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Identifying intestinal microbiota is arguably an important task that is performed to

determine the pathogenesis of inflammatory bowel diseases (IBD); thus, it is crucial

to collect and analyze intestinally-associated microbiota. Analyzing a single niche to

categorize individuals does not enable researchers to comprehensively study the spatial

variations of the microbiota. Therefore, characterizing the spatial community structures

of the inflammatory bowel disease microbiome is critical for advancing our understanding

of the inflammatory landscape of IBD. However, at present there is no universally

accepted consensus regarding the use of specific sampling strategies in different

biogeographic locations. In this review, we discuss the spatial distribution when screening

sample collections in IBD microbiota research. Here, we propose a novel model, a

three-dimensional spatial community structure, which encompasses the x-, y-, and z-axis

distributions; it can be used in some sampling sites, such as feces, colonoscopic biopsy,

the mucus gel layer, and oral cavity. On the basis of this spatial model, this article also

summarizes various sampling and processing strategies prior to and after DNA extraction

and recommends guidelines for practical application in future research.

Keywords: sampling strategies, community structure, IBD microbiota research, feces, colonoscopic biopsy,

mucus gel layer, oral cavity

INTRODUCTION

Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis (UC),
are emerging as a part of a worldwide epidemic. CD was first diagnosed by Dr Burril B. Crohn
(Crohn et al., 1932), in New York, in 1932, and UC was first described by White (1888), in Europe,
in 1888. The former condition can cause inflammation in any digestive tracts, while the latter

Abbreviations: IBD, Inflammatory bowel disease; CD, Crohn’s disease; UC, Ulcerative colitis; NGS, Next-generation
sequencing technologiesl; HMP, International Human Microbiome Project; IBS, Irritable bowel syndrome; FMT,
Fecal microbiota transplantation; VOC, Volatile organic compound; SOP, Standard operating procedures; IHMS,
International Human Microbiome Standards; OUT, Operational taxonomic units; PBS, Phosphate buffered saline; ADD,
Abundance–distance dispersion; MGL, Mucus gel layer; MUP, Mucus-binding protein; PCR, Polymerase chain reaction; PSB,
Protected specimen brush; LCM, Laser capture microdissection; ANOVA, Analysis of variance; DSS, Dextran sulfate sodium.
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invariably affects the mucosa of the large intestine and rectum.
Previous studies revealed that the prevalence of IBDs were greatly
related to time (Molodecky et al., 2012), regions (Reinberg, 2015),
age (Choi et al., 2015; Connelly et al., 2015), genes (Sharp et al.,
2015; Wang and Achkar, 2015; Yang et al., 2015), stress (Gray
et al., 2015), diet (Vagianos et al., 2016), etc., Some of these
factors, including diet, were thought to be crucially connected
to the genetic imbalance of the intestinal microbiota (Kosiewicz
et al., 2011; Manichanh et al., 2012; Gevers et al., 2014; Kostic
et al., 2014; Munyaka et al., 2016). Several studies have shown
dysbiosis of the gut microbiome between patients with IBD and
healthy individuals (Sokol et al., 2006; Andoh et al., 2012; Ottman
et al., 2012). Owing to the decreasing cost and rapid development
of next-generation sequencing (NGS) technologies (Zoetendal
et al., 2008; Sheridan, 2014), the advancement of bioinformatics
tools (Schloss et al., 2009; Caporaso et al., 2010; Glass et al.,
2010), and the updating of online databases (DeSantis et al.,
2006; Quast et al., 2013), 16S rRNA gene amplicon sequencing
(Minamoto et al., 2015; Scher et al., 2015) and metagenomics
analysis (Pérezcobas et al., 2014; Wang et al., 2015) have opened
new frontiers to identify the variability of IBD microbiota
research, which simultaneously characterizes multiple samples;
it can also enable subsequent studies of microbial communities,
both structurally, and functionally, while determining their
interactions with the habitats they occupy.

Besides IBD, intestinal dysbiosis also plays a profound
role in multiple chronic and metabolic diseases, including
diabetes (Heintz-Buschart et al., 2016), obesity (Greenhill, 2015),
irritable bowel syndrome (IBS) (Bennet et al., 2015), and so
forth. Similar to IBD research; many studies conducted on
the intestinal microbiota in relation to diabetes mellitus have
predominantly used feces samples (Qin et al., 2012; Heintz-
Buschart et al., 2016; Knip and Siljander, 2016). Additionally,
in view of the connections between the periodontitis and
diabetes mellitus, some studies have explored the diversity of
subgingival microbiota between healthy controls and diabetics
(Demmer et al., 2016). When investigating the relationship
between intestinal microbiota and obesity, plenty of studies
targeted the fecal microbiota for the reason that it is easily
obtainable (Aguirre and Venema, 2015). Even though the
small intestine is much more difficult to acquire than feces
specimens, some researchers believed that sampling site should
focus on the small intestinal microbiota, because it is where the
calories are absorbed (Angelakis and Lagier, 2016). Moreover,
a recent work showed that the obesity affected the subgingival
microbial composition (Maciel et al., 2016). In IBS studies,
the prevalently obtainable materials when sampling intestinal
microbiota are feces and mucosal biopsies (Rangel et al.,
2015; Parthasarathy et al., 2016). Accordingly, each disease
has suitable sampling methods depending on pathophysiology
and feasibility of the operation. Compared with other diseases,
spatial ecological patterns are evident in common diseases of
the colon, including the distribution of UC, and CD, which
make the sampling sources diversified in IBD research (Lavelle
et al., 2015). Meanwhile, understanding how the potentially
complex pathogenesis of IBD occurs requires the integration of
tools from spatial ecology with comprehensive sampling sources

to define microbial dysbiosis in various niches (Lavelle et al.,
2013).

The human body is composed of many niches. Biogeography
studies the patterns of biological diversity in different niches,
varying in both time and space (Fierer, 2008). The selection
pressures of biology and the environment, elucidated by
biogeography, are thought to be responsible for shaping the
various habitats in the body (Lavelle et al., 2016). The community
structure of microbiota across spatial niches might be disturbed
to different degrees and in association with various disease
states. Without cooperation among the other dimensions of
microbial ecology, it may be difficult to investigate subjective
signals from disturbances in a single niche (Jeffery et al., 2012;
Lozupone et al., 2012). The International Human Microbiome
Project (HMP)1, with its sum total funding of $115 million,
has showcased the distinct variations of the human microbiota
in different community structures (Group et al., 2009). Other
studies of the human microbiome have also characterized the
bacterial biogeography of different habitats (Costello et al.,
2009; Grice et al., 2009; Zhou et al., 2013). Numerous research
initiatives have shown interpersonal variation in human-
associatedmicrobiota in IBD (Lavelle et al., 2015, 2016). Likewise,
intrapersonal variability has been discovered between different
niches. Currently, the bacterial diversity in IBD research is
determined by analyzing different community structures, and
following the various aspects of feces (Kolho et al., 2015; Norman
et al., 2015), colonoscopic biopsy samples (De Cruz et al., 2015;
Rossen et al., 2015), and the mucus gel layer (MGL) (Johansson,
2014; Johansson et al., 2014). To obtain the MGL, researchers
often use rectal swabs (Araújopérez et al., 2012), microbiological
protected specimen brushes (PSBs) (Lavelle et al., 2013), and
laser capture microdissection (LCM) (Lavelle et al., 2015). Recent
research studies have indicated that oral microbiota will be used
in clinical and diagnostic utilities (Yoshizawa et al., 2013; Said
et al., 2014). Despite very promising prospects in the future,
there is still no clear guidance identifying those methodologies
that can be accurately used to systematically collect and process
the samples. Some highly complex biological samples are often
difficult to process, which can introduce much bias. These
drawbacks can potentially influence the final result; yet, to
comprehensively study the microbial diversity in IBDs, more
information is indispensable in the design of spatial sampling
strategies.

In this review, we focus on discussing the different sampling
strategies used in IBD microbiota research from the perspective
of three planes. Y-axis distribution includes the oral cavity and
feces. X-axis gradients are distributed in intestinal biopsies,
with sampling levels varying in the ileum, colon (ascending
colon, transverse colon, and descending colon), rectum, and
caecum. Z-axis distribution involves collecting luminal, mucosal,
and mucous communities in a specific and regional manner,
and it includes the feces, colonoscopy biopsy samples, and the
MGL. Starting with a description of the y-axis distribution, we
discuss the classic sampling sites—feces and the oral cavity. We

1International Human Microbiome Standards (IHMS) project http://www.
microbiome-standards.org/ [Online]. [Accessed].
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then describe the x-axis distributions of colonoscopy biopsy.
Ultimately, we will concentrate on the different sampling
methods used for the MGLs, which are located on the z-axis.
We herein provide an overview of the most crucial sampling
strategies to help researchers make informed decisions.

SAMPLING SITES DISTRIBUTED ALONG
THE Y-AXIS

Feces
In the 1680s, Leeuwenhoek first described fecal bacteria using
homemade microscopes (Egerton, 2006). With the rapidly
evolving research on IBD in the nineteenth century, fecal flora
was frequently used to represent intestinal microflora, as it
was easily collected in patients. Firmicutes and Bacteroidetes
phyla constitute the majority of dominant fecal microbiota
using 16S rRNA amplicon sequencing, and with Bacteroides
being the most abundant (Arumugam et al., 2011). Some work
suggested that fecal bacterial communities could be divided into
three enterotypes (Bacteroides, Prevotella, and Ruminococcus;
Arumugam et al., 2011; Wu et al., 2011). Nowadays, fecal
microbiota transplantation (FMT) has been widely used in the
treatment of patients with IBD, which was found to be an
effective therapy for some recipients (Kelly et al., 2015; Ince
et al., 2016; Vermeire et al., 2016); thus, it was concluded that
there should be some close connections between fecal microbiota
and IBD. Probert et al. (2014) compared IBD patients and
animal models of colitis with healthy individuals, and they
found that the volatile organic compound (VOC) in feces held
a potential role in identifying a novel diagnostic method for
IBD. With a high sensitivity to inflammatory states, bacterial
biomarkers in stool may therefore constitute a promising non-
invasive source to diagnose IBD (Berry et al., 2015). In IBDs,
the pH progressively increases along the duodenum to the
terminal ileum; it decreases in the caecum, and then slowly
rises from the colon to the rectum (Nugent et al., 2001).
Such changes in colonic physiology are possibly reflected in
the microbiota. Additionally, important factors such as diet
(Lee et al., 2016), physical exercise (Queipoortuño et al., 2013),
smoking habits (Biedermann et al., 2013), and antibiotic use
(Pérezcobas et al., 2013) should exert subtle differences on fecal
microbiota composition; of these, antibiotic use has a strong
impact on one’s initial microbiota composition (Macfarlane,
2014; Zhang et al., 2015b). Consequently, all of these issues shall
be considered prior to sampling.

Sampling Operating Procedures
In view of the importance of the fecal sampling method, the
study of the standard operating procedures (SOP) used to collect
the fecal specimens has been, and still is, crucial for identifying
pathogens. In the early stages, Moore (Moore and Holdeman,
1974) pointed out that some unique problems may arise with
respect to the isolation and identification of intestinal bacteria in
fecal flora studies, including collection, shipping, and isolation.
Some experiments confirmed that the collection procedures and
storage conditions did influence the diversity and integrity of
the microbial flora (Cardona et al., 2012; Gorzelak et al., 2015;

Boers et al., 2016; Nishimoto et al., 2016). It has been suggested
that stool consistency is strongly associated with gut microbiota
diversity (Vandeputte et al., 2016).

Swidsinski et al. (2008a,b) developed a new method using
a punched-out freshstool cylinder; they demonstrated that the
fecal flora were highly structured and spatially organized. The
homogenization step in this procedure significantly reduced
the intra-individual variation in the detected bacteria (Hsieh
et al., 2016). Specifically, the results indicated that the relative
abundance of Firmicutes to Bacteroidetes was significantly higher
when snap-freezing fecal samples were compared with fresh
samples (Bahl et al., 2012). Meanwhile, a study recommended
that stool should be frozen within 15 min of being defecated,
and it should be stored in a domestic, frost-free freezer for
<3 days before DNA extraction (Carroll et al., 2012). During
storage and processing, freeze–thaw cycles were detrimental to
microbial cell integrity (Cardona et al., 2012). Conventionally,
samples can be stored at −80◦C in the long term until DNA
extraction (for no longer than 6 months; Carroll et al., 2012).
Based on the above, the ideal storing procedure might be as
follows: homogenizing prior to sampling, sampling aliquot fresh
stool to avoid subsampling; and then freezing at 80◦C as soon
as possible. If the laboratory has difficulty snap freezing, some
researchers believe that RNAlater R© (Life Technologies) might
be selected to maintain DNA stabilization at +4◦C, or even at
room temperature, for several days without affecting the 16S
rRNA repertoire (for specific treatments, see Figure 1). However,
a new study suggested that RNAlater should be avoided due to its
ability to degrade the yield of DNA and bacterial taxa (Gorzelak
et al., 2015). Otherwise, a guanidine thiocyanate solution might
ensure the high stability of fecal microbiota at room temperature
(Nishimoto et al., 2016). Despite this, there are still no universally
accepted standards in the field of feces sampling.

Sample Extraction
According to the instructions and manual operation, 100 or
200mgwere themost frequently used dosages. One study showed
that a 200mg starting weight produced significantly higher DNA
yields than 100mg (Claassen et al., 2013); however, there was no
similarity with respect to DNA purity. Conversely, Ariefdjohan
(Ariefdjohan et al., 2010) tested 10–50mg fecal samples and
found that these weights, and not 100mg or 200 mg, could result
in maximum DNA yields. The phenol: chloroform-based DNA
isolation method was illustrated to effectively obtain the requisite
DNA yield (Mackenzie et al., 2015); however, this method is
not suitable for clinical or large-scale studies. Owing to the
bead-beating step, hot phenol with bead beating resulted in a
proportional increase in Firmicutes (Wu et al., 2010; Mackenzie
et al., 2015).

With respect to DNA extraction kits, those associated with the
HMP view theMoBio PowerSoil R© DNA Isolation Kit as the most
effective microbial DNA extraction method. Moreover, some
researchers involved in the International Human Microbiome
Standards (IHMS; http://www.microbiome.standard.org/) prefer
to use the QIAamp DNA Stool Mini Kit. Some researchers
have conducted several studies on different extraction methods.
As a result, the combination of mechanical cell disruption by

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 February 2017 | Volume 7 | Article 51

http://www.microbiome.standard.org/
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Zhang et al. Sampling Strategies in IBD Microbiota

FIGURE 1 | The impact of methods that can be used to collect feces before laboratory handling. When the fecal samples are transported to a biology lab

within 4 h, they only need to be placed in a white opaque polypropylene pot with a transparent lid and a white opaque pot to hold the bag. Then, the samples are

frozen and shipped on dry–ice to the lab (A). When the samples can be brought to the laboratory within 4–24 h, tools should be used to add a white anaerobic

generator paper bag on the basis of A to maintain a anaerobic atmosphere (B). The plastic tubes, which have a spoon attached to their lids, are used to collect feces

when the transit time is longer than 1 day. Fill up to two-thirds of the spoon with feces, and do not overfill. Then, the spoon and anaerobic generator paper bag are

inserted in the opaque plastic bag (C). Plastic tubes containing the stabilizing solution can keep the fecal DNA stable at room temperature for a few days (D).

repeated bead-beating (Yu and Morrison first described the
repeated bead-beating and column purification method, Yu
and Morrison, 2004) for 6 min, (Salonen et al., 2010) and
with a 95◦C heating step, showed greater bacterial diversity; it
resulted in the significantly improvedDNA extraction abundance
of archaea and some bacteria, especially for bacteria in the
phylum Firmicutes, including Clostridium cluster IV (Salonen
et al., 2010; Thomas et al., 2015). However, bead-beating for
long periods of time had a negative effect on DNA yield, and
zirconium–silica beads were considered to be the best choice
(Salonen et al., 2010). Due to the aromatic acids that exist
in stool, some inhibition removal technology or substances
were utilized to prevent interference—such as the inhibitEX
tablets in the QIAamp DNA Stool Mini Kit (Thomas et al.,
2015). Additionally, the size of the spin columns may also
influence filter efficiency; for instance, sizes smaller than 0.45µm
would hold back some larger fragments (Thomas et al., 2015).

Several studies have compared various DNA extraction kits
and methods to assess the bacterial diversity in stool samples
(Wu et al., 2010; Claassen et al., 2013; Kennedy et al., 2014;
Mackenzie et al., 2015; see Table 1). It was found that finding
a protocol to extract DNA without bias is a challenging
task.

Sample Sequencing
Two methods are frequently used for taxonomic classification
of organisms that are found in microbiomes: 16S rRNA gene
amplicon sequencing and metagenomic sequencing. 16S rRNA
gene amplicon sequencing is increasingly being used to provide
information about the compositions and the relative abundance
of microorganisms and classify microbial communities based
on amplification of 16S rRNA gene, both taxonomically and
phylogenetically (Clarridge, 2004). To analyze 16S rRNA gene
sequences from microbial communities, QIIME, Mothur, and
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LotuS have been widely used to process data from high-
throughput sequencing (Schloss et al., 2009; Kuczynski et al.,
2011; Hildebrand et al., 2014). Additionally, PICRUSt (http://
picrust.github.com/) has been developed to predict metabolic
pathways based on 16S data and a reference genome database
(Langille et al., 2013). Although this approach is unable
to outperform metagenomic sequencing, it can predict and
compare probable functions across a large amount of samples
from different niches. Meanwhile, it can reproduce functional
information that shows highly similar to the metagenomic
sequencing in the HMP and other data sets (Anonymous,
2013). Compared with 16S rRNA gene amplicon sequencing,
metagenomic approach is able to identify some of the distinctive
functional attributes encoded in intestinal microbiota and
comprehensively characterize metabolic capabilities of the
microorganisms (Gill et al., 2006). Several tools have been
developed to process the metagenomic data, such as MetaPhlAn
(Segata et al., 2012), HUMAnN (Abubucker et al., 2012), and
TruSPADES (Hildebrand et al., 2014). All approaches have
merits and drawbacks. 16S rRNA gene sequencing is more cost-
effective and less time consuming thanmetagenomic sequencing.
However, metagenome approaches enable the analyses of all
kingdoms as well as viral sequences. The 16S rRNA gene
captures broader range of microbiome diversity, but with a
lower resolution and sensitivity compared with metagenomic
(Poretsky et al., 2014). Limitations withstanding, 16S rRNA is
limited by the biases inherent to PCR amplification, which results
from the lack of truly universal primers and different copy
numbers of 16S rRNA gene (Vallescolomer et al., 2016). As for
metagenomic sequencing, it could be less efficient at detecting
rare species in a microbial community compared with 16S rRNA.
Metagenomic sequencing also requires advanced bioinformatics
skills to process and analyze the data (Shakya et al., 2013).

Theoretically, the best analysis method currently available
is metagenomics; however, its associated costly budget is not
suitable for clinic settings or large cohorts, and it faces
some limitations with respect to environmental interactions.
As a result, it was found that until recently, 16S rRNA gene
amplicon sequencing is often used as an exploratory step
before metagenomic research. With respect to the sequencing,
the 16S rRNA database only includes bacteria and archaea;
yet, the absence of viruses and eukaryotes misses many
pathogenic factors, which may bias the analysis. The smallest
units of operational taxonomic units (OTUs) are species,
so the strains resulting in antibiotic resistance, as well as
mobile elements cannot be identified (Thomas et al., 2015).
Besides, Bifidobacteriaceae are not well represented in some 16S
V1–V3 analyses (Jumpstart Consortium Human Microbiome
Project Data Generation Working, 2012). According to some
investigations, the optimal choice for the variable regions in
the 16S rRNA approach were V1–V3 and V3–V5, as the
choice of a V6–V9 primer did not appear to efficiently cover
the V6–V9 regions (Wu et al., 2010; Jumpstart Consortium
Human Microbiome Project Data Generation Working, 2012).
Otherwise, the amount of chimera increased and amplified the
polymerase chain reaction (PCR) bias (Schloss et al., 2011). To
reduce the bias of the PCR methods, and to minimize the errors

introduced during sequencing, some researchers developed a
method known as Low-Error Amplicon Sequencing (LEA-Seq)
(Faith et al., 2013), which has been applied to QIIME. Next,
for high-throughput sequencing, both 454 GS FLX and 454
Titanium sequencing methods can be used, depending on
convenience (Wu et al., 2010). With read lengths of currently
up to 2 × 300 bp and low sequencing costs, Illumina’s MiSeq
(Solexa) is increasingly becoming one of the most potential
sequencing platforms worldly used in IBD research (Quince et al.,
2015; Chung et al., 2016). It gathers the integration of cluster
generation, sequencing, and data analysis in a single instrument
and can analyze data within 24 h (as few as 8 h; Liu et al.,
2012). For sequencing technology, instead of pyrosequencing
technology applied to 454 sequencer, MiSeq leverages sequencing
by synthesis. Compared with 454 platforms, the MiSeq has a
higher throughput per run and a lower error rate but a shorter
reads (Liu et al., 2012; Loman et al., 2012). At the start of
the IHMS project, the SOPs of fecal sample self-collection,
conservation practice, and formulated sequencing standards are
crucial for better understanding the fecal microbiome and for
optimizing data comparisons in clinical settings.

Oral Cavity
While feces are frequently used in IBD research, there are certain
limitations associated with outpatient distaste for handling these
samples. Yet, researchers seek a simpler, more efficient, and more
acceptable method. Oral samples are an important option. The
oral cavity is a complex environment that includes the saliva,
the tongue, teeth, tonsils, the buccal mucosa, and gingival sulci,
which are colonized by a number of molecular and microbial
analytes and bacteria (Human Microbiome Project, 2012). The
microbiota in the oral cavity has a multitude of opportunities to
reach the gut (Rochet et al., 2007). Pittock et al. (2001) reported
oral lesion in nearly half of children that were newly diagnosed
with CD. Similarly, one prospective study found that more
than 30% of children with CD had involvement of the mouth
(Harty et al., 2005). Another study noted a significant decrease
in the overall diversity in the oral microbiota of pediatric CD
patients (Docktor et al., 2012). Some bacteria in the oral cavity
have recently been investigated for their association with IBD
(Yoneda et al., 2016); these bacteria can be analyzed as microbial
biomarkers for evaluating pathologies of the oral cavity, such as
Campylobacter concisus (Ismail et al., 2012) and Fusobacterium
nucleatum (Swidsinski et al., 2009). Thus, using oral microbial
diagnostics is not a novel concept. Nowadays, scientists pursue
a timely, accurate, cost-effective, and non-invasive diagnostic
method to detect IBD. In view of these, further research on
the oral microbiota in IBD might hold potential clinical and
diagnostic utility in the future (Docktor et al., 2012). In this
review, two frequently used sampling origins are primarily
discussed: saliva and subgingival plaques.

Saliva
The average adult produces more than 1,000 mL of saliva
per day, which always flows into the gastrointestinal tract.
Thus, it can be stated that the salivary microbiota affects
the development of gut microbiota in some respects. The
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composition of salivary microbiota was found to be different
between CD patients, UC patients, and healthy controls (Said
et al., 2014). Furthermore, when analyzing the composition of
the tongue, buccal mucosa, saliva, and stool microbiota in colitis
patients, the saliva microbiota exhibited the most alterations
in terms of abundance (Rautava et al., 2015). The dominant
genera, Veillonella and Haemophilus were recommended to
largely contribute to dysbiosis of salivary microbiota in IBD
patients (Said et al., 2014). At the species level, C. concisus
(Ismail et al., 2012; Mahendran et al., 2013) and Mycobacterium
avium Paratuberculosis (Bruno and Isabelle, 2015) have been
investigated for its role in saliva dysbiosis of IBD patients.

For sample processing, DNA yield and quality, as well as
16S rRNA/DNA products and representations of the microbial
community from oral wash samples, were investigated by six
commonly used commercial DNA extraction kits, utilizing either
mechanical bead-beating or enzymatic methods for cell lysis
(Wu et al., 2014). Researchers discovered that mechanical bead-
beating extraction kits produced less total DNA when compared
with the enzymatic methods. On the other hand, microbial
diversity showed no difference by either mechanical bead-
beating or enzymatic extraction methods. As non-invasive and
informative as saliva sampling is, but now there are currently
no universally accepted techniques for sample collection. Prior
to sampling the saliva, one must clean the oral cavity by
rinsing it with water; this is imperative to avoid the presence of
contaminants (Yoshizawa et al., 2013).

Subgingival Plaques
As a human microbiome community, dental plaques were
initially observed by Leeuwenhoek (Dobell, 1932) over 300
years ago. Using combinatorial labeling and spectral imaging
fluorescent in situ hybridization (FISH) to differentiate up to 15
fluorescent probes, Welch and colleagues (Mark Welch et al.,
2016) showed, for the first time, the informative value of the
oral microbiota biogeography at the micron scale. The fantastic
color images that they created showed that the oral cavity
acted as a “coaggregation.” Similar to the role of canopies
in hedgehog structures, Corynebacterium primarily gathered in
subgingival plaques and supragingival dental plaques. Zhang
et al. (2015a) first combined subgingival plaques and feces to
analyze the microbiota perturbed in disease, and they partly
normalized after treatment; at the same time, the researchers
strongly confirmed the overlap in the abundance and function
of species at different body sites. This will lead to potential ways
to use the supragingival microbiota community for diagnosis and
prognosis. Several recent studies have demonstrated connections
between the composition of IBD and periodontitis (Kelsen
et al., 2013; Elburki, 2015; Agossa et al., 2016). Meanwhile,
additional studies have illustrated the associations between the
composition of the subgingival microbiota and IBD (Brito
et al., 2013; Kelsen et al., 2015). By analyzing inflamed
subgingival sites, which depends on the checkerboard DNA–
DNAhybridization technique, researchers found that the levels of
Prevotella melaninogenica, Staphylococcus aureus, Streptococcus
anginosus, and Streptococcus mutans are higher in CD patients
than in controls. Furthermore, UC patients harbored a greater

abundance of Staphylococcus aureus and Peptostreptococcus
anaerobius than controls (Brito et al., 2013).

Thus, it is essential to study and collect subgingival plaques.
To do so, place cotton balls in such a way that they can clean
out residual supragingival plaques, prior to the collection of
subgingival samples. Collect the subgingival plaque in a tube
with buffer, using a sterile Gracey curette to gather the targeted
teeth of the mesio-buccal surface. Then, firmly close the cap
on the tube and shake the tube for 5 s to entirely homogenize
the sample distribution in the buffer. Finally, place the sample
on ice and send it to the biology lab within 4 h (McInnes and
Cutting, 2010). The HMP method uses the MoBio PowerSoil R©

DNA Isolation Kit; other researchers have used the MasterPure
DNA Extraction Kit (Moutsopoulos et al., 2015), the FastDNA
spin Kit (Kuehbacher et al., 2008), the PSP Spin Stool DNA Plus
Kit (Kelsen et al., 2015), and others. Optimal methods for DNA
extraction are still under development.

SAMPLING SITES DISTRIBUTED ALONG
THE X-AXIS

Colonoscopy Biopsy
Accordingly, luminal microbiota and mucosa-associated
microbiota have been reported to be different in IBD
(Lepage et al., 2005; Morgan et al., 2012; Gevers et al., 2014).
Fecal microbiota might not adequately represent bacterial
communities at the epithelial interface. Colonoscopy biopsy is
the most common sampling technique used to assess microbial
niches associated with the intestinal mucosa; it was shown to play
a crucial role in diagnosis, and it can distinguish between disease
types in IBD (Salvatori et al., 2012). Mucosal biopsies sample
multiple amounts of the submucosa, epithelium, and MGL. The
most comprehensive method to analyze the mucosa-associated
microbiota may be proctocolectomy. In fact, Chiodini et al.
(2013) were the first to examine the microbial populations of
submucosal tissues using proctocolectomy during active disease;
they also discussed the submucosal microbiota and biotypes
within CD. Some other works also elected to use tissue sections
of the terminal ileum and colon, obtained during surgery, for
this process (Kleessen et al., 2002; Neut et al., 2002). As accurate
as proctocolectomy is, this method cannot be applied to most
of IBDs, except on rare occasions. Therefore, a more suitable
method to obtain the tissue should be colonoscopy.

Sampling Spatial Distribution and Processing
It has been said that diverse bacteria distribute heterogeneously
along the small bowel to the colon (Eckburg et al., 2005). Biopsy
specimens can be taken from different gut locations, such as the
ileum, colon (ascending colon, transverse colon, and descending
colon), rectum, and caecum. In addition, the intestinal tract
contains a variety of distinct microbial communities along the
ileum (around 155 cm from the anus), caecum (around 150 cm
from the anus), ascending colon (around 142 cm from the anus),
transverse colon (around 109 cm from the anus), descending
colon (around 64 cm from the anus), and rectum (around
10 cm from the anus; Zhang et al., 2014), and the difference
between longitudinal regions in the intestinal tract should be
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positioned to select the target regions for sampling (Figure 2A).
Comparing the microbial diversity of samples obtained with
sheathed forceps with those obtained with standard unsheathed
forceps, biopsies from the specific sites were not contaminated
with the work channel (Dave et al., 2011). Additionally, a
novel biopsy technique (Brisbane Aseptic Biopsy Device) has
been developed to prevent cross-contamination from intestinal
luminal contents (Shanahan et al., 2016). To avoid the influence
of biopsy specimen sizes of colonoscopic tissue, researchers
quantified tissue cell numbers using primers of the β-globin gene
to determine the total amount of mucosa-associated microbiota
in the biopsy specimens (Wang et al., 2014b). Previous studies
revealed that bowel preparation (PEG electrolyte solution) before
endoscopy affected the composition and diversity of the tissue
and stool samples (Harrell et al., 2012; Jalanka et al., 2015; Shobar
et al., 2016). Dividing a single dose into two separate dosages
may introduce fewer alterations to the intestinal microbiota,
which is preferred in clinical practice (Jalanka et al., 2015). Still,
bowel preparation may have little effect on the next sampling
procedure, as it has a short-term effect on the composition of
the intestinal microbiota (O’Brien et al., 2013). Once taken, some
works suggested that biopsy samples were placed in a cryovial
with a lid, immediately snap-frozen in liquid nitrogen, and then
stored at −80◦C until further analysis (van den Heuvel et al.,
2015; Hedin et al., 2016; Munyaka et al., 2016). However, other
mucosal biopsy specimens were harvested and then washed twice
in 500 mL of phosphate buffered saline (PBS; pH 7–8) to ensure

that there was no fecal contamination prior to being snap–frozen
in liquid nitrogen (Shen et al., 2010; Sanapareddy et al., 2012;
Budding et al., 2014; Berry et al., 2015). Considering the actual
process, a protective solution can maintain the sample at −20◦C
for a few weeks, or at 4◦C for 24 h (Zoetendal et al., 2006). Despite
this, it is recommended that biopsy samples be processed as soon
as possible to avoid the lysis of microbial cells.

Sample Extraction and Analysis
Quantities of bacterial cells in biopsy samples are 1% less than
in feces samples (Lyra et al., 2012). DNA extraction procedures
should be more carefully conducted in order to better represent
the microbial community. A study that compared some DNA
extraction methods, drew the conclusion that the bead-beating
and column method, as well as high molecular weight methods,
were likely to result in the increased production of DNA yield,
which primarily included the Firmicutes bacteria (Ó Cuív et al.,
2011). Nowadays, a large number of studies have preferred to
use the QIAamp DNA Mini Kit for IBD biopsy DNA extraction
(Hansen et al., 2013; Chen et al., 2014; Wang et al., 2014a;
Lavelle et al., 2015). The positive effect of bead-beating on
mechanical cell lysis has been discussed for fecal samples, which
are sometimes also used in DNA isolation from biopsy samples
(Chen et al., 2014). However, it appears that bead-beating may
not require efficient microbial DNA extraction from biopsy
specimens due to the fact that mechanical cell lysis of the biopsy
specimens might increase the concentration of eukaryotic DNA,

FIGURE 2 | A diagram of sampling sites distributed along the x-axis and z-axis with representative pictures from each sampling method. Colonoscopic

biopsy samples are collect from six levels: the ileum, ascending colon, transverse colon, descending colon, rectum, and caecum (A). Samplings of the mucus gel

layer occur at six sections using three methods (B).
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which may bias 16S rRNA gene sequencing analysis (Carbonero
et al., 2011). A microbiome DNA enrichment method might
potentially yield a higher fraction of microbial production, which
methylated the human genomic DNA to selectively separate from
microbial DNA (Yigit et al., 2016).

As for the spatial community structures (ileum, ascending
colon, transverse colon, descending colon, and rectum) of
human mucosal-associated intestinal microbiota, spatial
variations of mucosa-associated microbiota have not provided
feasible explanations to account for the observed longitudinal
variations along the intestine, despite the previously observed
spatial heterogeneity of mucosa microbiota (Aguirre de Carcer
et al., 2011; Hong et al., 2011). Single-species abundance–
distance dispersion (ADD) modeling results indicated that
it was impossible to use conventional multivariate analysis
methods to describe spatial heterogeneity and co-relationships
across the multiple loci of microbial communities. The co-
occurrence network analysis (Barberan et al., 2012) revealed
a huge specialization among vertical and lateral gradients,
and it addressed how interpersonal variation was a significant
constituent of variance, particularly in light of the fact that the
microbiota remains stable (Faust et al., 2012; Zhang et al., 2014).
To reveal the longitudinal gradients in the microbiota along
the x-axis distribution, studies may need to develop suitable
statistical models and bioinformatics software.

SAMPLING SITES DISTRIBUTED ALONG
THE Z-AXIS

Mucus Gel Layer
Secreted by goblet cells that reside in intestinal crypts, the colonic
MGL partially or entirely covers the epithelium and creates
a boundary between the lumen and the host mucosa. Mucus
is subsequently secreted and the layers fall off, generating a
“district” that is carried into the fecal stream (Swidsinski et al.,
2008b). The mucus is continuously secreted and can be divided
into two layers: an outer, loosely adherent layer that can be
removed by suction or gentle scraping; and an inner, firmly
stratified layer that adheres to the epithelial cells (Atuma et al.,
2001). In mouse models, the thickness of both MGL layers is
appropriately estimated at 150µm, with the outer layer measured
at 100µm and the inner layer at 50µm (Johansson et al., 2008).
The thickness of the human MGL is thought to be between
107 and 155µm, depending on the loci (Pullan et al., 1994).
Both layers are made up of MUC2-type mucin (Johansson et al.,
2008). In healthy individuals, the inner layer is devoid of bacteria,
while the outer layer serves as a habitat for the commensal
microbiota (Hansson and Johansson, 2010; Johansson et al.,
2011). The architecture of MGL exhibits a diverse range of
polymers, including the mucus-binding protein (MUP), which
offers numerous binding locations for both pathogenic and
commensal bacteria (MacKenzie et al., 2009; Alemka et al.,
2012). Some commensal bacteria are able to bind to and degrade
the MUP, and they can be utilized as a barrier to pathogen
binding. Mucin degradation of the MLG provides nutrients for
some commensals, and it may initiate the initiation of pathogen

invasion (Lennon et al., 2014b). As a result, the MGL plays a
double role, providing a mutually beneficial environment for
the host cells and resident microbiota, while serving as the
first line of defense against pathogen bacteria translocating into
the mucosa (see Figure 3). In IBD, bacteria are allowed to
penetrate the inner MGL and reach the epithelium, triggering an
inflammatory response; this suggests that the barriers of MUC2,
with the absence of the MUC2 mucin polymer constituent, are
disturbed, resulting in inflammatory responses (Schultsz et al.,
1999; Swidsinski et al., 2007; Johansson et al., 2014).

On the basis of the aforementioned biological mechanism,
identification of the mucus-degrading bacteria in the MGL is
crucial. Conventionally, the MGL isolated from the precise
fixation of intestinal biopsies or tissues, where dehydrating
aldehyde fixatives are used, can result in loss and detachment
of the mucus. Matsuo (Matsuo et al., 1997) demonstrated that
using Carnoy’s solution can preserve the integrity of surface
mucus in paraffin sections of human colon specimens. Recent
developments in overcoming this experimental limitation have
achieved great success. Here, we describe three main sampling
methods: rectal swab, the microbiologically protected specimen
brush, and LCM. The vivid cross-sectional organization of each
sampling method can be seen in Figure 2B.

Rectal Swab
As a simple, standardized, non-invasive, and inexpensive
method, rectal swab represents an important contribution when
the patient does not wish to handle feces or undergo the
discomfort and inconvenience of colonoscopy. A swab-sucked
microbiota is reproducible, and the procedure can be performed
by either the patient at home or by medical professionals in
clinical settings; thus, this method may be suitable for clinical
diagnostic purposes and clinical studies (Budding et al., 2014).
Rectal swabs aim at collecting the colorectal mucus (Braun
et al., 2009). Rectal swab specimens can be easily handled and
stored immediately without perturbation of the microbiota. Swab
specimens are obtained about 1–2 cm from the anal verge
and collected by inserting a sterile cotton-tipped swab. This
pioneering work suggested that swab sampling, without previous
bowel preparation, harvested undisturbed microbiota (Budding
et al., 2014). The swab was inserted into sterile PBS shaken for
at least 2 min to ensure the sufficient release of microbiota, and
the samples were then stored at −80◦C until DNA isolation
(Araújopérez et al., 2012); conversely, the samples could also
be placed in tubes containing 500 mL of Reduced Transport
Fluid buffer and maintained at room temperature for 2 h prior
to storage at −20◦C until DNA isolation (Syed and Loesche,
1972; Budding et al., 2014). For DNA isolation, the bead-beating
step may have a negative effect on the estimated abundance of
Bacteroidetes (Budding et al., 2014). DNA extraction kits can
use the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) or
Qiagen’s DNeasy Blood and Tissue Kit (Araújopérez et al., 2012;
Budding et al., 2014).

Previous work that has analyzed T-RFLP profiles and
quantitative PCR (qPCR) has highlighted the differences in
community diversity between samples obtained by biopsy or
swab, and it was found that a higher abundance of Lactobacillus
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FIGURE 3 | The mechanism underlying mucin degradation in healthy individual and IBD patient. In healthy individual, some commensal bacteria can bind to

the outer mucus gel layer and act as a defensive barrier to resist pathogenic bacteria. At the same time, some short-chain fatty acids get through the mucus gel layers

and epithelium to provide energy for mucus degradation, which is the first barrier between the lumen and the mucosa (A). When inflammation occurs in IBD patient,

some oligosaccharides derived from the degraded mucus offer energy to the mucus-degrading bacteria (like Rumminococcus gnavus and Rumminococcus torques);

then, the invading bacteria change the mucus gel layer’s structure, and pathogenic bacteria are now able to bind to and degrade the structure of the layers and invade

the epithelium (B).

and Eubacteria were present in the swab specimens when
compared with biopsies (Araújopérez et al., 2012). It was
also previously demonstrated that Staphylococcus aureus, a
dominant skin bacteria, could be used to assess the level of skin
contamination between swabs and biopsies (Araújopérez et al.,
2012). With respect to spatial organization, the fecal samples and
swabs seemed to harbor more or less distinct diversity (Budding
et al., 2014). One study revealed that the microbiota obtained by
rectal biopsy and swab showed a greater similarity to one another
than to feces (Glover et al., 2013). The diagnoses that are usually
based on culture or NAAT on rectal swabs are widely utilized
to distinguish between Chlamydia proctitis and CD (Hoentjen
and Rubin, 2012). To prevent disturbances, from occurring,
harvesting samples through a sheathed swab might lower the
level of contamination by the skin and luminal microbiota in
further studies.

Microbiological Protected Specimen Brush
In recent research, a specimen brush was often applied to sample
the human lung microbiota (Dickson et al., 2015; Schmidlin
et al., 2015; Hogan et al., 2016; Sibila et al., 2016). Inspired by
these investigations, Lavelle and colleagues (Lavelle et al., 2013)

developed a novel sampling technique using the microbiological
PSB for spatial microbial assessment; they targeted the superficial
MGL from the luminal side, as it can fold over the light mucosa
and avoid pools of fluid. Structurally, when compared with rectal
swabs, this brush also targets an outer, colonized mucus layer
that becomes separated from the epithelium via a dense layer
of removable mucus. As a sterile, single–use sampling method,
the brush is covered with a sheath, which consists of a distal
plug at the tip to seal the brush when introducing and retracting
the brush through the colonoscopy channel. After collecting
the specimen, a sterile wire cutter is used to separate the tip
of the wire and the plug, and the sample is then placed in
a sterile, nuclease–free container until DNA extraction. The
Qiagen DNA Mini Kit is frequently employed to extract DNA.
The qPCR confirmed that the increased proportion of microbial
DNA is sampled in the brush when compared with biopsy
samples. Based on the 16S rRNA gene, the analysis of similarity
analyses illustrated that there was a similar and highly significant
difference between the PSB and biopsy samples, as well as
between the ShannonDiversity Index values for reduced diversity
in brush samples when compared to the biopsy samples (Lavelle
et al., 2013).
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Laser Capture Microdissection
Developed at the National Institutes of Health (Emmert-Buck
et al., 1996), LCM is a systemic technique whereby individual
DNA, RNA, and proteins can be sampled from the gut tissue
by fixing targeted cells to an adhesive film with a laser beam;
they are then observed under the microscope (Zhang et al.,
2016b). LCM is a powerful method used to directly isolate pure
sections from complex tissues with greater rapidity, specificity,
and precision. This method does not require specific markers
for identification, either prior to or after isolation, which is
in contrast to rectal swabs and the microbiological PSB. To
get at the MGL, researchers used LCM in healthy subjects
undergoing a clinical routine colonoscopy, as well as in UC
patients undergoing proctocolectomy for sampling (Lavelle et al.,
2015), as based on the PALM MicroBeam system (Rowan
et al., 2010a). Specifically, some researchers combined LCM and
PCR to isolate and count the total amount of some mucosa-
adherent bacteria, such as Desulfovibrio copies in the mucous
gel of UC patients (Rowan et al., 2010a; Lennon et al., 2014a),
as well as adherent–invasive E. coli from the macrophages of
CD patients (Elliott et al., 2015). Given that Mycobacterium
avium subsp paratuberculosismicro-organisms are few in number
when present in CD patients, LCM was used to overcome this
issue by accurately isolating subepithelial tissue, thus preventing
contamination from the lumen (Ryan et al., 2002). Significant
variations were observed between the colonic crypts and the
central luminal compartment in mouse models, which used
LCM to specifically profile the composition of the microbial
communities in a discontinuous locus (Nava et al., 2011; Pedron
et al., 2012). As a result, the study of colonic crypt mucus in
UC patients, using LCM-harvested specimens, found that these
patients had a lower abundance of crypt-associated bacteria
than controls (Rowan et al., 2010b). Studies using LCM have
placed standard and systemic histological sections of stained
tissue under a microscope, and subsequently visualized the MGL
of interest (Lennon et al., 2014a; Lavelle et al., 2015). Using a
joystick to navigate around the image, researchers simply pushed
a button to transfer the desired pure cells of the heterogeneous
tissue to each slide to yield an average sample area of 175mm2.
Then, the LCM-harvested productions were catapulted onto
an inverted opaque AdhesiveCap. As a targeted and specific
quantified sampling method, LCM is suitable for research in
precision medicine.

CONCLUSION

As is well-known, suitable sampling strategies play an important
role when studying the full landscape of intestinal microbiota.
Here, this review highlighted the biogeographically stratified
sampling strategies used in IBD, and it simultaneously proposed
a novel three-dimensional spatial model of different community
structures. Across these sampling sites, the non-invasive nature
of fecal sampling can be implemented on a large scale as
a screening or follow-up tool. However, feces are comprised
of a mixture of products from all intestinal regions, which
may not reflect the true nature of host–bacterial interactions

in different biogeographic locations (Swidsinski et al., 2008b).
Compared with fecal sampling, standard colonoscopy biopsy
sample is sufficient to assess mucosal microbiota, which
might affect mucosal and epithelial function to a greater
degree than fecal sampling, as mucosal microbiota has a
closer contact with immune cells and epithelial cells (Sartor,
2015). Furthermore, biopsy samples can be captured from
specific regions ranging from the caecum to the rectum.
These deep strengths notwithstanding, biopsy collection requires
streamlining the logistics for sampling with nurses, physicians,
and endoscopy technicians in advance to decrease the patients’
time under sedation (Tong et al., 2014). The microbial profiles
have indicated that at the early stage of disease, assessing rectal
biopsy microbiota offered particular potential for convenient and
early diagnosis of CD (Gevers et al., 2014). Particularly, in mouse
studies, both tissue and feces sampling allowed targeted analyses
of microbial under tractable and reproducible conditions. Fecal
samplings could timely process feces to study the diversity of
intestinal microbiota, varying in time (Zackular et al., 2013;
Zhang et al., 2016a). Meanwhile, fecal pellets could also be
collected from sacrificed mouse across different anatomical sites
which often utilized caecal and colon contents (Bibiloni et al.,
2005; Gaudier et al., 2005; Mishiro et al., 2013). Sometimes, the
luminal content were flushed together by injecting PBS and then
collected (Berry et al., 2012). The mucosa-associated microbiome
is sampled by washing with PBS to remove the fecal contents then
releasing epithelial cells (containing mucosal microbes) from
the intestine tissue with mechanical means (Nagalingam et al.,
2011; Tong et al., 2014). Specifically, LCM could specifically
sample microbes that were located in the particular parts of
mucosa (Nava et al., 2011). Evaluation of microbial community
composition revealed striking differences between feces and
tissues. The comparison between dextran sulfate sodium (DSS)-
colitis mouse and controls showed that the 16S rDNA content
(bacterial) was significantly decreased in feces but increased in
mucosa, exhibiting the same trend as 18S rDNA (fungal; Qiu
et al., 2015).

Coupled with the luminal microbiota, researchers have
demonstrated that when using the MGL and entire mucosal
biopsies, there is spatial variation in the intestinal microbiota,
particularly among different community niches in UC patients
(Lavelle et al., 2015). Moreover, human swab and colon biopsy
samples have revealed that the mucosal diversity is prominent
and enriched, particularly among the species from the phyla
Proteobacteria and Actinobacteria, and when compared with the
fecal microbiota (Albenberg et al., 2014). Zhou (Zhou et al.,
2013) characterized the microbial variation between different
community niches using a Dirichlet–Multinomial Distribution
model, which concluded that feces and oral samples had the
lowest interpersonal variability across the studied body sites
studied in terms of community structure. To further illustrate
this point, it has been reported that the numbers of bacteria in
the Clostridium coccoides group remained stable in both feces
and saliva over time (Singhal et al., 2011). Stearns et al. (2011)
sampled species across the human digestive tract, including
from feces, the stomach, colon, duodenum, and oral cavity, and
illustrated that the oral cavity harbored the greatest phylogenetic
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diversity. Predictably, the oral microbiota holds great potential
with respect to clinical and diagnostic utility.

Specific to mucosal biopsies and the MGL, there should be
heterogeneity in the mucosal species that exist along cross-
sectional and longitudinal axes of the bowel within specific
individuals. However, due to the masking of a high level of
individual variation, significant differences across longitudinal
variations were not discovered by analysis of variance (ANOVA)
(Zhang et al., 2014). Employing a multidisciplinary approach
(such as by investigating ecological relationships and performing
co-occurrence network analysis) may lift this mask of spatial
variation to uncover the truth in prospective studies (Zhang
et al., 2014). Specific to our study, we are devoted to developing
statistical models to show the informative value of microbial
biogeography in IBD research.

Traditional protocols are currently limited by the present
difficulties associated with comprehensively evaluating the
microbiota in IBD research. Such difficulties include fastidious
experimental requirements and sampling errors. Therefore, it
is critical that risk-free, standardized, simpler, and inexpensive
sampling strategies be formulated in the future. To study
potential contributions of the microbiota in IBD research, we
should standardize the SOPs and reach a consensus that better

facilitates our understanding of these methods in subsequent
studies. Moreover, data should be exchanged and further studies
should be designed in which we evaluate the microbiota within
those individuals at the early stages of IBD. To construct a full
picture of the microbial diversity in IBD research, synergistic
profiles, combined with a co-culture consortium that can study
bacteria, will be necessary. Comprehensively, it should be stated
that a mutually beneficial cooperative effort can be achieved, but
only if data on these methods are shared all over the world.
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