including creat-
ine) to potentiate the effects of exercise training in the
alterations of body composition [16]. In this context, the
protocol of creatine supplementation in a dose of 20g/
day during 5-7 days, followed by a dose of 5g/day during
20-30 days, has been shown to increase significantly cre-
atine levels in skeletal muscle and eventually to improve
strength gain and muscular hypertrophy in non-athletes
but physically active individuals [1,16-19] Considering
that most studies evaluating the effects of creatine

supplementation on plasma homocysteine levels have pre-
sented conflicting results, we decided to start our studies
of creatine supplementation in young, physically active
healthy subjects before using it in patients, mainly for se-
curity reasons. As a second step, we intend to test the ef-
fects of creatine supplementation in patients presenting
with diabetes, hypertension and dyslipidemia, with and
without hyperhomocysteinemia in future studies.

Even if CrS did not alter microvascular acetylcholine-
mediated dilation, it significantly increased microvascular
flow after post-occlusive reactive hyperemia (PORH). In
this context, it has been suggested that although the re-
sponse to acetylcholine-mediated dilatation is largely
dependent on nitric oxide, those mediated by reactive
hyperemia, at least in the skin microcirculation, occur in-
dependently of this endogenous mediator [28]. According
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Figure 1 Capillary density at baseline (BASAL) and during
post-occlusive reactive hyperemia (PORH) of healthy young
subjects (n = 40) before (PRE) and after (POST) oral creatine
supplementation. Values represent the mean + SEM and were
analyzed using two-tailed paired Student’s ¢ tests.

to Cracowski and colleagues [29], the cutaneous micro-
vascular flow-mediated dilatation of healthy individuals is
predominantly dependent on sensory nerves and epoxy-
genase metabolites, particularly epoxyeicosatrienoic acid
(EET), most likely related to the endothelium-derived hy-
perpolarization factor (EDHF), which might influence the
activation of calcium-dependent potassium channels in
vascular smooth muscle [30]. Although further studies are
necessary regarding this issue, it is possible that CrS some-
how contributes to increased EET bioavailability and may
represent an important adjuvant therapy to improve endo-
thelial function that is depressed in several metabolic and
cardiovascular diseases.

Alternatively, vasodilation of the cutaneous microcir-
culation observed during reactive hyperemia might have
been mediated by ATP-dependent potassium channels’
(Kitp) activation in the endothelium and smooth muscle
of the arterioles [31,32]. In fact, evidence exists for the
presence of the enzyme creatine kinase functionally
coupled to the Kjirp channels [33] that could be acti-
vated by eicosanoids such as EET or by low cellular en-
ergy signals [34]. Thus, it is possible that the increased
intracellular creatine levels in tissues such as the endo-
thelium are able to activate Kirp channels, hyperpolarize
the vascular smooth muscle, and contribute to the en-
hancement in hyperemia-mediated dilatation found in
our study.

Moreover, Prass and colleagues [35] proposed that cre-
atine may exert a direct vascular action and is involved
in the potentiation of the reactive hyperemia response
after ischemia in stroke experimental models, allowing a
more rapid recovery in these animals. Because the exist-
ence of the creatine transporter is well established [36]
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Figure 2 The peak effects of skin iontophoresis of acetylcholine
(ACh) on cutaneous microvascular conductance (CVC,
expressed in arbitrary perfusion units, APU, divided by mean
arterial pressure in mmHg, upper panel); increases in CVC
induced by iontophoresis of ACh (middle panel) and the area
under the curve (AUC) of skin iontophoresis of ACh (lower
panel) of healthy young subjects (n =40) before (PRE) and after
(POST) oral creatine supplementation. The amplitudes of ACh
responses are expressed as peak CVC minus the baseline CVC. Values
represent the means + SEM.

as well as the presence of large phosphocreatine reserves
in vascular endothelium [37], and their sensitivity is be-
lieved to be increased through exogenous supplementa-
tion [35], it is reasonable to speculate that the creatine
supplementation was involved in the alterations of micro-
vascular reactivity observed in our study. Notwithstanding,
independent of the mediators involved in flow-mediated
microvascular vasodilation, our results indicate an im-
provement of microvascular endothelial function after cre-
atine supplementation.
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Figure 3 The peak effects of post-occlusive reactive hyperemia
(PORH) on cutaneous microvascular conductance (CVC, expressed
in arbitrary perfusion units, APU, divided by mean arterial
pressure in mmHg, upper panel); increases in CVC induced by
PORH (middle panel) and the area under the curve (AUC)
during PORH (lower panel) of healthy young subjects (n = 40)
before (PRE) and after (POST) oral creatine supplementation.
The amplitudes of PORH responses are expressed as peak CVC minus
the baseline CVC. Values represent the means + SEM and were
analyzed using two-tailed paired Student’s t tests.

It has also been suggested that CrS is able to signal an
intracellular energy deficit because it induces significant
increases in the creatine kinase-phosphocreatine ratio
(Cr/PCr ratio) in skeletal muscle [38]. Consistent with
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this hypothesis, it has been shown that CrS can increase
mitochondrial oxidative phosphorylation [39] as well as
glucose oxidation in skeletal muscle [38,40] and to stimu-
late 5 AMP-activated protein kinase (AMPK) [38,41],
contributing to cellular adaptations that enhance energy
production. In this context, it is possible that increases in
intracellular creatine concentration, particularly in skeletal
muscle, where creatine is mostly stored, contributed to
the total and LDL-cholesterol serum reductions observed
after a week of CrS. In fact, it has been demonstrated that
CrS is able to improve the lipid profile in humans and
may play a role in supporting physical training as a ther-
apy in hypercholesterolemic individuals, an effect most
likely associated with the capacity of creatine to activate
the Krebs cycle and oxidative phosphorylation [42].

Interestingly, our results showed that CrS reduces tissue
conversion of T4 to T3, which occurs predominantly in
the kidneys and skeletal muscle through the action of the
type 2 deiodinase enzyme [43]. Because the conversion of
T4 to T3 requires energy and considering that increases in
the Cr/PCr ratio signals tissue energy depletion, it is pos-
sible that changes in the plasma levels of thyroid hor-
mones resulted from the CrS. Because glucose transporter
type 4 (GLUT-4) synthesis is T3 dependent, this result
would explain why CrS was not able to increase intramus-
cular glucose uptake, even if it might have activated
AMPK, as demonstrated in a previous study [38]. In this
regard, there is evidence that creatine increases membrane
GLUT-4 translocation in skeletal muscle fibers [9].

Although energy overload can increase T3 availability
[44], low energy levels represented by a high Cr/PCr ra-
tio might signal the reduction of type 2 deiodinase activ-
ity in the kidneys and skeletal muscle, leading to a
reduced conversion of T4 to T3 in those tissues [45]. Al-
ternatively, because intramuscular creatine transport is
an ATP-dependent process [46], it is possible that the
increases in the intracellular creatine flow might have re-
duced ATP availability for T4 transport.

The conceivable reductions in type 2 deiodinase activity
and T3 levels in skeletal muscle might have contributed to
the elevated serum CK levels [47] observed in our study
after a week of CrS. Alternatively, the increases in intracel-
lular osmolarity produced by CrS might have contributed
to muscle fiber disruption and CK release into the blood
[1]. In this sense, it has been clearly demonstrated that
reductions in plasma levels of T3, occurring in clinical
and subclinical hypothyroidism, affects skeletal muscle,
increasing membrane permeability to CK and thus
resulting in increases of the plasma concentrations of
the enzyme [48,49].

Even if the exposure of the ventricular myocardium to
T3 reduces the amount of membrane Na*/Cr trans-
porter mRNA [50], it has also been proposed that the
exposure of muscle cells to this hormone could increase
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Na*/K*-ATPase activity because increases in extracellu-
lar Na" concentrations would positively influence creat-
ine transport within muscle fibers [51]. It is also possible
that the T3 reduction found in our study represents a
mechanism that acts to limit creatine transport that might
produce irreversible cellular osmotic damage. Thus, it is
possible that excessive increases in creatine supply con-
tributes to a compensatory reduction in T3 synthesis by
decreasing the activity of the type 2 deiodinase in tissues
such as the kidneys and skeletal muscle, explaining in-
creased plasma CK levels [52].

In our study, a week of CrS significantly increased cre-
atinine and CK plasma levels, and simultaneously reduced
globulins and T3 plasma levels, mimicking a condition that
characterizes impaired renal function [53]. Understanding
that CrS may contribute to renal dysfunction misdiagnosis
because moderate increases of creatinine levels are to be
expected [54,55], evidence indicates that creatine supple-
mentation would overload kidney function [1,56]. Although
several studies ensure the safety of CrS [57-61], even in
individuals at risk for kidney disease, daily doses of 20 g
were associated with the formation of carcinogenic hetero-
cyclic amines and to deleterious molecules such as me-
thylamine and formaldehyde that promote cross-linkage
between proteins and DNA damage-induced changes to
renal structures [62,63]. Because most studies that have
attested to CrS safety were performed in association with
physical exercise, it is possible that the deleterious effects
on renal function are observed only among individuals
who are not enrolled in well-controlled exercise training
programs, as was the case in our sample. In fact, it has
been shown that CrS in rats produces deleterious renal ef-
fects in sedentary animals but is safe in those maintained
on regular physical training [64].

Limitations and strengths of the study

One important limitation of the present study is the lack
of a placebo-controlled double-blind supplementation
methodology. Notwithstanding, our study included a
fairly high number of healthy volunteers (n =40), yield-
ing very reproducible results, demonstrated by the rather
low dispersion of the values of metabolic and microcir-
culatory variables. Moreover, it has already been clearly
demonstrated that the reproducibility of laser speckle
contrast imaging methodology in the evaluation of skin
microvascular reactivity is very high [17,65-67].

Another limitation concerning the conclusions of the
study could be the marginally statistically significant
changes in thyroid hormones and microvascular reactiv-
ity. It is conceivable that these alterations might not be
clinically relevant in healthy young adults, since they do
not have microvascular endothelial dysfunction, as previ-
ously demonstrated by our group using laser speckle
contrast imaging [18]. Nevertheless, these modest but
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statistically significant improvements of microvascular
function observed in our study after creatine supplemen-
tation in healthy volunteers could turn out to be clinically
relevant in patients with cardiovascular and metabolic dis-
eases. Moreover, even small alterations of plasma concen-
trations of the thyroid hormones indicate that creatine
supplementation might influence thyroid metabolism.
Considering the widespread use of creatine supplementa-
tion by athletes and also by non-athletes in fitness centers,
one must be cautious in the association of the creatine
supplementation with drugs that potentially interfere with
thyroid metabolism such as drugs acting in the central
nervous system (carbamazepine, lithium) and steroid hor-
mones (glucocorticoids) [68,69].

In conclusion, oral supplementation with creatine mono-
hydrate in healthy, moderately physically active young
adults improves systemic endothelial-dependent micro-
vascular reactivity and increases skin capillary density and
recruitment. These effects are not concurrent with changes
in the plasma levels of homocysteine.
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