

New Names for Three *Penicillium* Strains Based on Updated Barcoding and Phylogenetic Analyses

Guohua Yin,^{a*} Wayne M. Jurick II,^b Guozhu Zhao,^c Joan W. Bennett^a

^aDepartment of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA ^bFood Quality Laboratory, USDA Agricultural Research Service, Beltsville, Maryland, USA ^cCollege of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China

The genus *Penicillium* contains over 480 species of fungi, and their initial identification is predominantly based on their macroscopic colony morphologies and light microscopic characteristics (1–3). Despite the introduction of modern molecular methods such as the internal transcribed spacer (ITS) sequence and the use of other gene sequences such as β -tubulin (*BenA*) and calmodulin (*CaM*), *Penicillium* species are not easily identified. Mycologists have known for years that there are many inaccurate labels in GenBank for the genus *Penicillium* and other fungal groups (4). In 2020, Houbraken et al. suggested that more diagnostic loci, such as *Cct8*, large subunit (LSU), *RPB1*, *RPB2*, small subunit (SSU), and *Tsr1*, should be included in the classification of *Penicillium* species (1).

In 2015 to 2017, using colony morphology, microscopic characteristics, and the ITS barcode, we identified two *Penicillium* species from stored fruits as *Penicillium solitum* NJ1 and RS1 (5) and another strain from a flooded home as *Penicillium sclerotiorum* 113 (6). At that time, we also analyzed the genome sequences of these three culturable strains (7–9). More recently, upon the publication of a letter to the editor on a series of recommendations to the microbiological community to prevent the taxonomic misidentification of genome-sequenced fungal strains suggested by Houbraken et al. (10), we reperformed BLASTn searches using the *Penicillium* strains NJ1, RS1, and 113. We used four barcodes (ITS, *BenA, CaM*, and *RPB2*) and limited the query to sequences from type material. With this framework, here we are renaming the three *Penicillium* strains according to the updated BLASTn results.

For *Penicillium* strain NJ1, *BenA* BLASTn results indicated that the top hits were *Penicillium crustosum* strains NRRL 66388, DI16-101, and CBS115503; among them, CBS115503 is the ex-type strain. The *CaM* BLASTn search for strain NJ1 indicated that the three top hits were *P. crustosum* strains KrP/6, DTO266-B3, and imi91917 (the ex-type strain). Their maximum/total scores, query coverage, E values, percent identity, and accession numbers are listed in Table 1. Therefore, the *Penicillium* NJ1 strain that we called *P. solitum* should be renamed *P. crustosum* NJ1.

Similarly, the *Penicillium* strain RS1 *BenA* BLASTn results indicated that the top hit was the *Penicillium polonicum* ex-type strain CBS222.28, and BLASTn results for the *CaM* sequence of this strain indicated that the three top hits were *P. polonicum* strains F775, CMV001E2, and CBS222.28 (the ex-type strain). Therefore, this strain should be renamed *P. polonicum* RS1. Finally, the BLASTn results for the *BenA* and *CaM* sequences of strain 113, which was isolated from a flooded home, indicated that the top hits were *Penicillium maximae* strains SFC20151014-M14, NRRL2060 (the ex-type strain), and SL-CL7. Therefore, strain 113 should be renamed *P. maximae* 113. Phylogenetic analyses using genome data from strains NJ1 and RS1 also support new names.

Molecular identification is the default approach for the identification of microfungi (11). With the development of next-generation sequencing, we think that genomics

Editor Antonis Rokas, Vanderbilt University Copyright © 2021 Yin et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Guohua Yin, guohuayin1997@gmail.com.

*Present address: Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, USDA Agricultural Research Service, Peoria, Illinois, USA.

This is a response to a letter by Houbraken et al. (https://doi.org/10.1128/MRA.01074-20).

Received 12 July 2021 Accepted 30 August 2021 Published 2 December 2021

			BLASTn hit results						
Strain	Barcode	GenBank accession no.	Strain description	Maximum score	Total score	Query coverage (%)	E value	Identity (%)	GenBank accession no.
NJ1	ITS	KX243323	P. crustosum FRR1669 ^a	1,146	1,146	100	0.0	100	NR077153
			P. crustosum CBS115503 ^a	1,108	1,108	96	0.0	100	MH862985
NJ1	BenA	KX243332	P. crustosum NRRL 66388	854	854	100	0.0	100.00	KY172962
			P. crustosum DI16-101	854	854	100	0.0	100.00	LT559041
			P. crustosum CBS 115503 ^a	837	837	98	0.0	99.77	MN969379
NJ1	СаМ	KX243340	P. crustosum KrP/6	1,027	1,027	95	0.0	100.00	MW115930
			P. crustosum DTO266-B3	1,005	1,005	93	0.0	100.00	KU711890
			P. crustosum imi91917 ^a	1,045	1,045	99	0.0	99.26	DQ911132
RS1	ITS	KX243331	P. polonicum CBS222.28 ^a	1,134	1,134	95	0.0	99.16	MH854992
			P. polonicum NRRL995 ^a	1,076	1,076	90	0.0	99.12	AF033475
RS1	BenA	KX243339	P. polonicum CBS222.28 ^a	668	668	91	0.0	94.39	MN969392
RS1	СаМ	KX243348	P. polonicum F775	979	979	97	0.0	98.84	MG714825
			P. polonicum CMV001E2	977	977	96	0.0	99.03	MK451635
			P. polonicum CBS222.28 ^a	946	946	94	0.0	98.80	KU896848
113	ITS	KX365203	P. maximae NRRL2060 ^a	1,065	1,065	88	0.0	99.28	NR121343
113	BenA	KX365204	<i>P. maximae</i> SFC20151014-M14	795	795	85	0.0	98.59	MK682867
			P. maximae NRRL2060 ^a	795	795	82	0.0	99.52	KC773795
113	СаМ	KX365205	P. maximae SL-CL7	844	844	81	0.0	99.54	MK134677
			P. maximae NRRL2060 ^a	829	829	81	0.0	99.31	KC773821
113	RPB2	KX365206	P. maximae CBS134565	1,766	1,766	76	0.0	99.67	MN969126

TABLE 1 Top hits of three misidentified Penicillium species using different barcodes

^aPenicillium type or ex-type strain (in bold).

combined with transcriptomics and exometabolomics will provide more diagnostic characters for taxonomically difficult fungi such as *Penicillium* (11, 12).

REFERENCES

- Houbraken J, Kocsubé S, Visagie CM, Yilmaz N, Wang X-C, Meijer M, Kraak B, Hubka V, Bensch K, Samson RA, Frisvad JC. 2020. Classification of *Aspergillus*, *Penicillium*, *Talaromyces* and related genera (*Eurotiales*): an overview of families, genera, subgenera, sections, series and species. Stud Mycol 95:5–169. https://doi.org/10.1016/j.simyco.2020.05.002.
- Visagie C, Houbraken J, Frisvad JC, Hong S-B, Klaassen C, Perrone G, Seifert K, Varga J, Yaguchi T, Samson R. 2014. Identification and nomenclature of the genus *Penicillium*. Stud Mycol 78:343–371. https://doi.org/10.1016/j.simyco .2014.09.001.
- 3. Pitt Jl. 1979. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, New York, NY.
- Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson K-H, Köljalg U. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One 1:e59. https://doi.org/10.1371/journal.pone .0000059.
- Yin G, Zhang Y, Pennerman KK, Wu G, Hua SST, Yu J, Jurick WM, Guo A, Bennett JW. 2017. Characterization of blue mold *Penicillium* species isolated from stored fruits using multiple highly conserved loci. J Fungi (Basel) 3:12. https://doi.org/10.3390/jof3010012.
- Zhao G, Yin G, Inamdar A, Luo J, Zhang N, Yang I, Buckley B, Bennett J. 2017. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a *Drosophila* bioassay. Indoor Air 27:518–528. https://doi.org/10.1111/ina.12350.
- Yu J, Wu G, Jurick WM, Gaskins VL, Yin Y, Yin G, Bennett JW, Shelton DR. 2016. Genome sequence of *Penicillium solitum* RS1, which causes postharvest apple

decay. Genome Announc 4:e00363-16. https://doi.org/10.1128/genomeA .00363-16.

- Yin G, Zhang Y, Pennerman KK, Hua SST, Yu J, Guo A, Liu Z, Bennett JW. 2016. Draft genome sequence of the fungus *Penicillium solitum* NJ1. Genome Announc 4:e01176-16. https://doi.org/10.1128/genomeA.01176-16.
- Yin G, Zhang Y, Pennerman KK, Hua SST, Huang Q, Guo A, Liu Z, Bennett JW. 2016. Genome sequencing and analysis of the filamentous fungus *Penicillium sclerotiorum* 113, isolated after Hurricane Sandy. Genome Announc 4:e01153-16. https://doi.org/10.1128/genomeA.01153-16.
- Houbraken J, Visagie CM, Frisvad JC. 2021. Recommendations to prevent taxonomic misidentification of genome-sequenced fungal strains. Microbiol Resour Announc 10:e01074-20. https://doi.org/10.1128/MRA.01074 -20.
- 11. Lücking R, Aime MC, Robbertse B, Miller AN, Aoki T, Ariyawansa HA, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Nilsson HR, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. 2021. Fungal taxonomy and sequence-based nomenclature. Nat Microbiol 6:540–548. https://doi.org/10.1038/s41564-021-00888-x.
- 12. Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. 2020. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 11:32. https://doi.org/10.1186/s43008-020-00033-z.