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Abstract: Growth hormone (GH) is secreted by the pituitary gland, and in addition to its classical
functions of regulating height, protein synthesis, tissue growth, and cell proliferation, GH exerts
profound effects on metabolism. In this regard, GH stimulates lipolysis in white adipose tissue and
antagonizes insulin’s effects on glycemic control. During the last decade, a wide distribution of GH-
responsive neurons were identified in numerous brain areas, especially in hypothalamic nuclei, that
control metabolism. The specific role of GH action in different neuronal populations is now starting to
be uncovered, and so far, it indicates that the brain is an important target of GH for the regulation of
food intake, energy expenditure, and glycemia and neuroendocrine changes, particularly in response
to different forms of metabolic stress such as glucoprivation, food restriction, and physical exercise.
The objective of the present review is to summarize the current knowledge about the potential role of
GH action in the brain for the regulation of different metabolic aspects. The findings gathered here
allow us to suggest that GH represents a hormonal factor that conveys homeostatic information to
the brain to produce metabolic adjustments in order to promote energy homeostasis.

Keywords: cytokines; energy balance; GH; glucose homeostasis; hypothalamus

1. Introduction

Growth hormone (GH) is a single-chain 191 amino acid protein (its major isoform)
which is mostly secreted by somatotropic cells located in the anterior pituitary gland. GH
presents a pulsatile secretion pattern that is controlled by hypophysiotropic hypothalamic
neurons (Figure 1). The classical neuroendocrine neurons that regulate the pulsatile se-
cretion of GH express either somatostatin (SST) or GH-releasing hormone (GHRH) [1,2].
While SST-expressing neurons inhibit GH secretion, GHRH stimulates GH synthesis and
release (Figure 1). Accordingly, defects in GHRH signaling causes dwarfism due to im-
paired GH secretion [3]. Ghrelin (a GH-releasing peptide) is also a powerful endogenous
GH secretagogue [4–7]. Ghrelin activates growth hormone secretagogue receptor (GHS-R)
in the hypothalamus and pituitary to induce GH secretion [8,9].

The half-life of GH in the blood is short, which is evident from its pulsatile secretion
pattern, but GH’s pulsatile secretion pattern is the most important regulator of circulating
insulin-like growth factor 1 (IGF-1), whose bioavailability is more stable [10] due to the fact
that most of the circulating IGF-1 is associated with IGF-1 binding proteins. The liver is
mainly responsible for maintaining circulating IGF-1 levels (Figure 1). Thus, the activation
of GH receptor (GHR) in hepatocytes stimulates IGF-1 synthesis and secretion as well as
increasing serum concentrations of this hormone [11,12]. The GH-IGF-1 axis is critically
involved in the control of growth (Figure 1). However, genetic ablation of GHR from the
liver does not compromise body growth as much as that caused by GHR deletion in the
entire body, despite a drastic reduction in circulating IGF-1 levels [13]. Therefore, somatic
growth is also directly regulated by GHR signaling in different tissues and local IGF-1
synthesis [11,12,14].
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Figure 1. Neuroendocrine factors that control the pulsatile secretion of growth hormone (GH).
Ghrelin and GH-releasing hormone (GHRH) stimulate pituitary GH secretion, whereas somatostatin
(SST) inhibits it. The example of the pulsatile secretion of GH was obtained from a C57BL/6 eight-
week-old male mouse after 36 serial blood collections in a 10-min interval (lights on at 7 am; 12-h
light/dark cycle). Note that GH has central and peripheral actions (e.g., on the liver, muscle and
white adipose tissue), in which the stimulation of insulin-like growth factor 1 (IGF-1) secretion from
the liver plays a major role controlling somatic growth.

The strong relationship between circulating levels of GH and IGF-1 confounds the de-
termination of the specific effects induced by each hormone individually, especially when
considering the widespread expression of their receptors. However, with the generation of
tissue-specific GHR- or IGF-1 receptor (IGF-1R)-deficient mice, the precise physiological
role of each of these receptors in different tissues has been described [14–16]. In this regard,
numerous studies produced tissue-specific knockout mice by deleting either GHR or IGF-
1R from the bone, liver, adipose tissue, muscle, pancreatic β-cell and other organs [14–16].
Nevertheless, the distinct role of GHR signaling in the nervous system through the genera-
tion of brain-specific knockout mice has not been studied until recently [17].

In addition to its classical functions of regulating height, protein synthesis, tissue
growth and cell proliferation, GH exerts profound effects on metabolism. Thus, GH
stimulates lipolysis in white adipose tissue and antagonizes insulin effects on glycemic
control [18–21]. Accordingly, GHR-deficient mice exhibit higher insulin sensitivity despite
presenting increased percentages of body fat [13,15,16,21]. Since the classical target tissues
of GH, including the liver, adipose tissue and muscle (Figure 1), are directly involved in
the regulation of lipid and glucose metabolism, it is commonly assumed that the metabolic
effects of GH are mediated by these organs. However, nowadays, it is well-established
that the brain plays an important role regulating numerous metabolic aspects [22]. For
example, target deletions of insulin or leptin receptors in the brain produce profound
metabolic imbalances [23–25]. The brain is able to regulate systemic metabolism via the
sympathetic and parasympathetic nervous systems. In addition, hypothalamic control of
pituitary hormones, including those of the thyroid and adrenal axes, indirectly modulates
whole-body metabolism [26,27]. In this present review, the current knowledge about the
potential role of GH action in the brain for the regulation of different metabolic aspects is
summarized, with a special focus on studies produced by our research group.

2. GH Action in the Brain

It has long been known that GHR is expressed in the brain [28,29]. Initially, GHR
expression was described in hypothalamic areas that contain hypophysiotropic neurons
that regulate pituitary GH secretion. In this context, previous studies have shown that
a large percentage of SST neurons in the paraventricular (PVH) and periventricular (PV)
hypothalamic nuclei express Ghr mRNA [28]. This finding is in accordance with the role
of hypothalamic neurons regulating pituitary GH secretion via short negative feedback
loops [1,30]. GHR is also amply expressed in the arcuate nucleus (ARH), which is the
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principal hypothalamic region that hosts GHRH-expressing neurons [28,31]. However, only
a small percentage of GHRH neurons seem to contain GHR [32,33], whereas Ghr mRNA
is abundantly detected in ARH neurons that express neuropeptide Y (NPY) [34,35]. Our
research group has used the capacity of an acute GH injection to induce phosphorylation
of the signal transducer and activator of transcription-5 (pSTAT5) as an alternative method
to identify GH-responsive neurons [36,37]. Using this approach, the presence of GH-
responsive neurons in the ARH, PVH and PV was confirmed. Furthermore, numerous
additional brain areas that are directly responsive to GH were identified [36,37]. Thus, the
widespread distribution of GH-responsive neurons in the brain suggests that a broad array
of neural functions can be modulated by the direct action of GH [38] (Figure 2).

Figure 2. GH-responsive neurons are found in several brain structures, and GH receptor signaling
regulates different neurological aspects. Coronal photomicrographs of different parts of the mouse
brain showing immunoreactivity against the phosphorylation of the signal transducer and activator
of transcription 5 after an acute GH injection. Previous studies indicated that GH receptor signaling
in different brain areas regulates distinct physiological parameters. Although GH-responsive neurons
are abundantly found in the paraventricular nucleus of the hypothalamus, the exact role played by
GH in these cells is still unknown.

Distribution of GH-Responsive Neurons in Mouse and Rat Brains

Systemically or centrally injected GH induces phosphorylation of the signal transducer
and activator of transcription 5 (pSTAT5) in several brain areas of rats and mice [36,37]
(Figure 2). GH-induced pSTAT5 was detected only in neurons [36], although it is possible
that other cell types such as epithelial or glial cells are also responsive to GH. GH-induced
pSTAT5 cells were found in the lateral septum, bed nucleus of the stria terminalis (BNST),
paraventricular nucleus of the thalamus, amygdala (mostly in the medial and central subdi-
visions) and dorsal raphe nucleus, which are brain structures involved in the regulation of
behaviors, emotions, limbic information and valence monitoring. In line with the anatomi-
cal distribution of GH-responsive cells, previous studies have described a ghrelin-GH axis
in the amygdala that controls fear memory formation (Figure 2), possibly contributing with
excessive fear memory typical of post-traumatic stress disorder [39,40].

GH administration also leads to several pSTAT5-positive cells in the hippocampus, a
key brain structure for memory formation [36,37] (Figure 2). GH replacement improves
memory function in adults with childhood-onset GH deficiency [41,42]. Accordingly, GH
modulates excitatory synaptic transmission in the hippocampus [43–45]. Interestingly,
brain-specific Stat5a/Stat5b knockout mice exhibit memory deficits [46], suggesting that
STAT5 is a downstream signaling pathway potentially recruited by GHR to modulate
memory. Paradoxically, global GHR knockout mice are protected from age-related decline
in memory retention [47,48]. Additionally, GH overexpression leads to poor spatial learn-
ing and memory, whereas transgenic expression of a GHR antagonist caused improved
learning in twelve-month-old male mice [49]. These apparent contradictory results can be
explained by the fact that GHR signaling regulates insulin sensitivity and there is plenty
of evidence indicating that brain insulin action plays a major role in regulating memory
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and is likely involved in the pathophysiology of Alzheimer’s disease [50–52]. Since global
GHR knockout mice and GHR antagonist transgenic mice exhibit improved insulin sensi-
tivity, whereas GH overexpression causes insulin resistance [21,53], the changes in memory
performance in these mouse models are probably related to alterations in insulin action
rather than a direct role of GHR signaling in the hippocampus.

Among all brain regions that express GHR, the hypothalamus displays the highest
density of neurons responsive to GH [36,37]. Of note, GH-responsive neurons are particu-
larly abundant in hypothalamic areas considered key players in the control of metabolism,
including the ARH, PVH, ventromedial nucleus (VMH), dorsomedial nucleus (DMH)
and lateral hypothalamic areas. Thus, GH action on these hypothalamic centers strongly
indicates that the central regulation of energy and glucose homeostasis can be modulated
by GHR signaling (Figure 2).

3. Central Regulation of Metabolism by GH
3.1. GH Regulates Food Intake

Findings from earlier studies have suggested that GH action in the brain has an
orexigenic effect [54]. Accordingly, transgenic mice overexpressing GH in the central
nervous system develop hyperphagia-induced obesity [55]. GH-transgenic carps also
exhibit increased food intake [56]. Further evidence of the orexigenic effect of GH came
from studies that performed intracerebroventricular injections of GH in wild-type mice and
observed higher food intake compared to vehicle-injected animals [17,55]. It makes sense
from an evolutionary point of view to associate growth with increased hunger; therefore,
the energy required for GH-stimulated anabolic processes is guaranteed.

GH-induced increase in food intake seems to be mediated by ARH neurons that
co-express NPY and agouti-related peptide (AgRP), which is a well-known neuronal popu-
lation that stimulates feeding [57,58]. In accordance, GH overexpression in mice and fish
induces upregulation of Agrp and/or Npy mRNA levels in the hypothalamus [55,56,59].
Furthermore, an acute GH injection increases Agrp and Npy mRNA levels in the hypotha-
lamus of wild-type mice [17]. This is likely a direct effect of GH since approximately
95% of ARH AgRP/NPY neurons express Ghr mRNA or GH-induced pSTAT5 [17,34,35]
(Figure 3A). Additionally, GH depolarizes the membrane potential of AgRP/NPY neurons,
even in the presence of synaptic blockers [17]. In favor of the assumption that GH stim-
ulates the activity of AgRP neurons in humans, circulating GH or IGF-1 levels exhibit a
positive correlation with plasma AgRP levels in humans [60]. Moreover, plasma AgRP
levels are high in patients with acromegaly, and pharmacological or surgical treatment
reduces both GH secretion and plasma AgRP concentration [60].

Neurons that express proopiomelanocortin (POMC) in the ARH represent another
key neuronal population involved in the regulation of feeding [61]. Approximately 60%
of ARH POMC neurons exhibit pSTAT5 after an intracerebroventricular GH injection [62]
(Figure 3A). Nevertheless, neither GH overexpression nor intracerebroventricular GH
injection induce changes in hypothalamic Pomc expression [17,55,56]. Furthermore, GHR
ablation in POMC-expressing cells does not elicit significant alterations in food intake in
ad libitum fed mice nor after a period of food deprivation [62]. It is well documented
that the injection of 2-deoxy-D-glucose (2DG) in rodents produces a glucoprivic condition
which is followed by an acute increase in food intake [63–65]. Although 2DG injection
increases the expression of Npy mRNA in the ARH, which could explain the 2DG-induced
hyperphagia [65], another study suggested that NPY/AgRP neurons are not critical for
the feeding responses to 2DG [64]. In this context, glucoprivic-induced hyperphagia was
evaluated in knockout mice for GHR specifically in AgRP- or POMC-expressing cells.
Notably, 2DG-induced hyperphagia is attenuated in mice lacking GHR either in AgRP
neurons [17] or in POMC cells [62]. Thus, GH regulates glucoprivic-induced hyperphagia
via these two major ARH neuronal populations.
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Figure 3. Neurochemical phenotype of GH-responsive neurons in the hypothalamic arcuate and
paraventricular nuclei. (A) Scheme illustrating the approximate percentage of responsiveness to GH
in arcuate nucleus neurons that express agouti-related peptide (AgRP), proopiomelanocortin (POMC),
choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), GH-releasing hormone (GHRH) and
kisspeptins (Kp). (B) Scheme illustrating the approximate percentage of responsiveness to GH in
hypothalamic paraventricular nucleus neurons that express somatostatin (SST), TH, corticotropin-
releasing hormone (CRH), thyrotropin-releasing hormone (TRH), oxytocin (OXT) and vasopressin
(AVP). The relative size of circles and ellipsoids indicates the approximate percentage of neurons in
these nuclei which are responsive to GH.

Cholinergic neurons in the DMH and diagonal band of Broca (HBD) regulate food
intake [66,67]. Choline acetyltransferase (ChAT) is a marker of cholinergic neurons and
a population of ChAT-expressing neurons is also found in the ARH. ChAT neurons in
the ARH co-express POMC and tyrosine hydroxylase (TH) [68,69]. Interestingly, 60% and
84% ChAT neurons in the ARH and DMH, respectively, exhibit GH-induced pSTAT5 [70]
(Figure 3A). To determine whether GH action on cholinergic cells regulates food intake
and metabolism, a ChAT-specific GHR knockout mouse was generated. Although these
mutants exhibited reduced hypothalamic Pomc mRNA expression when exposed to a
high-fat diet, ablation of GHR in cholinergic cells caused no metabolic consequences [70].
Interestingly, HBD ChAT neurons in mice are not responsive to GH, whereas 50% of
cholinergic neurons in the rat HBD displayed GH-induced pSTAT5 [37]. Thus, it is possible
that HBD ChAT-expressing neurons mediate the effects of GH on food intake in rats but
not in mice.

Administration of the stomach-derived hormone ghrelin stimulates both GH secre-
tion [4–7] and food intake [71]. However, the effects of ghrelin on food intake may be
partially mediated by GH. Accordingly, GH action in the brain regulates the expression
of GHS-R [72]. Noteworthily, GH-deficient or GHR-knockout mice manifest a blunted
feeding response to ghrelin [71,73]. Pregnancy and lactation are physiological conditions
that induce significant increases in food intake [74,75]. Remarkably, brain-specific GHR
ablation decreases food intake and body adiposity during pregnancy, without affecting
these parameters in non-pregnant or lactating mice [76]. Therefore, GH action in the brain
regulates pregnancy-induced hyperphagia.

3.2. GH Action in the Brain Modulates Insulin Sensitivity and Glucose Homeostasis

Several hormones modulate whole-body glucose homeostasis through their action on
the brain [77,78]. For example, leptin exerts its major effects on insulin sensitivity via the
central nervous system [61]. Since GH also regulates insulin sensitivity, part of this effect
may be mediated by the brain as well. Previous studies investigated the physiological role
of GH signaling in leptin receptor (LepR)-expressing cells [79,80]. Notably, GHR ablation
in LepR-expressing cells led to impaired hepatic insulin sensitivity [79,80]. In contrast,
inactivation of GHR in specific populations of LepR-expressing neurons, including AgRP,
POMC and steroidogenic factor 1 (SF1) cells, did not cause significant effects on glucose
tolerance and insulin sensitivity [17,62,76,80]. Thus, a still-undisclosed population of
LepR-expressing cells might mediate GH actions on insulin resistance.
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Approximately one third of the cholinergic pre-ganglionic parasympathetic neurons
located in the dorsal motor nucleus of the vagus (DMX) express pSTAT5 after an acute GH
injection [70]. DMX neurons are able to regulate pancreatic hormone secretion as well as
hepatic glycogenolysis and glucose production. However, GHR ablation in cholinergic
neurons does not produce alterations in glucose homeostasis in mice consuming normal
chow or high-fat diets [70]. Thus, further studies are needed to determine the physiological
role of GHR signaling in this population of DMX neurons.

Pregnant animals usually develop a transient insulin resistance which is compen-
sated by increases in glucose-stimulated insulin secretion [81]. Hormones secreted during
pregnancy such as prolactin and placental lactogens play a prominent role in gestational
metabolic adaptions, especially inducing the expansion of pancreatic beta-cells [82,83].
Since GH secretion in humans and rodents augments during pregnancy [84], GH action in
the brain may also modulate glucose homeostasis in this condition. Remarkably, systemic
insulin sensitivity is greatly improved in pregnant mice lacking GHR in the brain or in
LepR-expressing cells [76]. Thus, while prolactin secretion promotes beta-cell adaptations
during pregnancy, central GH action is critical to induce the typical insulin resistance
observed in pregnant mice.

Together with glucocorticoids, noradrenaline and glucagon, GH is considered a
counter-regulatory hormone that is secreted during hypoglycemia [77,85,86]. Accordingly,
defects in GH secretion favor spontaneous hypoglycemia and impair the counter-regulatory
response (CRR) [87–89]. Neurons in the VMH are responsive to GH [36]. Additionally,
VMH contains glucose-sensing neurons that represent a key relay station in the neural
circuitry that produces the CRR [77,78]. Using SF1 expression to drive VMH-specific
deletion of GHR in mice, reduced glycemia was observed in mutant mice treated with
insulin compared to control animals, without affecting insulin sensitivity. In addition,
the CRR induced by 2DG is significantly attenuated in mice carrying ablation of GHR in
VMH cells [80]. Inactivation of GHR in LepR-expressing cells also impairs the CRR to
hypoglycemia [80], which is in line with the high degree of co-localization between SF1
and LepR expression in the VMH [90]. Collectively, these findings indicate that central GH
action in SF1/LepR-positive neurons is relevant for recovery from hypoglycemia.

3.3. Central GH Action Regulates the Metabolic Responses to Calorie Restriction
3.3.1. Central GHR Signaling Modulates Calorie Restriction-Induced Changes in
Energy Expenditure

GH secretion increases during prolonged food restriction or fasting [85,89]. However,
the precise role of GH action during these situations has not been completely understood
until recently. It is well known that AgRP/NPY neurons become activated during calorie
restriction and these neurons play an important role in suppressing energy expenditure
and inducing hunger [57,58,91]. Remarkably, AgRP-specific GHR ablation attenuates
fasting-induced activation of ARH AgRP/NPY neurons [17]. Mice carrying genetic ab-
lation of GHR in AgRP neurons are unable to develop important metabolic responses to
calorie restriction. In this regard, while control animals present activation of the adrenal
axis and suppression of thyroid function, reproduction and thermogenesis during food
restriction, the absence of GH action on AgRP cells impairs these neuroendocrine adap-
tations [17]. Consequently, compared to control animals, the energy expenditure of mice
carrying AgRP-specific GHR ablation is less suppressed by calorie restriction, resulting in
higher weight loss [17]. Thus, GH action on AgRP neurons represents a starvation signal
that triggers energy-saving neuroendocrine adaptations to conserve body energy stores.
Notably, administration of the GHR antagonist pegvisomant in C57BL/6 mice was able to
reproduce the phenotype of the animals with AgRP-specific GHR ablation since it partially
prevented the progressive reduction in energy expenditure during food restriction [17].
Ablation of the Stat5a/b genes in AgRP neurons also partially prevents the neuroendocrine
adaptations induced by calorie restriction, indicating STAT5 transcription factors as the
major downstream signaling pathway recruited by GHR to induce these effects [92]. It is
worth mentioning that ablation of GHR in POMC- or SF1-expressing cells does not produce
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significant effects in the metabolic responses to calorie restriction [62,80], whereas GHR
deletion in the entire brain or restricted to LepR-expressing cells reproduces the phenotype
exhibited by AgRP-specific knockout mice during calorie restriction [17]. Therefore, the
central metabolic responses induced by GH during calorie restriction seem to be solely
mediated by AgRP neurons and the ablation of GHR in additional neuronal populations
causes no further effects.

3.3.2. Central GH Action Is Necessary to Maintain Blood Glucose Levels During
Food Restriction

The maintenance of glycemia during prolonged food restriction requires numerous
metabolic adaptations. The enzyme ghrelin O-acyltransferase (GOAT) is necessary for the
generation of biologically active ghrelin. GOAT knockout mice present normal glycemia
in ad libitum fed conditions, but after a few days of 60% calorie restriction, they exhibit
hypoglycemia that can lead to death [89]. The lack of acyl-ghrelin (active form) in GOAT
knockout mice prevents calorie-restriction-induced increases in plasma GH levels. Remark-
ably, GH replacement in GOAT knockout mice precludes the decrease in blood glucose
levels during food restriction [89]. Other studies confirmed profound hypoglycemia in
ghrelin-deficient mice during food restriction [93,94]. Thus, during prolonged food depri-
vation, ghrelin-induced GH secretion is necessary for the maintenance of glycemia and,
consequently, to prevent death. Interestingly, blood glucose levels during 60% calorie
restriction are not affected by GHR ablation in POMC or VMH neurons [62,80]. However,
mice carrying inactivation of GHR in LepR- or AgRP-expressing neurons present a re-
duction in blood glucose levels during food restriction compared to control animals [17].
Therefore, GHR signaling in AgRP neurons that are also responsive to leptin is necessary
for the maintenance of glycemia during prolonged food restriction.

3.4. Adaptation Capacity to Aerobic Exercise Is Affected by Central GHR Signaling

The hypothalamus not only regulates metabolism in basal conditions but also during
exercise training. There is accumulating evidence indicating that VMH neurons are major
regulators of metabolism during exercise. Hypothalamic ablation of SF1 prevents the
beneficial metabolic effects of exercise [95]. Inactivation of Socs3 gene from SF1/VMH
neurons also impairs exercise performance [96]. Of note, the suppressor of cytokine
signaling 3 (SOCS3) is a major negative regulator of cytokine signaling [97,98]. Thus,
SOCS3 ablation likely affects the responses to different hormones in the VMH, including
leptin and GH. To investigate whether GH signaling in the hypothalamus or specifically in
VMH neurons alters acute and chronic metabolic adaptations to exercise, mice carrying
ablation of GHR in LepR or SF1 cells were subjected to 8 weeks of treadmill running
training [99]. Remarkably, while GHR deletion in LepR-expressing cells led to improved
aerobic performance, GHR ablation in SF1 cells prevented improvements in running
capacity [99]. These effects are possibly associated with modified glycemic responses to
exercise, since SF1 GHR and LepR GHR knockout mice exhibited distinct changes in blood
glucose levels in response to acute exercise [99].

4. Neurotropic Effects of GH on ARH Neurons

GH is an important growth factor in several peripheral tissues and also in the brain.
As previously mentioned, GH not only modulates synaptic plasticity in the hippocam-
pus [43–45] and amygdala [39], but this hormone also has important neurotropic effects
on the development of ARH neurons that regulate metabolism [100,101]. It is well docu-
mented that leptin is required for the development of axonal projections of ARH neurons
to post-synaptic targets such as the PVH [102,103]. Interestingly, GH- or GHR-deficient
mice exhibit reduced axonal projections from ARH AgRP and POMC neurons to the PVH,
similarly to that observed in leptin- or LepR-deficient mice [100,101]. However, GH or GHR
deficiency leads to severe growth deficits as well as numerous metabolic and endocrine
alterations. Thus, the study of mice carrying ablation of GHR specifically in LepR, AgRP
or POMC neurons is an interesting approach to clarify whether GHR signaling, without
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those confounding factors, is required for the development of AgRP and POMC axonal
projections [62,100]. Confirming a direct neurotropic effect of GH in ARH neurons, GHR
ablation in LepR-expressing cells decreased the density of both AgRP and POMC axonal
projections to hypothalamic post-synaptic targets. When GHR deletion was restricted to
AgRP neurons, only AgRP axonal projections were reduced, whereas a normal POMC
innervation was observed [100]. Of note, mice carrying ablation of Stat5a/Stat5b genes in
AgRP neurons show normal AgRP axonal projections, suggesting that STAT5-independent
signaling pathways are involved in the neurotropic effects of GH [92]. Furthermore, GHR
ablation specifically in POMC neurons did not affect POMC axonal projections [62]. The
percentage of ARH AgRP neurons that are responsive to GH is much higher than that of
POMC neurons [17,62], which could explain the minor neurotropic effects of GH when
the entire population of POMC neurons is analyzed. Therefore, the central regulation of
metabolism by GH may involve the neurotropic effects of GH in hypothalamic neurons that
control energy and glucose homeostasis. Whether these neurotropic effects are ubiquitously
observed in other neuronal populations responsive to GH is still unknown.

5. Future Perspectives

Table 1 summarizes the published articles so far that used mouse models with ablation
of GHR in specific neuronal populations to investigate the physiological role of central
GH action. The importance of GHR signaling in several newly described populations
of GH-responsive neurons remains undetermined [36,37]. Recently, our research group
identified the neurochemical phenotype of GH-responsive cells in mouse PVH [104]. The
PVH contains several neurochemically defined neuronal populations [105], so the identifi-
cation of those that are responsive to GH allows understanding the possible physiological
importance of GHR signaling in this hypothalamic nucleus. We found that 38%, 55%, 35%
and 63% of TH, SST, thyrotropin-releasing hormone (TRH) and corticotropin-releasing
hormone (CRH) neurons exhibited GH-induced pSTAT5, respectively [104] (Figure 3B).
The majority of neuroendocrine SST, TRH and CRH neurons were responsive to GH, in-
dicating that central GH signaling probably regulates somatotropic, thyroid and adrenal
endocrine axes (Figure 2). However, non-neuroendocrine neurons were also responsive
to GH in the PVH, including 67%, 32% and 74% of non-neuroendocrine TH, TRH and
CRH PVH neurons, respectively [104]. This study gives an idea about the diversity of
functions that central GHR signaling may regulate in one specific hypothalamic nucleus.
However, follow-up physiological studies investigating the role of GHR signaling in each
PVH neuronal population are warranted.

Table 1. Summary of the published articles that used mouse models with ablation of GH receptor in specific neuronal populations to
investigate the physiological role of central GH action.

Neuronal Population Physiological Aspects Regulated by Central GH Receptor Signaling Reference

Nestin-derived cells (entire brain)

Neuroendocrine adaptations that affect energy expenditure during
food restriction [17]

Regulation of GH secretion via a negative feedback loop [33]
Food intake, fat retention, as well as insulin and leptin sensitivity

during pregnancy [76]
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Table 1. Cont.

Neuronal Population Physiological Aspects Regulated by Central GH Receptor Signaling Reference

LepR-expressing cells

Hepatic glucose production and insulin sensitivity [79]
Neuroendocrine adaptations that affect energy expenditure during

food restriction [17]

Maintenance of glycemia during prolonged food restriction [17]
Glucoprivic hyperphagia [17]

Food intake, fat retention, as well as insulin and leptin sensitivity
during pregnancy [76]

Aerobic performance and metabolic adaptations to chronic exercise [99]
Recovery from hypoglycemia and counter-regulatory response [80]

Trophic effects on the formation of POMC and AgRP axonal projections [100]

TH-expressing cells Regulation of GH secretion via a negative feedback loop [33]

Dopamine transporter-expressing cells No function identified yet [33]

Dopamine
β-hydroxylase-expressing cells No function identified yet [33]

AgRP-expressing neurons

Neuroendocrine adaptations that affect energy expenditure during
food restriction [17]

Maintenance of glycemia during prolonged food restriction [17]
Glucoprivic hyperphagia [17]

Trophic effects on the formation of AgRP axonal projections [100]

Cholinergic cells No function identified yet [70]

Kisspeptin-expressing neurons Regulation of the hypothalamic expression of transcripts that modulate
the hypothalamic-pituitary-gonadal axis [106]

POMC-expressing neurons Glucoprivic hyperphagia [62]

SF1-expressing cells (VMH neurons) Recovery from hypoglycemia and counter-regulatory response [80]
Aerobic performance and metabolic adaptations to exercise [99]

In another study, our research group disclosed that several neuronal populations that
express TH are responsive to GH, including neurons in the ARH, PVH (Figure 3), PV and
locus coeruleus (LC) [33]. Of note, LC is the major source of noradrenergic projections
to the forebrain [107], which are vital for the control of physiological responses to stress.
Importantly, GH-responsive neurons are also enriched in several other brain structures
involved in stress responses, including BNST, the central nucleus of the amygdala and
CRH-expressing cells in the PVH (Figure 3B). Thus, central GHR signaling likely plays
a significant role in modulating the central responses to stress, including situations such
as glucoprivation, food restriction and physical exercise. Therefore, based on the afore-
mentioned neuroanatomical evidence, it is imperative that future studies investigate how
central GH actions can influence the neurocircuits that trigger stress responses, assessing
possible consequences on metabolism and behavioral regulation.

6. Conclusions

This review article presents an overview of recent research data indicating that central
GHR signaling regulates metabolism, particularly in situations of metabolic stress. The
high responsiveness to GH in hypothalamic and extra-hypothalamic neuronal populations
that control metabolism, especially the ARH, VMH, and PVH, suggests that circulating GH
levels may represent a cue that conveys homeostatic information to the brain to produce
metabolic adjustments in order to promote energy homeostasis. Accordingly, GH secre-
tion is elevated in numerous situations of metabolic stress, including hypoglycemia [85],
prolonged calorie restriction [89], and exercise [108]. Elevated GH secretion is also ob-
served in physiological situations characterized by additional metabolic exigencies such as
puberty [106,109] and pregnancy [84]. Thus, in addition to its well-known effects of stimu-
lating protein synthesis, tissue growth, and cell proliferation, GH should be considered
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a metabolic hormone which, besides acting in peripheral tissues, also fulfills important
functions in the central nervous system. Finally, the recognition of the central effects of GH
regulating metabolism can provide significant new contributions to the understanding of
metabolic changes that occur in different physiological or pathological conditions.
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