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Abstract: An intriguing challenge in the human–robot interaction field is the prospect of endowing
robots with emotional intelligence to make the interaction more genuine, intuitive, and natural. A
crucial aspect in achieving this goal is the robot’s capability to infer and interpret human emotions.
Thanks to its design and open programming platform, the NAO humanoid robot is one of the
most widely used agents for human interaction. As with person-to-person communication, facial
expressions are the privileged channel for recognizing the interlocutor’s emotional expressions.
Although NAO is equipped with a facial expression recognition module, specific use cases may
require additional features and affective computing capabilities that are not currently available. This
study proposes a highly accurate convolutional-neural-network-based facial expression recognition
model that is able to further enhance the NAO robot’ awareness of human facial expressions and
provide the robot with an interlocutor’s arousal level detection capability. Indeed, the model tested
during human–robot interactions was 91% and 90% accurate in recognizing happy and sad facial
expressions, respectively; 75% accurate in recognizing surprised and scared expressions; and less
accurate in recognizing neutral and angry expressions. Finally, the model was successfully integrated
into the NAO SDK, thus allowing for high-performing facial expression classification with an
inference time of 0.34 ± 0.04 s.

Keywords: facial expression recognition; emotion recognition; human–robot interaction; affective
computing; machine learning

1. Introduction

Artificially intelligent agents such as social robots (SRs) have increased in popularity
over the last few decades and are expected to be used in a variety of social applications.
SRs can currently execute a variety of tasks autonomously, which has resulted in their
continuous introduction into society. SR applications that are becoming available include
therapy for autistic children [1], exercise coaches [2], specialized education [3], and assis-
tance to elderly persons affected by dementia [4]. Moreover, studies have shown that a
robot can affect its social environment beyond the person who is interacting with it [5,6].
For example, studies of robots used in autism therapy have demonstrated that robots can
influence the way children interact with others [1], just as many previous works have
shown that employing robots in the rehabilitation field has considerable effects on patient
improvement [7]. In all these applications, robots are usually designed to interact with
humans in a spontaneous, interpersonal way, often with specific social–emotional goals [8].
However, these agents are still struggling to interact with users in a human-like way,
which is an issue that has proved to be challenging to overcome. Just as human–human
interaction can be discouraged by the absence of initiative from one of the parties, human–
robot interaction can fall short if there is limited or no commitment by the robot or the
human user. At the same time, to take initiative, the robot must be able to choose what
actions to perform and to what extent. Additionally, it should adapt its behaviors based
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on the user’s reactions and possibly produce empathetic responses to the emotions of the
person it is interacting with. Indeed, empathy is a crucial component of human–human
communication, so replicating it for SRs is important. As a result, the first step towards
achieving human-like interaction skills is for the robot to adequately recognize the user’s
emotional state and accordingly adjust its responses, thus mimicking human empathetic
behaviors [9].

As with person-to-person communication, facial expressions are the privileged chan-
nel for recognizing an interlocutor’s emotional expressions [10]. The analysis of the ex-
pressive component of emotion starts from the assumption that different emotions are
correlated with specific configurations of the face. Different models or theories have been
developed and used by psychologists or cognitive neuroscientists to distinguish between
emotions based on facial expressions. The categorization of human emotions is mainly
based on two perspectives: discrete and dimensional [11]. In the dimensional perspective,
emotions are represented by the valence and arousal dimensions [12]. The valence dimen-
sion indicates the intrinsic attractiveness or aversion of an event, object, or situation, and it
varies from negative to positive [11]. Arousal, on the other hand, indicates whether the
subject is responsive at that given moment and for that given stimulus, as well as how
active he/she is. Conversely, from the discrete perspective, all humans are thought to have
an innate set of basic emotions that are cross-culturally recognizable. Indeed, several re-
searchers have proposed that people display universal prototypical facial expressions that
are specific to basic emotions [13]. Although facial expression recognition (FER) has been
widely studied and reached significant progress, recognizing such expressions under natu-
ralistic conditions is more challenging. This is mainly due to variations in head pose and
lighting conditions, as well as occlusion, and because unposed expressions are frequently
subtle. Convolutional neural networks (CNNs) have the potential to overcome these
challenges. Indeed, the advent of CNNs as appearance-based classifiers has substantially
benefited several well-known challenges in computer vision in recent years. On various
acknowledged benchmarks, tasks like object identification [14], face recognition [15], and
object detection [16] have experienced significant improvements. Additionally, different
recent works on FER have successfully utilized CNNs for feature extraction and inference
(e.g., [17–19]). This article proposes a CNN designed to enhance social robots’ capability to
recognize facial expressions related to emotions in real-time and realistic conditions. The
developed CNN-based FER model can be successfully embedded into a humanoid robot
platform. In addition, through the analysis of the developed CNN outcomes, information
about the arousal dimension of an interlocutor’s emotions can be provided to the robot.
This research was focused on the humanoid NAO robot platform because it is a social robot
(https://www.softbankrobotics.com/emea/it/nao accessed on 25 September 2021).

The NAO robot is one of the most widely used agents for human interaction thanks to
its design and open programming platform. In fact, NAO’s pleasant voice and friendly
aspect aids in providing a better user experience. NAO is currently being employed in
applications including rehabilitation sessions, elderly healthcare, and interactions with
young people [20,21], where understanding human emotional expression is of paramount
importance to foster human interaction. Although the NAO robot is equipped with an FER
module, certain experimental conditions or use cases may require additional functionality
and affective computing capabilities not already available in the module. Therefore, it is
crucially important to determine the NAO’s FER module accuracy, as well as to expand
and further enhance the NAO robot’s awareness of human facial expression. To achieve
this task, the CNN implemented in this study was trained and tested with a validated
FER dataset. We used the FER2013 dataset, which is the most common image dataset
in CNN-based FER and one of the largest publicly available datasets in this field [22].
However, the main reason for selecting this dataset was its relevance to realistic conditions.

This dataset was employed to train and test the accuracy of the developed CNN-
based FER model. Furthermore, we conducted an emotion recognition experiment with
the NAO robot in a real-world context to test the NAO’s capacity to recognize facial
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expressions as well as the NAO’s FER module’s accuracy. The data collected during the
experiment were also analyzed with the developed CNN-based FER model. To compute
the accuracy of both models (the CNN-based FER module and the NAO’s FER module),
the data recorded during the experimental sessions were also analyzed with the FER
software, i.e., FaceReader 7 (developed by VicarVision and Noldus Information Technology,
https://www.noldus.com/human-behavior-research/products/facereader accessed on
25 September 2021) already used in the literature [8] and validated in various research
studies [23]. Such software provided the ground truth data on FER and arousal detection.
The CNN-based FER module outcome was also used to determine the arousal level of the
interlocutor’s emotional expression. Finally, the developed model was integrated into the
NAO platform under its Windows Python SDK and allowed to enhance the NAO robot’s
awareness of human facial expression. The presented paper’s processing workflow is
shown in Figure 1.
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Figure 1. The overall paper processing workflow.

In conclusion, the novelties that this study aimed to introduce are the integration of a
CNN-based FER model into the NAO robotic platform and its evaluation in real-world
human–robot interaction tasks. Since social robots are still struggling to interact with
users in a human-like way, which is a challenge that has proven difficult to overcome, it
is essential to test the robotic system’s recognition of human facial expression in real-life
situations. Additionally, the CNN presented in this study strives to endow, for the first
time, the NAO robot with the capability to estimate the interlocutor’s arousal level in real
time, which is of paramount importance to ensure better interactions between the robot
and humans.

2. Materials and Methods
2.1. Participants

Twenty-four adults (ages: 27–38; mean: 30.4) participated in the experiment. Among
them, nineteen adults were recruited to test the CNN-based FER model and NAO’s FER
module on human adults and five were recruited to validate the CNN-based FER model
integrated into the NAO robot. Participation was strictly voluntary. Participants were
adequately informed about the study’s purpose and protocol prior to the start of the
experimental trials, and they signed an informed consent form outlining the methods and
purposes of the experimentation in accordance with the Declaration of Helsinki.

2.2. Experimental Session

The experimental session was conducted using the humanoid robot NAO from Soft-
Bank Robotics. NAO is 58 cm high and has a number of sensors and abilities such as those
of moving, seeing, speaking, hearing, and limited manipulation of objects (Figure 2). The
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version of the robot used in this research was the latest NAO, v6. NAO has Python SDK
(Naoqi) available to allow researchers to develop advanced intelligent components for
robot motion processing, speech, and vision [24]. The robot is equipped with two built-in
cameras, one located at the mouth level and the other located on its forehead. Both are 920p
cameras able to run at 30 images/second for (up to) 1280 × 720 pixel images. NAO’s head
can move 68 degrees vertically and 239 degrees horizontally, and its camera can see 61◦

horizontally and 47◦ vertically. Hence, it has good vision of its environment. Its forehead
camera was used to record videos of the person in front of NAO during the experimental
session. The robot platform also provides vision APIs (application programming interfaces)
for image processing, movement detection, background darkness checking, and estimating
the emotions of the human in front of the robot (described in Section 2.3).
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Figure 2. NAO robot v6 from SoftBank Robotics employed in the experiment.

The experimental protocol was structured in two phases. The first phase was famil-
iarization, where NAO introduced itself and the purpose of the experiment, as well as
asking the participants for their willingness to participate. The familiarization period lasted
around 2 min. The second phase consisted of NAO asking the participants to express and
maintain facial expressions related to five basic emotions (i.e., happy, sad, anger, fear, and
surprise), as well as a neutral expression, for 20 s. Moreover, it instructed the participants
to show their facial expressions in a natural way. This second phase lasted around 3 min, so
the total duration of each experimental session was 5 min. The participant sat in front of the
robot (see Figure 3b) and followed its instructions without any help from the interlocutor.
NAO was programmed to perform the described protocol through its SDK (Naoqi 2.8.6
Python version). The facial expressions analyzed in this study are related to Ekman’s
classification of basic emotions [25].
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In addition, five participants were recruited to validate the real-time application of
the CNN-based FER model integrated into the NAO robot in terms of accuracy achieved
during the human–robot interaction and the time required to process the emotional out-
come. Participants were invited to familiarize themselves with the robot and then perform
neutral and five basic facial expressions (i.e., happy, sad, angry, scared, and surprised), as
requested by NAO. Furthermore, considering that the target person’s frontal views are not
always properly captured in many real-life robotic interaction situations, an appropriate
CNN-based FER system integrated into a robotic platform should be able to distinguish
emotions from different facial angles. Therefore, to evaluate how the integrated model
functioned when the participants were naturally moving, NAO asked participants to main-
tain the required facial expressions while slowly rotating their heads left and right and up
and down.

2.3. NAO’s FER Module

The NAO robot has a dedicated API (ALMood) that provides information on the
instantaneous emotional state of the speaker. The API emotional processing is built upon
various extractors. In particular, it uses a vision module called ALFaceDetection to detect
and optionally recognize faces in front of it, a module called ALGazeAnalysis to evaluate
the head angles, and a module called ALFaceCharacteristics to analyze the face and detect
facial expressions. ALMood retrieves information from the abovementioned extractors to
combine them into high-level indicators classified within the following facial expressions:
happy, sad, surprised, angry, and calm/neutral. API extractors can be triggered with a
processing frequency set by the operator. In this study, the processing frequency was set to
1 Hz.
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A graphical user interface (GUI) named “NAO Control Terminal (CT)” was developed
in this study to visually check the accuracy of the NAO’s FER module and to allow the
experimenter to have real-time awareness of NAO’s vision and processing results. The
implemented GUI is shown in Figure 3a. The real-time acquisition of the images from
the NAO’s forehead webcam was performed by subscribing to the NAO ALVideoDe-
vice API. From NAO CT GUI, it was also possible to start and stop the experimental
session recording.

2.4. FER2013 Dataset

The dataset used to train and test the CNN-based FER model was the FER2013
dataset. Even though there are several video datasets with much higher numbers of
frames, the number of subjects in such datasets is small and the frames are naturally more
highly correlated. However, the main reason for choosing this dataset was its relevance
to realistic conditions. Indeed, the dataset is very challenging to analyze because the
depicted faces significantly vary in terms of pose, face, age, expression intensity, and other
factors. FER2013 was created by Pierre Luc Carrier and Aaron Courville, and it consists
of 35,887 face crops [26]. All samples are labeled with basic expressions. The images are
grayscale and have a 48 × 48 pixels resolution. Human accuracy for this dataset was found
to be around 65.5% [26].

2.5. CNN-Based FER Model

The CNN-based FER model was trained and tested on the FER2013 dataset (Figure 4).
The images employed in this analysis were related to the following expressions: angry,
scared, happy, neutral, sad, and surprised. Before applying the CNN algorithm, a pre-
processing step was conducted on the input images; to ensure facial geometric correspon-
dence and keep face size constant across the dataset images, affine transformation (rotation,
scaling, and translation) was performed on the input images. Affine transformation is
usually used to normalize face geometric position and maintain face magnification invari-
ance [27]. The preprocessed images were then used to feed the CNN. The CNN structure
employed in this work was heuristically chosen in a similar fashion to previously reported
CNN structures in FER analysis [22].
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The CNN architecture consisted of 4 convolutional layers, 4 pooling layers, and
two layers fully connected prior to the output layer. The first convolutional layer was
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composed of 64 filters (size: 3 × 3) applied to the input images to generate 64 feature
maps of the images. The second, third, and fourth convolutional layers were composed
of 128 (size: 5 × 5), 512 (size: 3 × 3), and 512 (size: 3 × 3) filters, respectively. After
each convolutional layer, batch normalization was introduced. The activation function
employed in all 4 convolutional layers and both fully connected layers was the rectified
linear unit (ReLU) function, which we used to add non-linearity to the network [28]. Then,
as a down-sampling or pooling layer, MaxPooling was selected, with the largest element
from the rectified feature map retained. A filter size of 2 × 2 was implemented for all
the MaxPooling layers. The two fully connected layers consisted of 256 and 512 neurons.
The fully connected layers were employed to summarize information and compute the
class score. Lastly, a SoftMax function was used in the output layer to output a probability
value from 0 to 1 for each of the six classification classes (angry, scared, happy, neutral,
sad, and surprised). All the biases of the CNN were initialized to a small constant, i.e.,
0.1, whereas the weights were initialized in a pseudo-random manner by employing a
truncated normal distribution (standard deviation = 0.1). Finally, the implemented loss
function was categorical cross-entropy. The CNN architecture is shown in Figure 5.
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building block.

The developed architecture was then boosted through an optimization procedure.
The model optimization was primarily focused on reducing overfitting because overfitting
is one of the main risks that can be incurred when training a CNN. A technique used to
address overfitting is regularization [29]. In this study, the dropout regularization method
was performed; during training, units (along with their connections) were randomly
removed from the neural network. This prevented units from excessively co-adapting.
Moreover, to reduce the internal covariate shifts and instability in distributions of layer
activation functions, batch normalization was used [30]. This was intended to reduce
model complexity and make the model less prone to overfitting. To address the model
generalization performance, a ten-fold cross-validation procedure was performed. Finally,
instead of using a fixed learning rate hyperparameter, which could lead the model to
converge too quickly to a suboptimal solution, a tunable learning rate was implemented
over the training process. In detail, a function was implemented to reduce the learning rate
by a factor of 0.1 once learning stopped improving after at least 10 epochs.

The optimization procedure was iterated for 90 epochs, with a batch size of 128 sam-
ples. The metric used for evaluating the model was accuracy. Accuracy represents the
percentage of correct predictions out of the total number of test samples. Such metrics were
evaluated by counting the number of correct CNN predictors after an argmax evaluation
of the CNN output vector and averaging them among the plateau iterations. The described
CNN model was implemented in Python using the Keras API with the TensorFlow backend.
For model evaluation, the scikit learn library was utilized.
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Finally, for each CNN convolutional layer, an average heatmap was implemented to
visualize the salient image regions used by the CNN to reach its final classification decision
(Figure 6).
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2.6. NAO’s FER and CNN-Based FER Models Accuracy Assessment on Experimental Data

The NAO’s FER module outcome was saved as a json file for each participant. The
experimental data recorded through the NAO CT GUI were also analyzed with the Fac-
eReader 7 software and the CNN-based FER model. FaceReader 7 is a commercial software
developed to automatically classify static (i.e., still pictures) and dynamic (i.e., videos)
facial expressions. According to research validation studies, FaceReader 7 shows the best
performance out of the major currently available software tools for emotion classifica-
tion [31,32]. The software has been demonstrated to be robust under varying conditions of
pose, orientation, and lighting using an implementation of the Active Appearance Model as
core technology [31]. FaceReader 7 classifies people’s emotions into the discrete categories
of basic emotions, but it can also analyze the arousal dimension of an emotion based on the
circumplex model of affect [33]. Basic expressions such as happy, neutral, angry, scared,
sad, and surprised, as well as arousal level, were extracted from each frame of the video
based on the software analysis results. Such results were then down-sampled to 1 Hz
to be compared with the NAO’s FER module outcome. Moreover, since the NAO’s FER
module did not consider the facial expression related to fear, the frames that the FaceReader
software classified as scared were not included in this comparison.

The CNN-based FER model developed in this study was also tested on the same
experimental videos. In detail, such model was previously saved using Keras python
library, which provides the ability to describe any model using the json format with a
to_json() function. This can be saved to a file and later loaded via the model_from_json()
function that creates a new model from the json specification. The weights are directly saved
from the model using the save_weights() function and later loaded using the symmetrical
load_weights() function. However, to successfully apply the model to new images, the
images need to be equivalent in size (48 × 48) and content to the training images. Therefore,
the video frames were firstly analyzed and processed with OpenCV, an open-source
computer vision library [34]. The processing pipeline implemented to extract data from
recorded video images suitable for feeding the developed CNN-based FER model and
obtaining the model outcomes was as follows:

• Reading each video frame.
• Converting the color image to grayscale, since the model only works on grayscale images.
• Detecting the participant face within the image by using OpenCV pre-trained face

detection classifier.
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• Extracting the rectangular region where the face was found and resizing such region
to 48 × 48 pixels.

• Applying the loaded CNN-based FER model to the image.
• Collecting model outcome.

The model outcome was also down-sampled to 1 Hz.
To assess the accuracy of the CNN-based FER model and the NAO’s FER module, as

well as to evaluate the effectiveness of both approaches, a confusion matrix was computed
to compare both approaches’ outcomes with the expected values (i.e., FaceReader 7 results).
A confusion matrix is a performance metric commonly used in machine learning classi-
fication. Such a matrix compares the expected values with those predicted by the model
under analysis. Using this provided a holistic view of how well the classification model
was performing and what kinds of errors it was making. The confusion matrices of both
NAO’s FER and CNN-based FER models are reported in Section 3.2.

2.7. Arousal Computing

The outcome of the CNN-based FER model applied to the experimental data was also
used to predict the arousal level of the participants’ emotional responses. Specifically, the
activation function of the CNN-based FER model output layer, i.e., the SoftMax function,
assigned decimal probabilities to each output class (happy, neutral, angry, scared, sad, and
surprised) for each input image. Such probabilities were used as regressors to predict the
arousal level of a given image. A machine learning algorithm was utilized for the prediction
task. In detail, a general linear model (GLM) was trained to predict the level of arousal
obtained from FaceReader 7, which relies on such probabilities, through a supervised
learning procedure. Although several machine learning approaches could be suited for
such a purpose, the GLM was chosen to decrease procedural complexity due to the small
number of available independent features and the exploratory nature of the implemented
approach [35].

Because of the multivariate (6 regressors) GLM approach, the in-sample performance
of the procedure did not reliably estimate the out-of-sample performance [36]. The general-
ization capabilities of the procedure were thus assessed through cross-validation. Specifi-
cally, a leave-one-subject-out cross-validation was performed. This cross-validation pro-
cedure consisted of leaving one subject (all the samples from the same subject) out of the
regression and estimating the predicted output value on the given subject by using the
other participants as the training set of the GLM model. The procedure was iterated for all
the subjects. Correlation analyses were performed on the cross-validated GLM outcome
and the arousal level obtained through the FaceReader 7 software.

2.8. Integration of CNN-Based FER Model with NAO Robot SDK

The developed CNN-based FER model was applied to the images streaming from the
NAO’s forehead camera under its Windows Python SDK (Naoqi). To access the NAO’s
camera and read the image sequences, the ALVideoDevice API and the getImageRemote()
function were utilized. Then, the image from the API was converted from QImage into ma-
trix data that could be analyzed through the OpenCV library. The OpenCV was employed
to detect the participant’s face and extract the rectangular region where the face was found.
This region was then analyzed with the CNN-based FER model; the model outcome, as
well as the rectangle where the face was found, of the analyzed image were then shown. In
addition, the arousal level predicted by the GLM model, which relied on the CNN-based
FER model outcome, was added as useful information that the robot could retrieve when
needed. Figure 7 shows the information-processing workflow.

Moreover, the performance of the CNN-based FER model integrated into NAO was
assessed in terms of:

• Accuracy achieved during human–robot interaction activities (described in Section 2.8).
• Percentage of frames in which the interlocutor’s face was correctly tracked.
• Time required to process the facial expression detection.
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Figure 7. Information-processing workflow. The images were retrieved from NAO’s forehead
webcam and analyzed through the CNN-based FER model. The model outcome, integrated into
Naoqi SDK, was available for the robot to use.

In detail, the accuracy was computed by comparing the integrated model outcome
with the expected values provided by FaceReader 7. Such accuracy evaluations were
also performed with respect to participants’ different facial orientation angles. The facial
orientation angles were computed from the head pose estimated using OpenCV.

3. Results
3.1. CNN-Based FER Model Results for FER2013 Dataset

The CNN-based FER model average accuracies for the FER2013 dataset are reported in
Figure 8a as a function of the training epoch for the training and testing sets. No over-fitting
effect (decrease of the accuracy at increasing epoch) was visible in the testing set, proving
the efficacy of the employed procedure. The average loss function values (and related
standard errors) for the training and testing sets are also reported in Figure 8b. The CNN
accuracy in the test sample reached a plateau value of 0.69 ± 0.03.
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In order to explore the performance of the developed CNN on each output class, the
confusion matrix was computed; it is shown in Figure 9.
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3.2. NAO’s FER and CNN-Based FER Models Results on Experimental Data

A comparison between the NAO’s FER module’s outcome on the experimental session
data and the results of the FaceReader 7 software analysis of the same data showed an
average accuracy of 65%. A normalized confusion matrix reporting the performance of
each class is shown in Figure 10a. In addition to confusion matrix precision, recall and F1
score metrics were also computed for each class (Table 1). Precision represents the ratio of
correctly predicted positive observations to the total predicted positive observations, recall
is the ratio of correctly predicted positive observations to all true positive observations,
and F1 score represents the weighted average of precision and recall. Figure 10b shows
the normalized confusion matrix related to the comparison between the results of the
CNN-based FER model and the FaceReader 7 software. The average accuracy achieved by
the CNN-based FER model was 77%. The precision, recall, and F1 score of each class are
reported in Table 1.
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Table 1. Precision, recall, and F1 score achieved by NAO’s FER module on the experimental data
for each output class compared to those of the CNN-based FER module. The best performances are
highlighted in bold.

Precision Recall F1 Score

NAO’s
FER

module

CNN-
based FER

model

NAO’s
FER

module

CNN-
based FER

model

NAO’s
FER

module

CNN-
based FER

model

Angry 0.22 0.46 0.61 0.58 0.32 0.52
Scared - 0.72 - 0.75 - 0.73
Happy 0.69 0.44 0.87 0.91 0.77 0.6
Neutral 0.93 0.96 0.72 0.68 0.81 0.8

Sad 0.63 0.8 0.53 0.9 0.57 0.85
Surprised 0.25 1 0.55 0.75 0.34 0.86

3.3. Arousal Results

A significant correlation between the arousal detected by the FaceReader 7 software
and the predicted arousal was obtained (r = 0.69; p = ~0), thus demonstrating the good
performance of the multivariate analysis [37]. Figure 11 shows the arousal levels de-
tected throughout the entire experimental session by the GLM model and the FaceReader
7 software.
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sents the arousal predicted by the GLM model, and the red line represents the arousal detected by
the FaceReader 7 software.

3.4. CNN-Based FER Model Integration into NAO Robot SDK

The CNN-based FER model and the pipeline described in Section 2.8 were success-
fully applied to the image streaming of the NAO robot (source code available at https:
//dx.doi.org/10.6084/m9.figshare.16682476, accessed on 25 September 2021). Figure 12
depicts NAO’s interaction with a representative subject, demonstrating the model’s correct
functioning and integration with the Naoqi SDK. In detail, Figure 12 shows three pictures
captured during the interaction in which it is possible to observe that the images from the
NAO’s forehead camera were successfully processed using the CNN-based FER model.
Figure 12a–c shows the NAO robot (via the CNN-based FER model) detecting the neutral,
sad, and happy facial expressions, respectively, of a subject.

https://dx.doi.org/10.6084/m9.figshare.16682476
https://dx.doi.org/10.6084/m9.figshare.16682476
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Figure 12. Pictures captured during the NAO’s interaction with a representative subject. The facial
expressions detected by the NAO robot through the CNN-based FER model for (a) neutral, (b) sad,
and (c) happy facial expressions are also displayed in the images.

Furthermore, Table 2 demonstrates the overall accuracy of the NAO robot’s integrated
CNN-based FER model in detecting facial expressions during human–robot interaction
tasks at different facial orientation angles. The table also includes the percentage of frames
in which the face was correctly detected. Figure 13 depicts a representative participant
performing a happy facial expression with different facial orientation angles. The red
rectangle represents the detected face, which constitutes the input to the NAO-integrated
CNN-Based FER model, and the facial expression recognized by the integrated model is
reported above the rectangle.

Table 2. Percentage of frames where the face was correctly detected and the accuracy achieved with
respect to different facial orientation angles.

Angles (◦C) Accuracy Achieved Frame Correctly Tracked

Yaw
0 ± 5◦ 0.83 ± 0.08 99.8% ± 0.2%

±26 ± 5◦ 0.38 ± 0.21 94.8% ± 0.3%

Pitch
0 ± 2◦ 0.84 ± 0.07 99.7% ± 0.2%

±7 ± 0.96◦ 0.77 ± 0.11 95.1% ± 0.4%
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Figure 13. Pictures of a representative participant exhibiting happy facial expressions to the NAO
robot in (a) frontal; (b,c) yaw; and (d,e) pitch orientations. The red rectangle represents the detected
face, and the writing above the rectangle reflects the facial expression recognized by NAO through
the integrated model.
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The facial expression inference time provided by the model and pipeline integrated
into the NAO was 0.34 ± 0.04 s. By contrast, the ALMood NAO’s current API (described
in Section 2.3) could take up to 2 s to load the API extractors and provide an expression
recognition outcome.

4. Discussion

Over the last few decades, SRs have been widely employed in social applications
for many purposes, such as education, health, and communication. However, some
limitations have been observed during human–robot interaction, mainly due to non-
natural cooperation between the two parties. To build robots that interact in a more
intuitive and human-like fashion, the perception of human emotions is essential [38].
The development of such multimodal agent-based interfaces has greatly benefited from
automatic face and expression recognition. However, detecting emotions from spontaneous
facial expressions during real-life human–robot interaction may still be difficult due to
pose and subject variations, lighting changes, occlusions, and background clutter. One
of the most used SRs for human interaction purposes is the NAO robot, which has led
human users to have high expectations for such a robotic platform concerning its social
abilities. However, the original vision APIs provided by the robot’s SDK struggles to
handle such challenging facial emotion recognition tasks [39]. This research was thus
motivated to develop a highly accurate FER model for a humanoid robot to deal with
emotions detection in real-life situations. Most importantly, the NAO’s FER module had
yet to provide interesting affective computing functionalities. Therefore, the aim of the
study was to enhance NAO’s FER module accuracy in detecting facial expressions and to
provide the robot with information regarding the recognition of the fear emotion’s facial
expression and the emotion’s arousal level

The CNN-based FER module developed for this purpose was trained and tested on
the FER2013 dataset, a challenging dataset including images with variations in illumina-
tion, expression intensity, age, and occlusion. For this dataset, the implemented CNN
model achieved accuracies of 86% and 83% for the happy and surprised facial expressions,
respectively. These two expressions are also the most easily recognized by humans [40].
An accuracy of 71% was achieved for neutral facial expression, whilst lower accuracies
were achieved for angry and scared facial expression; the model tended to mistake them
for each other. However, this result is consistent with recent findings in the field [41,42].
The overall accuracy of our model on the FER2013 dataset was 69%, which is considered
higher than the human-level accuracy of 65%. The heatmaps of the model’s convolutional
layers (Figure 6) show that the model focused on important aspects of the input image, i.e.,
lips, eyes, eyebrows, and mouth.

The accuracy of the CNN-based FER module considerably increased with the experi-
mental data; it reached 91% and 90% for happy and sad facial expressions, respectively;
75% for surprised and scared expressions; and 65% and 58% for neutral and angry ex-
pressions, respectively. This validated the developed model’s generalization capability.
However, it is worth noting that since during the experimental session, the participants
were asked to maintain the same expression for 20 s, so the model’s input data in this task
were more consistent and steadier than the pictures in the database, probably contributing
to the improved model accuracy. On the other hand, this showed that increasing the
number of more standardized input images in illumination and occlusions can help the
model increase its accuracy, thus establishing a framework for future model improvement.
NAO’s FER module was also tested with the same experimental data, and it demonstrated
lower accuracy for the facial expressions it was able to detect compared to the developed
CNN-based FER model. Specifically, the NAO’s FER module was able to detect happy,
neutral, angry, surprised, and sad facial expressions with accuracies of 87%, 72%, 61%, 55%,
and 53%, respectively.

Finally, since the NAO’s FER module is unable to detect the arousal level of its human
interlocutor, the CNN-based FER module was used to provide such information to the
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robot. Indeed, the output class probabilities resulting from the model were employed as
input regressors for a GLM algorithm. The correlation between the arousal level detected
by FaceReader 7 and the arousal predicted by the multivariate approach was r = 0.69
(p = ~0), indicating good arousal estimation through the considered regressors. Such
information allows the robot to better characterize its interlocutors’ emotional state during
real-time interactions.

The overall system was integrated with the Python SDK of the latest NAO v6 robot.
In detail, the NAO vision API was used to capture the images streaming from the NAO;s
forehead webcam; such images were then analyzed through the developed CNN-based FER
model, and the model outcomes were made available to the robot. The integrated model
enhanced NAO’s FER module in facial expression analysis and provided information to
the robot about the scared facial expression and the emotions’ arousal levels. Moreover,
its inference time boosted the NAO performance in facial expression recognition from
0.5 frames per second (FPS) to 3 FPS, thus allowing the interaction to remain fluid in
real-world scenarios. As a result, the developed model has the potential to lead NAO robot
in approaching human-like interaction skills by accurately recognizing users’ emotional
states and allowing it to use such information to accordingly adjust its responses. In future
studies, we are interested in validating the enhanced NAO’s FER module with challenging
populations such as infant, elderly, or sick people in order to make the NAO robot more
responsive to their needs.

Novelty and Limits of the Study

The NAO robot is one of the most widely used agents for human interaction, and
the understanding of human emotional expression underlies most of the applications it is
currently involved in. Therefore, it is crucial for the community that wishes to use the NAO
robot to understand its accuracy in recognizing human emotional expressions. However,
the embedded NAO FER module’s accuracy was not yet tested against an FER-validated
system. In the present study, FaceReader 7, an FER-validated software, was used as ground
truth to evaluate NAO FER module’s accuracy for each of the facial expressions it is able to
detect (Figure 10a and Table 1).

Moreover, since social robots are intentionally designed to interact with humans in
a spontaneous, interpersonal way (often with specific social–emotional goals), it is of
paramount importance to test their interaction capability in everyday situations. Con-
sequently, testing the robotic system’s capability to recognize human facial expressions
in real-life conditions is essential. Although different, highly accurate CNN-based FER
models have been developed in the literature over the last decade [22], their integration
into a robotic platform was not yet proven effective. Of note, the CNN architecture reported
by Melinte et al., which was successfully integrated into the NAO robotic platform and
demonstrated to perform better than the proposed CNN-based FER model in the same
task, was not actually evaluated in human–robot interaction conditions [43]. On the other
hand, testing the CNN architecture developed and integrated into the robotic platform
with human participants would allow one to assess its performance in real-world scenarios,
paving the way for its implementation in robotics applications. The innovations of this
study were the integration of a CNN-based FER model into the NAO robotic platform
and its appraisal in real-world scenarios, thus providing specific metrics related to its
implementation in human–robot interaction tasks. Such metrics include the CNN accuracy
achieved during robot interaction activities (Figure 10), the accuracy reached with respect
to participants’ different facial orientations (Table 2), and the time required to process the
facial expression detection and provide this information to the robot’s SDK (0.34 ± 0.04 s).
Furthermore, the CNN presented in this study enables, for the first time, one to endow the
NAO robot with the capability of the real-time estimation of an interlocutor’s arousal level
through a linear combination of CNN outcomes.

Though the proposed CNN-based FER model achieved excellent results and has
proven its feasibility in real-world robotic interactions tasks, some improvements may be
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required to obtain more accurate overall results. Firstly, a higher recognition rate for the
angry and scared facial expressions should be achieved. Secondly the CNN’s architecture
could be enhanced by employing, for instance, ResNet or Visual Geometry Group (VGG)
model-based architectures, which have recently been shown to have great potential in this
field [43]. Future research will focus on optimizing the CNN model in order to increase its
performance, as well as testing it for complex human–robot interaction tasks such as those
in the medical or neuropsychological fields.

5. Conclusions

In this research, a CNN-based FER model was developed for the recognition of facial
expressions in real-life situations. The overall system was integrated into a humanoid
robot to enable it to deal with challenging real-life facial emotion recognition tasks. The
results demonstrated the CNN-based FER model’s ability to surpass the NAO’s FER
module’s performance in recognizing emotions based on facial expressions. Furthermore,
the implemented model enabled NAO to detect more emotional information than its
original module (i.e., the level of arousal and the scared facial expression). This module
represents the first stage of an automated empathic behavior system and could pave the
way for human-like robot interactions. The implementation of this module could enhance
the effectiveness of companion and assistive robots for clinical and social purposes.
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