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Comprehensive identification of transposable
element insertions using multiple sequencing
technologies
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Transposable elements (TEs) help shape the structure and function of the human genome.

When inserted into some locations, TEs may disrupt gene regulation and cause diseases.

Here, we present xTea (x-Transposable element analyzer), a tool for identifying TE insertions

in whole-genome sequencing data. Whereas existing methods are mostly designed for short-

read data, xTea can be applied to both short-read and long-read data. Our analysis shows

that xTea outperforms other short read-based methods for both germline and somatic TE

insertion discovery. With long-read data, we created a catalogue of polymorphic insertions

with full assembly and annotation of insertional sequences for various types of retroelements,

including pseudogenes and endogenous retroviruses. Notably, we find that individual gen-

omes have an average of nine groups of full-length L1s in centromeres, suggesting that

centromeres and other highly repetitive regions such as telomeres are a significant yet

unexplored source of active L1s. xTea is available at https://github.com/parklab/xTea.
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Transposable elements (TEs) comprise nearly half of the
human genome1, and their mobilization is a significant
source of genomic variation and human diseases2,3.

Although most TEs are genomic fossils that have lost their
ability to mobilize, several types of TEs (L1s, Alus, and SVAs)
can still mobilize via a copy-paste mechanism through RNA
intermediates. Increasing evidence suggests the contribution
of TEs to human development and health, such as placental
development4 and innate immunity5. To date, more than a
hundred TE insertions have been causally linked to Mendelian
disorders and hereditary cancers, with TE impacting gene reg-
ulation through diverse mechanisms including insertional
mutagenesis, premature polyadenylation, and alteration of RNA
expression and splicing3,6.

With the availability of whole-genome sequencing (WGS) data,
we have reported frequent somatic L1 insertions in some cancer
types, especially in epithelial cancers, suggesting a role of TEs in
tumorigenesis7. Subsequent studies have elaborated the role of
TEs, e.g., in cancer immunity7–12. A recent pan-cancer analysis of
~3000 cancer genomes has identified not only numerous somatic
L1 insertions, making L1 the third most frequent type of somatic
SVs, but also various types of L1-mediated structural variations
(SVs)10. In a landmark study, an SVA insertion causing exon-
trapping was identified in a child with Batten disease and it led to
the development of a personalized antisense-oligonucleotide drug
to fix the splicing defect13. These studies highlight the importance
of accurate TE detection for genomic medicine.

Multiple tools have been developed to detect TE insertions
from Illumina paired-end short reads7,12,14–17. The tools include
MELT14, which detects polymorphic inherited insertions, and
TraFiC-mem12, which detects somatic insertions from a case/
control pair. Most tools were designed to detect either germline—
inherited or de novo, thus present in all cells in the body—or
somatic TE insertions. One critical shortcoming of current TE
analysis based on short-read data is its inability to detect TE
insertions that accompany complex rearrangements or fall into
highly repetitive regions, such as those within existing TE copies
from the same TE subfamily or within centromeric/telomeric
repeats18–20. Recent advances in sequencing technologies, such as
PacBio and Oxford Nanopore long reads create >10–15 Kbp
reads and thus allow us to reconstruct the entire sequences of
inserted TEs and their flanking regions, enabling the discovery
and characterization of those challenging types of TE insertions.
To date, PALMER21 is the only tool specifically designed for TE-
insertion detection from long reads.

Here, we propose a computational tool, xTea (x-Transposable
element analyzer), that detects nonreference TE insertions (i.e.,
insertions that are not present in the reference genome) from
WGS data. Rewritten from scratch for greater efficiency, it has
five major improvements over the original (2012) version of Tea:
(i) it has increased accuracy due to more refined filtering criteria;
(ii) it identifies transduction events, both canonical and orphan;
(iii) it detects a wide range of retroelement insertions, including
processed pseudogene and human endogenous retrovirus
(HERV) insertions; (iv) it detects both germline and somatic
insertions, including mosaic insertions from very high-coverage
data; and (v) it can incorporate data from multiple sequencing
technologies including long-read platforms. We created a high-
quality catalogue of haplotype-resolved nonreference TE inser-
tions in an individual whose genome was extensively curated by
multiple sequencing platforms. Using this annotated genome and
manual inspection, we demonstrated the superior performance
of xTea to existing methods for both germline and somatic
insertions. Further, we performed analysis of long-read WGS
data from 20 individuals. This analysis revealed complex struc-
tures and mechanisms of polymorphic insertions of various

endogenous retroelements, including ‘ghost’ full-length L1s in
centromeres, TE-promoted SVs, processed pseudogenes, and
proviral HERV copies. xTea is available at https://github.com/
parklab/xTea; its docker version is available on cloud platforms.

Results
Overview of xTea. xTea identifies nonreference TE insertions
from WGS data generated using different sequencing technolo-
gies: Illumina paired-end shorts reads, 10X Linked Reads, and
PacBio and Oxford Nanopore long reads (Fig. 1 and Fig. S1). It
also allows hybrid TE calling when the same sample has been
sequenced by more than one platform.

For standard Illumina reads, xTea utilizes two types of
insertion-supporting reads—discordant paired reads and split
(clipped) reads—as is standard in TE analysis (Fig. 1a). xTea,
however, employs several modifications to improve accuracy and
scalability. First, it considers not only the number of discordant/
clipped reads but also the location of their alignment on the TE
consensus sequence (Fig. S1a). Their alignment pattern must be
consistent with a single breakpoint and the estimated insert size.
The similar strategy is also used to filter transductions that do not
manifest a consistent pattern in the flanking sequence. Second,
whereas other tools derive initial candidates from discordant read
pairs, xTea begins with split/clipped reads. This improves the
detection of events that occur in regions close to other SVs,
especially for those located within the insert size (Fig. S2). Third,
xTea uses mechanistic signatures—target-site duplication and
polyA tails—to further distinguish those with high confidence.
Finally, xTea achieves scalability by implementing full-
parallelization with multi-core support and reducing memory
requirements (Fig. S3). xTea reports in the output VCF file the
genotype of each insertion as predicted by a machine learning
model: heterozygous, homozygous, or no insertion (Fig. 1e).

The Linked-Read technology from 10X Genomics utilizes
microfluidics to partition and barcode DNA fragments from the
same region, so that long-range information is embedded in the
short-read data. xTea starts with the same TE-insertion detection
module as for Illumina data, and then performs phased local
assembly using insertion-supporting reads grouped by their
molecular barcodes. It filters out candidates in regions with
extremely high ‘molecular depths’ (the number of molecules
whose reads encompass or fall in these regions), as this indicates
highly repetitive regions. If both Illumina and Linked-Read
datasets are provided for the same sample, features are extracted
separately for each dataset and then merged before filtering. This
early merging of raw features improves detection accuracy by
increasing the signal to noise ratio more than merging of
insertion candidates from each dataset. After getting raw
candidates, xTea applies TE type-specific filters to create a final
candidate list (see Methods).

For the PacBio and Nanopore long-read data, xTea identifies
initial insertion candidates not only by examining the clipped
reads with partial alignment to the flanking region of an insertion,
but also those nonclipped reads that contain the entire insertion
sequences (Fig. 1c). For each candidate insertion site, xTea
performs local assembly of the collected supporting reads to
reconstruct the full sequence of the inserted TE and flanking
regions; it then annotates various features, such as subfamily,
target-site duplication, polyA tail, and TE structure, prior to
additional filtering (Fig. 1f). For hybrid calling with Illumina data,
insertion candidates from the platforms are merged before the
local assembly is performed for each site. With long-read data,
xTea utilizes the fully reconstructed TE sequences to provide
additional information that cannot be gleaned from short-read
data. This includes identification of ‘ghost’ L1s located in
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centromeric regions, and identification of HERVs with non-
reference proviral sequences as well as various SV-mediated TE
insertions (Fig. 1g-i).

Creation of a haplotype-resolved benchmarking dataset. A gold
standard insertion set is necessary to compare xTea with existing
methods and evaluate different platforms. Thus, we created a
haplotype-resolved dataset of nonreference TE insertions in
HG002. This HapMap sample has been extensively characterized
by multiple sequencing technologies by the Genome in a Bottle
consortium (GIAB)22 and is better than HG001 or other genomes
for benchmarking. We first combined raw insertion calls, which
had not been annotated for TE insertions, for HG002 from two
sources: 9970 insertions (>50 bp) released by GIAB V0.6 and
15,268 insertions (>50 bp) called from a haplotype-resolved
assembly23. Using RepeatMasker24, we selected insertions anno-
tated as L1, Alu or SVA sequences, and identified high-confidence
TE insertions by manually confirming that each insertion had a
polyA tail and target-site duplication/deletion using the IGV25

browser. This is the first haplotype-resolved nonreference TE-
insertion set, and will serve as a useful benchmark not only for
the current study but also for other studies.

In total, we obtained 1642 haplotype-resolved high-confidence
TE insertions (1355 Alu, 197 L1 and 90 SVA insertions;

Fig. S4–S5) that were present in HG002 but absent in the
reference genome. Among them, we were able to identify the
subfamilies for 1322 Alu, 183 L1, and 75 SVA insertions; the
remaining insertions were annotated as more than one subfamily
due to assembly error (Fig. 2a). For L1s, the dominant subfamily
was L1Hs (>76%), although there were other polymorphic copies
from the L1PA subfamily. For Alus, AluYa5 and AluYb8
comprised more than 60%. For SVAs, SVA_E and SVA_F
comprised >67%, but, we also found that SVA_F1 and
CH10_SVA_F (a fusion of SVA_F and the MAST2 gene), which
are difficult to detect and annotate properly because of the
complex fusion structure, comprised 12 and 7% of SVA
insertions, respectively.

xTea benchmarking across multiple platforms. We applied
xTea to Illumina short reads, 10X Linked Reads, PacBio High-
Fidelity (HiFi) long reads, PacBio continuous long reads (CLR),
and Oxford Nanopore long reads, as well as Illumina and 10X
Linked Reads combined (Fig. 2b). Evaluated using the HG002
benchmark data, the most notable was the high sensitivity for L1
detection using PacBio HiFi reads: 93% for PacBio vs. 68% for
Illumina, 64% for 10X, and 70% for Illumina-10X (Table S1-S3).
Long reads also gave the highest sensitivity for Alu (91%, 96%,
and 97% for PacBio HiFi, PacBio CLR, and Oxford Nanopore,
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respectively), although the improvement compared to the other
platforms was smaller.

Specificity was more similar across the platforms for each TE
type, with Illumina showing the highest specificity (88%, 93%,
and 86% for Alus, L1s, and SVAs, respectively). Critical to the
high specificity of Illumina data were additional TE type-specific
filters implemented in xTea. Interestingly, 10X showed lower

sensitivity and specificity than even Illumina, probably due to the
smaller fraction of distinct molecules sampled in the 10X data.
For long reads, false negatives were mainly due to insufficient
sequencing depth, which caused the filtering of some true
insertions, or the failure in later local assembly steps, e.g.,
assembly of SVA insertions often failed at the tandem repeat
regions. With a lower per-base error rate, PacBio HiFi data
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performed better at the assembly step and thus had better
performance overall than the PacBio CLR and Oxford Nanopore
long reads.

We compared the xTea call sets from different sequencing
platforms and classified each insertion according to the genomic
context of the insertion sites (Fig. 2c). For long reads, we chose
PacBio HiFi as the representative. The majority of TE insertions
(1223 insertions) were identified by all platforms. Importantly, a
large majority of these insertions (1015, 83%) were detected in
repetitive regions, with 261 (26%) into the same TE family as the
inserted TE and the rest into different TE families. The
substantial number of cases in which a TE is inserted into the
same TE family in the reference genome illustrates the difficulty
of using short reads. Without the additional features implemen-
ted in xTea, many false positive insertions will be reported from
those regions.

Of the 127 insertions detected only from PacBio HiFi reads,
116 (91%) insertions were found in repetitive regions, with more
than half of insertions (82, 65%) found in the regions with the
same TE families. Furthermore, 27 out of the 82 (33%) were L1s,
which means at least 14% (27/197) of all annotated L1s were
particularly difficult to detect from short reads. This explains the
low sensitivity of L1 detection for other platforms (Fig. 2b).
Insertions that were detected only by long reads were enriched in
low divergence (from consensus sequence) repetitive genomic
regions (Fig. 2d). This suggests that long-read-based detection has
higher sensitivity for insertions landing in the regions with
younger TE subfamilies and low mappability. The long-read-
specific insertions were also enriched in GC-rich regions,
consistent with inefficient PCR amplification at GC-rich regions26

that makes it harder for short-read-only approaches.

Performance comparison for germline TE-insertion detection.
We first compared the performance of xTea with MELT14

(v2.1.5) and Mobster15 for germline TE-insertion detection and
with TraFiC-mem12 for somatic TE-insertion detection. MELT
has been widely adopted by several projects, such as the 1000
Genomes Project and the gnomAD-SV database27. For our eva-
luation, we realigned the original ~300X Illumina paired-end
WGS data for HG00228 to hg38 with BWA-MEM29, and down-
sampled to various sequencing depths (20X-100X). Both MELT
and xTea showed much better performance than Mobster in
detecting all the three types of TE insertions (Fig. 3a; S6 for
detailed sensitivity and specificity), while xTea showed better
performance in detecting L1 and Alu insertions than MELT
across all sequencing depths tested. The performance difference
increased as the depth of sequencing increased, with MELT
reporting more false positives. For SVA, MELT, and xTea showed
comparable performance. (For MELT, there are three possible
sets of variants: raw output, PASS calls, and genotype calls. We
used those genotyped as ‘0/1’ and ‘1/1’ since those calls gave the

best results; PASS calls had low sensitivity, whereas the raw
output had low specificity).

We next compared genotyping accuracy of xTea and MELT
using Illumina WGS data from a large family (CEPH pedigree
1463) with 17 members across three generations30 (Fig. 3b). We
first ran MELT and xTea on each sample to identify Alu, L1, and
SVA insertions. Comparison of the call sets on the 11 children
shows that a large fraction of the Alu and SVA candidates are
shared between MELT and xTea (Fig. 3c). For Alu, 960 calls are
shared while 200 are MELT-specific and 280 are xTea-specific on
average; for SVA, 50 calls are shared while 18 are MELT-specific
and 27 are xTea-specific. For L1s, the number of MELT-specific
calls are much greater and is highly variable.

To determine the quality of the MELT-specific and xTea-
specific calls, we measured genotype consistency by checking
parental and grandparental genotypes of each insertion found in a
child (Fig. 3d,e; S7b,c for individual level). Given a low rate of de
novo insertions (1 out of ~20 births)31, we considered insertions
that violate the Mendelian inheritance as insertions with
inconsistent genotypes. For example, for a given TE insertion, if
both parents are homozygous (genotype ‘1/1’ or 2), then no
insertion (genotype ‘0/0’ or 0) or a heterozygous insertion
(genotype ‘0/1’or 1) in the child was considered as inconsistent;
other inconsistent genotypes are listed in Fig. 3d. Not surpris-
ingly, those TE insertions overlapping in the two candidate sets
showed high levels of genotype consistency (Alu: 0.97 vs 0.98; L1:
0.96 vs 0.96; SVA: 0.93 vs 0.91, all for MELT and xTea,
respectively). For the caller-specific candidates, xTea-specific
insertions showed a dramatically higher genotype consistency for
L1 and Alu than MELT-specific insertions (0.82 vs 0.56 for Alu;
0.88 vs 0.32 for L1). For SVA, genotype consistency was
comparable between the two methods. Checking for genotyping
consistency not only between child-parent but also parent-
grandparent pairs showed even better performance for xTea in
detecting Alus and L1s (Fig. S7d).

To further evaluate the performance of xTea in genotype
calling, we evaluated the performance of xTea using a PCR
benchmark dataset32. This dataset reported PCR validation
results at 145 Alu sites for 90 samples from the 1000 Genomes
project including 45 high-coverage (~30X) samples. When we
compare the genotypes called by xTea with the PCR data for these
45 samples, we find that the results are highly consistent, except
for the 11 sites that xTea genotyped as heterozygous (0/1) but the
PCR data showed homozygous (1/1) (Table S4). These 11
genotypes may be incorrect predictions by xTea, but it is also
possible that the genotypes from PCR are imprecise.

For long reads, we first compared xTea with PALMER on the
haplotype-resolved HG002 benchmark data. We used two groups
of PALMER calls in the comparison: “raw”, which are all the
reported calls, and “HC”, which are high-confident calls that
utilize additional filtering criteria. The results (Fig. S8) show that

Fig. 2 Performance comparison on sequencing data from different platforms. a The benchmark data (HG002) contain 1642 haplotype-resolved TE
insertions, distributed as shown. Among the subfamilies, AluYa5 and AluYb8 comprise >60% of the Alus; L1Hs comprise >76% of L1s; and SVA_E and
SVA_F comprise >67% of the SVAs. Notably, SVA_F1 and CH10_SVA_F make up 12% and 7%, respectively, of the SVA insertions. b HiFi long reads show
better performance on sensitivity (91%, 93%, and 90% for Alu, L1, and SVA, respectively). Benefitting from the repeat type-specific filters, xTea shows
high specificity (88%, 93%, and 86%, respectively) on short Illumina reads. Probably due to the smaller fraction of distinct molecules, 10X Linked Reads
show lower specificity. c Detailed comparison of the number of shared TE insertions among platforms. 1223 insertions are common among all of the
platforms, and 1015 (83%) of them fall in repetitive regions, out of which 261 (25.71%) fall in the same TE family while 754 (74.29%) in different TE
families. 127 insertions that are only called from long reads, 116 (91.33%) fall in repetitive regions, and 82 (64.57%) are found located in repetitive regions
of the same TE type. The zoomed in pie chart for the insertions exclusively called from long read shows that out of the 82 (65%) TE insertions that fall in
the same context TE family, 27 (32.9%) are L1 insertions and 55 (67.1%) are Alu insertions. d Most of the insertions unique to long-read datasets fall in
repetitive regions with low divergence rates or higher GC content, which make short-read alignment difficult.
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xTea outperforms PALMER on both sensitivity and specificity
across all three TE families. Notably, PALMER reports many false
positives resulting in low specificity for Alu (0.4 vs 0.85 for
PALMER and xTea, respectively) and L1 (0.33 vs 0.86). The
PALMER paper describes a manually inspected call set of 203 L1
insertions for the PacBio CLR data from a different sample,
HG001. With xTea run on the PacBio HiFi data for this sample,

we obtain 208 L1 insertions. Between the two call sets, there are
168 common insertions, as well as 40 xTea-specific and 35
PALMER-specific insertions (Fig. S9).

In theory, one could attempt to identify the same TE-associated
breakpoints by a general-purpose SV caller. Therefore, we also
compared xTea with general-purpose SV callers on both short-
and long-read data. For short reads, we evaluated DELLY33 and
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Manta34 on the same HG002 benchmark data (Fig. S10). The
results indicated two major limitations for general SV callers in
TE-insertion calling: much lower sensitivity (Alu: 0.12, 0.37 vs
0.83; L1: 0.2, 0.53 vs 0.68; SVA: 0.46, 0.58 vs 0.89, all for DELLY,
Manta, and xTea, respectively) and absent or incorrect annotation
of TE insertions. The low sensitivity is due to the fact that a
general SV caller searches for two clusters of discordant read pairs
when a TE insertion has a cluster only on one side. In terms of
annotation, TE insertions are often marked as translocations (to a
lesser extent, duplications, inversions, or other types) because TE-
specific features are not considered. For long reads, we ran
Sniffles35, CuteSV36 and SVIM37 on the PacBio HiFi reads from
the same HG002. These callers had much lower sensitivity (Alu:
0.87, 0.85 vs 0.91; L1: 0.76, 0.53 vs 0.93; SVA: 0.58, 0.33 vs 0.9, all
for CuteSV, Sniffles, and xTea, respectively) or much higher false
positive rate (SVIM reported >10 times more SVs) compared to
xTea (Fig. S11-S12). Some long-read SV callers, including Sniffles,
attempt to assemble insertions. Thus, it is also possible to run
such an SV caller and then use RepeatMasker to annotate TE
insertions. However, this is only limited to simple and canonical
Alu and L1 insertions; other repeats such as SVAs and
transduction or complex events cannot be identified (Table S5).
Overall, all these results underscore the importance of
transposon-specialized callers, such as xTea, that assemble and
annotate TE insertions to achieve high sensitivity and specificity.

Performance comparison for somatic L1 insertion and trans-
duction detection. We compared the performance of xTea with
TraFiC-mem12 (Transposon Finder in Cancer), an algorithm
used in a recent analysis of L1-mediated rearrangements in cancer
by the International Cancer Genomics Consortium.10 We
examined their accuracy in detecting somatic L1 insertions,
including those with transduction, from 15 colon samples (those
likely to have the highest rate of L1 insertions) and their matched
blood samples. xTea identified a total of 1671 somatic L1 inser-
tions (1394 canonical, 277 with transduction), whereas TraFiC-
mem detected a total of 1103 L1 insertions (903 canonical, 200
with transduction). The percentage of the shared calls is 55%
(919/1671) for xTea and 83% (919/1103) for TraFiC-mem.
Through manual inspection of each insertion candidate using the
IGV browser, we confirmed that 96 and 97% of xTea and TraFiC-
mem calls showed insertion-supporting signal (both sides dis-
cordant pairs, split reads, target-site-duplication, and polyA tail)
(Fig. 3f-g). With the similar precision level, xTea predicted sig-
nificantly more L1 insertions, indicating a higher sensitivity for
xTea compared to TraFiC-mem.

Structure of L1 insertions and discovery of centromeric L1s by
long-read analysis. Multiple mechanisms, such as target-primed
reverse transcription and twin priming, drive the creation of L1s
with heterogeneous structures in the human genome38. However,

the structural landscape of polymorphic L1 insertions has
remained largely unknown due to the limitation of short reads.
Long-read sequencing provides a powerful means to fill this
knowledge gap. We analyzed long-read WGS data of 20 indivi-
duals (Table S6) from 5 different human populations, released in
two recent studies39–41. Using the long-read mode of xTea, we
identified 1,160 polymorphic L1 (285 full length and 875 5’-
truncated L1) insertions and constructed their entire sequences
(Fig. S13). Each individual had an average of 217 polymorphic L1
insertions with the following structures: 45 (21%) full-length L1s,
36 (17%) L1s with internal inversion, 1 (0.46%) L1 with internal
deletion, 8 (3.7%) L1s with both internal deletion and inversion,
and 127 (59%) 5’ truncated L1s (Fig. 4a). In general, the tail side
contained more internal deletions, internal inversions, and 5’
truncations (Fig. 4b), with a higher inversion rate than deletion
rate toward the tail (>4000 bp) (Fig. 4b, inset).

Despite the high assembly quality of the human reference
genome, there remains several hundreds of gaps, especially in the
centromeres42. Enriched with highly repetitive satellite repeats
associated with epigenetic regulation43, centromeres may be an
important source of retrotransposition-competent full-length L1s.
We developed and applied a new approach to the 20 long-read-
sequenced genomes to identify such L1s in centromeric regions
(Fig. 4c). Briefly, we collected long reads that spanned a reference
full-length L1 with both sides clipped at the two flanking sides of
the L1; we then grouped the collected long reads based on
flanking sequences, assembled each cluster of flanking sequences
into a contig sequence, and annotated the assembled contig using
RepeatMasker to determine whether the insertion falls within
centromeric repeats (a detailed schematic is shown in Fig. S14).
This analysis yielded an average of nine groups full-length L1
insertions within the centromere regions per genome: seven
within Alpha satellite repeats, one within Beta satellite repeats,
and one within HSATII repeats (Fig. 4c). One of the centromeric
L1s we identified was reported in a recent annotation of the high-
quality assembly of human chromosome X19,20 (Table S7). In
addition, we ran xTea on the CHM13 HiFi long reads and
constructed 13 groups of potential centromere full-length L1s. To
validate them, we annotated all the potential centromere full-
length L1s from CHM13 telomere-to-telomere assembly v1.0
(https://github.com/nanopore-wgs-consortium/CHM13), and
found 114 full-length L1s that can be clustered into 18 groups
(Table S8). The 13 groups constructed from xTea together with
their flanking regions could be well aligned to the assembly.

HERV insertions, pseudogene insertions, and TE-mediated
rearrangements. Endogenous retroviruses (ERVs) are derived
from exogenous retroviruses that are integrated into the
host genomes. A full-length (proviral) ERV is comprised of an
internal protein-coding region flanked by two long terminal
repeats (LTRs). Several human ERV (HERV) families have been
associated with several diseases, including several cancers,

Fig. 3 Performance comparision of xTea with MELT, Mobster, and TraFiC-mem on short reads. a xTea and MELT show higher F1 scores on L1, Alu, and
SVA than Mobster. Compared to MELT, xTea has a higher F1 score on L1 and Alu insertions and similar performance on SVA insertions. In particular, xTea
has much better performance in calling L1 insertions on all different read depths. b The relationship of the 17 members of the pedigree. c Number of
overlapping, MELT-specific, and xTea-specific Alu, L1, and SVA insertions in the 11 children. d The defined genotype inconsistency, where ‘F’, ‘M’, and ‘C’
indicate the genotype of father, mother, and child, respectively, and ‘0’, ‘1’, and ‘2’ represents reference homozygous, heterozygous, and homozygous
alternate, respectively. e Insertions overlapping between xTea and MELT show similar genotype consistency. For nonoverlapping ones, xTea performs
much better on Alu and L1 than MELT. For the boxplots, the box demarcations represent the 25, 50, and 75th percentiles, and the whiskers extend from the
box to the largest and smallest data points at most 1.5 times the interquartile range away from the median. f Overlaps between xTea and TraFic-mem on
somatic canonical L1 insertions and L1 transductions for 15 colon samples. g Manual inspection of all the L1 insertions detected by both xTea and TraFiC-
mem through IGV screenshot. For TraFiC-mem, 28 canonical L1 insertion, and 7 transductions are checked as false positive; for xTea, 36 canonical L1, and
24 transductions are ‘validated’ as false positives.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24041-8 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3836 | https://doi.org/10.1038/s41467-021-24041-8 | www.nature.com/naturecommunications 7

https://github.com/nanopore-wgs-consortium/CHM13
www.nature.com/naturecommunications
www.nature.com/naturecommunications


neurological, and autoimmune diseases44–48. Because of the
sequence homology, LTR-LTR recombination will result in the
deletion of the internal coding sequence. For the same proviral
HERV, if recombination only happens in some samples, it will
result in “dimorphic HERV”49, where the reference genome is a
solo LTR but may be proviral HERV in individuals. Many of
these complex events of different HERV subfamilies, for instance
HERV-K and HERV-H, have been reported from short paired-
end reads analysis49. However, short reads can be used to check
the two tail sides of an event, but they do not provide the full
structure; short reads also do not provide information for those
events in repetitive or complex regions.

Here, we ran xTea on the 20 long-read samples and detected 12
HERV insertion loci with internal proviral sequences by screen-
ing genomic regions annotated to have solo long terminal repeats
(LTRs) without the internal proviral sequence in the reference
genome (see Methods). Specifically, xTea detected six HERV-K,
four HERV-H, one HERV-L, and one HERV-W proviral sites
(Fig. 5c). Our analysis of only 20 genomes detected all six HERV
proviral insertion loci that were previously reported from an
Illumina WGS analysis of 279 individuals from very diverged
populations, as well as six more novel loci49. This suggests that
more polymorphic proviral HERVs may be discovered through
analysis of more genomes. We also found internal deletions

within the HERV insertions (Fig. 5d). For example, a HERV
located at chr10:133004176 (hg38) had a ~3 kb internal deletion
(full length is ~7 kb) across all 20 individuals. With short-read-
only data, such deletions are unlikely to be fully annotated49.

Processed mRNA of genes can mobilize to create polymorphic
pseudogene insertions, potentially causing rare diseases50,51.
Somatic pseudogene insertions also occur in many human
cancers10,52. With the long-read data, we detected and con-
structed the entire sequences of 31 pseudogene insertions. Among
these, 7, 11, and 13 insertions were found in exonic, intronic and
intergenic regions, respectively (Fig. 4d). Twenty (65%) of the
insertions were detected in a single sample, suggesting that a large
portion of pseudogene insertions are evolutionarily recent events.
Of all the detected insertions, 18 (58%) insertions were not
reported in a previous study53. Our results are consistent with a
recent study54 based on long-read de novo assembly that reports
a higher rate of processed pseudogene insertions in humans.

We also identified 78 SVs that were formed as a result of
double strand breaks induced during TE transposition: 48
deletions (31 Alu, 11 L1, and 6 SVA), 24 duplications (18 Alu
and 6 L1), and 6 inversions (5 Alu and 1 L1) (Fig. 5a). Among
them, 15% of deletions, 40% of duplications, and 50% of
inversions were not reported in the latest SV database,
gnomAD-SV (v2.1.1)27 (Fig. 5b); the rest were called only as
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simple events. As our results are from 20 individuals (compared
to ~15,000 in gnomAD-SV), far more TE-mediated complex SVs
are likely to be present in the population.

Discussion
We presented a computational method, xTea, to identify, geno-
type, and annotate both germline and somatic TE insertions in
WGS data. Whereas many analyses have focused on the reference
genome TE copies55,56, it is important to annotate polymorphic
TE insertions, which are generally more recent and may play an
important role in regulating the host gene expression. As the
number of short-read WGS datasets continues to grow rapidly,
xTea can be used to build a more comprehensive database of
polymorphic TE insertions and trace their source elements
through transduction events, as well as investigate the role of
somatic insertions in cancer genomes.

With a high-quality benchmark dataset and a large pedigree
dataset, we demonstrated that xTea outperforms MELT in iden-
tifying and genotyping germline insertions. xTea also has much
higher sensitivity with comparable precision in identifying
somatic L1 insertions than TraFiC-mem. However, xTea may also
miss some cases when there is not enough clipped reads support,
especially for tumor samples with low purity; in such cases, users
need to adjust the parameters accordingly.

Another key feature of xTea is its capability to analyze long-
read data. Not surprisingly, xTea obtained higher sensitivity with
long reads than with short reads at comparable specificity,
especially for insertions in low-diverged repeats and GC-rich
regions. Our examination of 20 genomes led to the creation of the
most comprehensive catalogue of polymorphic retroelement
insertions. The long reads also allowed us to resolve the inser-
tional structures of not only L1s but also pseudogenes, TE-
insertion-mediated SVs, and HERV loci containing proviral
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sequences. Although still expensive for routine sequencing of
samples, PacBio and Nanopore sequencing of a larger cohort will
be necessary for a better understanding of the repetitive elements.
A recent Nanopore dataset of 3622 Icelanders57 is one such
example. Compared to the original PacBio CLR and Nanopore
reads, PacBio HiFi reads with their low error rate showed better
performance in detecting the breakpoints precisely, assembling
the TE copies, and identifying internal mutations within the TEs,
especially for low-coverage data for which error correction is not
easy to perform. One advantage for Nanopore over PacBio is that
the DNA methylation state can be directly detected from the
reads, thus providing the opportunity to check the epigenetic
silencing of TE.

One of the interesting results in our study is the characteriza-
tion of TEs that landed in centromeres, but more work is needed
to understand their function, if any. When identifying such ‘ghost’
L1s, we used stringent filters to call the candidates, but further
refinement may be needed. For example, on the one hand, false
positives may be reported if the flanking sequences are homo-
logous to centromeric satellite repeats; on the other hand, false
negatives may result if none of the two flanking regions of a full-
length centromere L1 contain satellite repeats. We have focused
on full-length L1 copies to keep the specificity high, but truncated
L1s and other types of TEs can also exist in centromeres. Recent
efforts for end-to-end chromosome assemblies19,20 constructed
full centromeric sequences and will help uncover the biological
significance of centromeric TEs.

Methods
Procedures for TE-insertion identification
Illumina paired-end short reads. For each input bam/cram file, xTea first extracts
the information on sequencing depth, insert size, and read length. Unless specified
by the user, xTea automatically determines insertion calling thresholds, such as the
number of insertion-supporting clipped reads and the number of discordant reads,
based on the sequencing depth. If an insertion falls in a repetitive region that
comprises the same TE family as the candidate insertion and the reference repeat
has a lower divergence rate from the RepeatMasker consensus than a specified
threshold, this candidate is removed. xTea improves specificity by examining the
patterns of insertion-supporting clipped sequences and discordant reads mapped to
the TE consensus sequences (Fig. S1a): the supporting reads should not be scat-
tered across the consensus but instead form one cluster (c1) for 5’-clip reads and
another cluster (c2) for 3’-clip reads; the mates of 3’ and 5’ discordant reads should
form two distinct clusters (d1 and d2). The distance between c1 and d2 and
between c2 and d1 must be less than the average insert size ±3´standard deviation.
Additionally, xTea detects TE insertions with transduction and target-site dele-
tions. These events often show clusters of clipped and discordant mate reads on
only one side when the reads are mapped to TE consensus sequences (for trans-
duction, reads supporting the other side of the breakpoint do not originate from
TEs; for target-site deletion, reads from different breakpoints originate from
genomic regions far from each other). xTea initially identifies all candidates with
consistent c1 and d1 clusters or consistent c2 and d2 clusters. For candidates with
support on only one side of the breakpoint, xTea collects discordant reads from the
other side of the breakpoint to trace the source TE for transductions (see Fig. S1a)
or examines read depth patterns to find the other breakpoint for target-site
deletions.

10X linked reads. xTea detects initial candidates using the same procedure as above,
and, after grouping reads according to the barcode for each haplotype, performs
local assembly for each read group (Fig. 1b, S1b). xTea first filters out genomic
regions with extremely high molecule coverage to improve processing speed
(default: >250X). Then, for each candidate site, xTea collects reads mapped near
the insertion and creates three subgroups: reads that belong to haplotype 1, reads
that belong to haplotype 2, and unphased reads. For each subgroup, xTea performs
local assembly and aligns the flanking reference sequence to the assembled contig.
If the two flanking regions are well aligned but far apart from each other, the
sequence between the two flanking regions is identified as the insertion sequence.
Local assembly and mapping procedure are performed for all reads first and then
the three subgroups in the order listed. When an insertion is predicted in a sub-
group, xTea will not examine the remaining subgroups. xTea maps the insertion
sequence to TE consensus sequences to annotate the TE family. Overall, xTea
reports not only the exact TE-insertion breakpoints but also the assembled
insertion sequences and haplotypes to which each insertion belongs. For some
candidates, xTea fails to reconstruct the insertion sequence due to low sequencing
depths or genomic complexity of insertion sites.

PacBio and Oxford nanopore long reads. For short reads, clipping mostly occurs at
the same position across different reads. In contrast, long reads, due to a higher
sequencing error rate, are clipped at more variable positions around the breakpoint
(Fig. 1c, S1c). xTea therefore groups clipped reads within a specified distance (by
default: 75 bp) and removes the group if the standard deviation of the distance
between the clipped coordinate of each read and the median coordinate of clipped
reads is greater than a threshold (default: 45 bp). In subsequent steps, the median
coordinate is used as the site of the insertion candidate. This strategy has also been
used by Sniffles35 in calling SVs from long reads. For each candidate site, xTea
collects all reads clipped close to the site, as well as reads with internal insertion
breakpoints close to the site (calculated from the ‘CIGAR’ field of the read align-
ments), followed by local assembly of the collected reads using wtdbg258. The 5’
and 3’ flanking reference sequences are then aligned to the assembled contigs to
identify insertion sequences. Finally, each insertion sequence is aligned to the TE
consensus sequences to annotate the inserted TE family. For L1 and SVA inser-
tions, xTea calls transduction events by realigning the clipped sequences to the
flanking sequences of all reference and polymorphic full-length copies. If the
clipped sequence is uniquely aligned to the flanking sequences, xTea annotates the
full-length TE as the source TE of the insertion. xTea also applies a breakpoint
refinement step by using the assembly supported breakpoints to replace the cluster
central site breakpoints. Steps are run in parallel whenever possible to improve
computational efficiency.

Hybrid data from more than one platform. In general, analysis of hybrid data from
different sequencing platforms combines the advantages of each platform to
improve detection performance (Fig. 1a). For datasets consisting of Illumina short
reads and 10X Linked Reads, xTea merges the clipped reads and discordant reads
from the two platforms to identify initial insertion candidates. In addition, local
assemblies using Linked Reads are performed to construct the insertion for each
candidate. For datasets consisting of Illumina short reads and long reads, candi-
dates from Illumina short reads are merged with candidates from long reads, and
local assembly is conducted using long reads for each site.

Machine learning-based TE-insertion genotyping for short reads. As described
in the previous section, several features, e.g., the number of clipped reads, are used
to detect a TE insertion. Similarly, these features can also be used to determine the
genotype of an insertion. The key observation is that for no insertion/reference
homozygous (0/0), heterozygous (0/1), and homozygous (1/1), the quantity of the
features is different. Here, we considered TE-insertion genotyping as a classification
problem for which we can train a machine learning model59. As general machine
learning approaches, the genotyping module consists of three parts: feature
extraction, model training and genotype prediction. We extracted 14 features for
each candidate (Fig. S15b), normalizing them by the average sequencing depth
where needed. We prepared a training set by taking high-confidence calls (sup-
ported by both sides of clipped and discordant reads, a polyA tail, and a target-site
duplication) from unaffected individuals in WGS data from ~1800 trio families.
Specifically, if a call was made in only one parent and no supporting clipped reads
were present in the other parent, it was labeled as heterozygous (0/1). If a call did
not have supporting clipped reads in any parent, it was considered a false positive
and labeled no insertion/reference homozygous (0/0). If a call was made in both
parents, the ratio between discordant and all (discordant+ concordant) reads was
>0.85, and no fully mapped reads at the breakpoints, it was labeled as homozygous
(1/1). We identified a total of 334,609 homozygous, 1,070,309 heterozygous, and
18,959 no insertion sites. Using 70% of the genotyped sites as training data, we
trained a random forest model. Applying this model to the testing data (30%), we
obtained 99.7% accuracy (Fig. S15a;15c). The importance scores of the features are
shown in Fig. S15b.

Somatic TE-insertion detection. We first run xTea on the case sample to identify
all candidate TE insertions, both somatic and germline. Unlike in germline variant
calling, xTea considers the clonality of insertions (e.g., tumor purity) in deter-
mining detection parameters. Next, for each candidate TE insertion in the case
sample, we check the number of supporting clipped reads and discordant pairs in
the control sample. We report an insertion as somatic if there is no or few (criteria
adjusted automatically based on read depth) supporting reads. Without matched
control, it is more difficult to detect somatic TE insertions, especially if they are
present in a small fraction of cells; nonetheless, xTea can generate a list of can-
didates using a lower threshold for the number of supporting reads and use visual
inspection and experimental validation to remove false positives.

Annotation of deletions and inversions within L1s from long reads. For each L1
insertion detected from long reads, we align the assembled contig sequence to the
L1 consensus sequence with minimap260. If the contig is fully aligned without
clipping, we classify it as a full length or 5’ truncated copy based on the insertion
length. If the contig is aligned with clipping, then we realign the clipped sequence.
If the distance between the two aligned parts is sufficiently large (default: >20 bp),
we annotate the insertion as having an internal deletion. If the two parts are aligned
in different orientations, we label the insertion as having an internal inversion.
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Identification of ‘ghost’ full-length L1s from long reads. To identify full-length
L1s within centromeric repeats that conventional approaches cannot detect, we first
extracted all full-length reference L1 copies based on the RepeatMasker annotation.
Then, we collected all reads that align to these full-length L1s with clippings at both
flanking regions (Fig. S14). We observed that if reads come from the same ‘ghost’
copy, then the left/right clipped parts will be aligned close to each other, as they are
sequenced from the same flanking region. But they will not align to clipped reads
from a different ‘ghost’ copy. In other words, flanking region similarity could be
used to cluster the collected reads. Based on this observation, we aligned the
clipped sequences to each other and clustered them based on sequence similarity.
For each cluster, we performed local assembly to get the L1 and its two flanking
sequences. Next, we ran RepeatMasker on the two flanking sequences and anno-
tated it as a ‘ghost’ L1 if any flanking sequence is masked as Alpha, Beta, or HSATII
centromeric satellite repeats. To improve specificity, we examined full-length L1s
from centromeres only, although other highly repetitive regions, such as telomeres,
may also host them.

Detection of pseudogene insertions from long reads. First, we create a fasta file
that includes all exon sequences based on the GENCODE gene annotation (v33)61.
Then, we align all the exon sequences to the local assembled insertion sequences
with BWA29. If an assembled insertion sequence is covered by concatenated exons
of one gene and there is a polyA/T tail detected at the end of the insertion
sequence, then this insertion is considered a processed pseudogene insertion of that
specific gene. Note that some exons are short and may be multiply mapped. To
filter out false positives, we require the exon sequence to be uniquely mapped (by
default, with minimum mapping quality 30).

Detection of TE-insertion-mediated SVs from long reads. xTea detects different
types of SVs (deletions, inversions, and duplications) mediated by nonreference TE
insertions. Detection of such events is challenging and requires additional con-
siderations. For example, a TE-insertion-mediated deletion will have left-clipping
and right-clipping positions much farther apart than the size of target-site dupli-
cation (TSD) in canonical TE insertions. To detect this event, we first collect all the
left breakpoints at which reads are left-clipped (we describe the procedure for the
left side for simplicity; equivalent steps are carried out for the right side). For each
breakpoint, we extract its right-flanking region from the reference genome. Second,
for each breakpoint, we carry out local assembly for all its left-clipped parts. Third,
we align all the flanking regions of the ‘left’ breakpoints to the ‘right’ assembled
contigs. For two breakpoints A (left breakpoint) and B (right breakpoint), if the
flanking region of A is aligned to the assembled contig of B and vice versa, then we
designate A and B as paired breakpoints.

For each pair of breakpoints, we infer the type of SV represented by the
breakpoints based on how the insertion sequence is aligned to the TE consensus
sequence. The SV is a TE-insertion-mediated deletion if the internal sequence is
fully mapped and the two flanking regions are aligned apart from each other on the
reference genome. The SV is a TE-insertion-mediated inversion event if the
internal sequence is partially aligned on the consensus, the clipped part is well
aligned to the reference genome with different orientation, and the two flanking
regions are aligned exactly to the two sides of this inverted region on the reference
genome. The SV is a TE-insertion-mediated duplication event if the middle part of
the internal sequence is aligned to TE consensus, the two side clipped regions are
aligned to the same region on the reference genome, and the two flanking regions
are aligned exactly to the two sides of this region on the reference genome.

Detection of LTR recombination-associated dimorphic HERV copies. As shown
in Fig. S16, we first extract all the annotated reference LTR repeats from Repeat-
Masker. Second, for each extracted LTR repeat, we check whether reads are clipped
aligned at the boundary. If so, we collect all these clipped reads for each LTR repeat
and perform local assembly. Third, we align the two flanking regions of the LTR
repeat to the assembled contigs. If both of the flanking regions are well aligned, we
extract the middle part as the candidate HERV copy. Finally, we align the LTR
repeat to the candidate copy, and if it is aligned to both ends of the candidate copy,
and also the middle part is masked as HERV by RepeatMasker, we designate the
site as a dimorphic HERV copy driven by LTR recombination.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data of sample HG002 were downloaded from The Genome in a Bottle
Consortium (https://docs.opendata.aws/giab/readme.html). The Platinum Genomes
pedigree data were downloaded from dbGaP (https://www.ncbi.nlm.nih.gov/gap/) study
phs001224.v1.p1. Information on accessing raw data of the 15 colon cancer samples can
be found at https://docs.icgc.org/pcawg/data/. The long-read sequencing data were
downloaded from the International Genome Sample Resource (IGSR) at https://www.
internationalgenome.org/data/; AWS Open Dataset from https://github.com/human-
pangenomics/hpgp-data; and studies NCBI (https://www.ncbi.nlm.nih.gov/bioproject):
PRJNA300843, PRJNA300840, PRJNA288807, PRJNA339722, PRJNA385272,

PRJNA339719, PRJNA339726, PRJNA323611, PRJNA481794, PRJNA480858, and
PRJNA480712. The CHM13 data were downloaded from Telomere-to-telomere
consortium (https://github.com/nanopore-wgs-consortium/CHM13). Gene annotation
data were downloaded from GENCODE (https://www.gencodegenes.org/human/).
RepeatMasker annotation data were downloaded from https://www.repeatmasker.org/
species/hg.html. The data supporting the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
Source code for xTea is available for download at https://github.com/parklab/xTea
(https://doi.org/10.5281/zenodo.4743788).
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