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Abstract

Background: Published economic assessments of rotavirus vaccination typically use modelling, mainly static Markov cohort
models with birth cohorts followed up to the age of 5 years. Rotavirus vaccination has now been available for several years
in some countries, and data have been collected to evaluate the real-world impact of vaccination on rotavirus
hospitalisations. This study compared the economic impact of vaccination between model estimates and observed data on
disease-specific hospitalisation reductions in a country for which both modelled and observed datasets exist (Belgium).

Methods: A previously published Markov cohort model estimated the impact of rotavirus vaccination on the number of
rotavirus hospitalisations in children aged ,5 years in Belgium using vaccine efficacy data from clinical development trials.
Data on the number of rotavirus-positive gastroenteritis hospitalisations in children aged ,5 years between 1 June 2004
and 31 May 2006 (pre-vaccination study period) or 1 June 2007 to 31 May 2010 (post-vaccination study period) were
analysed from nine hospitals in Belgium and compared with the modelled estimates.

Results: The model predicted a smaller decrease in hospitalisations over time, mainly explained by two factors. First, the
observed data indicated indirect vaccine protection in children too old or too young for vaccination. This herd effect is
difficult to capture in static Markov cohort models and therefore was not included in the model. Second, the model
included a ‘waning’ effect, i.e. reduced vaccine effectiveness over time. The observed data suggested this waning effect did
not occur during that period, and so the model systematically underestimated vaccine effectiveness during the first 4 years
after vaccine implementation.

Conclusions: Model predictions underestimated the direct medical economic value of rotavirus vaccination during the first
4 years of vaccination by approximately 10% when assessing hospitalisation rates as compared with observed data in
Belgium.
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Introduction

The economic assessment of the newer rotavirus vaccines

(RotarixH [Rotarix is a registered trade mark of the GlaxoSmith-

Kline group of companies] and RotateqTM [Rotateq is a trademark

of Merck & Co. Inc.]) at the time of their first introduction in 2006

was largely model-based, in the absence of long-term data on

vaccine effects [1–3]. Most assessments at that time used static

Markov cohort models instead of dynamic models [4], which

simplified the model construction, the number of assumptions

introduced, and the data requirements [5]. Cohort models analyse

the vaccine situation at epidemiological steady-state [6] when

vaccination is already well established in the population at risk,

children less than 5 years old in the case of rotavirus. More

recently, there has been a shift towards developing more complex

models for estimating the total benefit of rotavirus vaccines
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because a herd effect after vaccination has been reported from

observational data [7–10].

Observational studies have shown that rotavirus infection

produces partial immunity after each exposure [11,12], with

complete immunity acquired after three to four infections. This

partly explains the peculiar distribution of rotavirus disease as a

function of age, which forms a bell-shaped curve during the first

two years of the birth cohort. A Markov cohort model can

replicate the natural history of rotavirus disease in a birth cohort

over time, with the highest disease burden occurring in children

aged between 6 months and 2 years, followed by a sharp decline

up to the age of 5 years, after which natural immunity across the

cohort is maintained.

The early economic models of rotavirus vaccination included

much uncertainty due to the many unknowns in the data available

at the time, such as the impact of rotavirus disease on quality-

adjusted life-years (QALY), waning of vaccine efficacy over time

(presumed from clinical trials), and the proportion of rotavirus

gastroenteritis cases who do not seek medical care [13]. Such

unknowns were modelled using ‘best-guess’ baseline assumptions,

tested in sensitivity analyses to evaluate their impact on the

incremental cost-effectiveness ratio (ICER).

Among these unknowns, vaccine waning is of particular interest.

Vaccine efficacy in the cohort models was derived from clinical

trial results for the rotavirus vaccines. The trials indicated higher

vaccine efficacy against rotavirus diarrhoea during the first year

than in subsequent years [14]. However, it should be noted that

the decrease in vaccine efficacy measured over time in the

European trial was mainly due to a large reduction in rotavirus

diarrhoea events reported in the non-vaccinated arm (242%),

rather than due to an increase in the numbers of events in the

vaccinated arm as one would expect from vaccine waning over

time. This indicated that the vaccine waning assumption in the

early models should be re-examined.

The two rotavirus vaccines have now been in use for several

years, and real-life data are becoming available. A few follow-up

studies after vaccine introduction provide information on real-life

vaccine effectiveness on specific mortality reduction in Mexico and

hospitalisation rates in Brazil, US, Australia and some European

countries [15–22]. It is now possible to test whether the model-

predicted results presented at the time of the product launch were

accurate enough to report reliable cost-effectiveness data. Clearly,

should substantial discrepancies occur between prediction and

observation, understanding the possible causes would be valuable

to improve the next generation of vaccine models. Few attempts

have yet been made in the published literature to compare results

predicted by models at vaccine introduction with real-life data

observed over time.

Belgium provides a good opportunity to conduct such a

comparison for rotavirus vaccination, as modelled estimates and

observed data from a follow-up study of four years post-

vaccination and two years pre-vaccination are available [18,23].

In a previous paper on the impact of rotavirus vaccination on

hospitalisation in Belgium, we reported that the observed

reductions in rotavirus hospitalisations after vaccine introduction

were greater than those predicted by modelling [18]. In the

present analysis, we have explored this discrepancy further using

the most recent data from the observational study (up to four years

post-vaccination) to identify potential reasons for the differences,

and have adjusted the modelled ICER for differences between

predicted and observed data.

Methods

Model construction
When rotavirus vaccination was introduced in Belgium in 2006,

a Markov cohort model, mainly based on the model published by

Melliez et al. [23,24], assessed at vaccine steady-state the rate of

rotavirus acute gastroenteritis (AGE) in a birth cohort by month

up to the age of 5 years. The model included different

management options typical for the Belgian context such as

staying at home, seeking medical advice from a primary care

physician or a specialist, visiting the emergency room, or

admission to hospital. The distribution of rotavirus AGE cases

by age was constructed following a Weibull function [25]. A

Weibull distribution with its shape (k = 1.5) and scale (l= 24.2)

parameters allows replication of the distribution of rotavirus

disease as a function of age, influenced by the gradual

disappearance of maternal antibodies after birth and by new

rotavirus infections appearing over time that stimulate the

development of natural immunity. The two parameters should

be adjusted for country-specific data using calibration techniques

specifying breastfeeding behaviour and the frequency of infection

exposure over time.

Vaccine efficacy data used in the model were taken from a

European trial, which showed a decrease in effect over time that

differed between mild (staying at home), moderate (seeking

medical advice), and severe (hospitalised) cases [14].

For each level of disease severity, specific costs and utility scores

were applied [23]. The model compared vaccinated and

unvaccinated cohorts and allowed for changes in vaccine

coverage. Herd protection was not included. The model estimated

the vaccine effect on the number of AGE events, medical visits,

emergency visits, hospitalisations and deaths in a birth cohort of

children up to the age of 5 years. It also reported the overall cost,

QALY impact, and ICER for vaccination compared with no

vaccination.

Observational study
A vaccine impact study was set up one year after the

introduction of the rotavirus vaccine in Belgium [18,21]. Full

details and the results for the first two years post-vaccination (up to

May 2009) have been published elsewhere [18]. Data were

collected retrospectively after each rotavirus season from a sample

of 12 Belgian hospitals. All children aged #5 years who had a

rotavirus detection test performed at a participating hospital from

1 June 2004 to 31 May 2006 (pre-vaccination study period) or 1

June 2007 to 31 May 2010 (post-vaccination study period) were

eligible. Only hospitalised children were included, and data were

analysed for the nine centres with a complete dataset. Ethical

approval was not required because there was no medical file

consultation.

The post-vaccination study period was divided into successive

years, each running from June to May (June 2007–May 2008, June

2008–May 2009 and June 2009–May 2010) to cover the winter

rotavirus season. The period between 1 June 2006 and 31 May

2007 was not included in our study, because reimbursement for

rotavirus vaccination was not available for the whole of this period

(partial reimbursement was introduced in Belgium in November

2006 for RotarixH and in June 2007 for RotaTeqTM [18]). Thus,

although June 2006–May 2007 could be considered as the first

year post-vaccination, the date of reimbursement meant that it was

neither fully pre-vaccination nor fully post-vaccination. In this

study we therefore analysed data from the second post-vaccination

year (June 2007–May 2008) onwards. For each year the number

and the proportion of rotavirus-positive episodes were calculated

Modelled and Observed Rotavirus Vaccination Data
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per week. Hospitalisation was classified as AGE-driven if the stool

sample was collected within 48 hours of hospitalisation. The most

relevant variable to compare in the pre- and post-vaccination

periods is the absolute number of rotavirus-positive episodes

observed, assuming no change in catchment area between the

study periods for each participating hospital.

Comparison between observed and modelled data
From the raw observed data we first calculated the frequency of

hospitalisation per week for each of five age groups (0–1 year; 1–2

years; 2–3 years; 3–4 years; 4–5 years) over a period of one year

for the pre-vaccination period and for the second (June 2007–May

2008) and fourth (June 2009–May 2010) years post-vaccination. As

the data are from a small sample, it is likely that data from a larger

sample would follow a smoother distribution. This is represented

by adjusting the raw frequencies to smoothed parametric curves

using @RISK 5.7 software (Palisade Corporation, US). The

software is an add-in program in Microsoft ExcelH that uses the

collected data as input variables, for which it creates a distribution

expressed as a probability density function from a list of around 20

continuous parameterised distributions. Since all probability

distribution functions must have a unit area, the software

automatically scales the probability values so that the density

curve has an area of one. The method of least squares is used to

minimize the Root-Mean Square Error between the curve points

and the theoretical distribution function selected (RMS Error

value ,0.05 or the best Chi-squared statistics noted between the

observed data and selected parametric distribution). The figures

obtained are referred to in this paper as smoothed curves, or

adjusted observational data. Because the smoothed curves are

parameterised distributions, they are easier to work with when

calculating values for the areas under curves.

The original modelled data were derived from a hypothetical

birth cohort followed over time from birth to age 5 years, whereas

the observed data were derived from multiple one-year cross-

sectional observations in a population of children aged up to 5

years. To allow a transparent comparison between the two, it was

necessary to transform the results from the cohort model to a

population approach, which could be compared with the

population data from the observational study.

This transformation includes as a first step elaborating the

original single cohort model into a multiple cohort model with five

birth cohorts, sequencing the start by delaying each subsequent

year. This construction allows the vaccine coverage rate and the

vaccine efficacy to be varied by month, year, and age group.

Vaccine efficacy and coverage values are shown in Table 1. The

baseline age distribution for rotavirus AGE events in each cohort

model followed a Weibull function as described above. The age

distribution for hospitalised events used a modified distribution to

take into account the higher hospitalisation rate in infants and

young children. The parameter values used in each Weibull

distribution are shown in Table 1. The net hospital age-

distribution result in each cohort model was the combination of

the two distributions, multiplying the density probability function

of the AGE distribution by the hospitalisation distribution, leading

to a combined distribution (Figure 1).

The next step was to introduce two assumptions in the analysis

that could be checked against the observed data. First, we assumed

that the annual epidemic rotavirus spread of hospitalised disease in

children aged up to 5 years followed a normal distribution.

Registry data on the annual spread of rotavirus indicate that this

assumption is acceptable [26]. We therefore constructed a normal

distribution over a 52-week period with a standard deviation of

0.16 for a mean value of 1, by which the spread of the disease is

absent over a period of 16 weeks per year. The second assumption

was that the age distribution per week in the normal distribution

followed the combined distribution of the age cohort, as defined in

Table 1. As a consequence, the disease spread each year appeared

first and disappeared last in infants and young children, compared

with older children, reflecting the distribution with a higher

hospitalisation rate in infants and young children.

This approach allowed precise measurement of differences

between the impact of vaccination in the model construct and the

observational data. Any differences identified between the

observation and the modelled results were explored to see if

potential explanations could be found. Once potential explana-

tions were identified, we adjusted the model input values to be

equivalent to the observed data to estimate adjusted ICERs.

Results

Figure 2 shows the pre-vaccination curves for adjusted observed

data on the number of hospitalisation events by week and age

group (Figure 2A) that were similar to the modelled results from

the multiple age-cohort model (Figure 2B). As expected, the pre-

vaccination peak in rotavirus hospitalisations was highest in

children aged ,1 year. In the observed data the peak appeared at

approximately the same time of the year (Week 8) in all age

groups, consistent with seasonal rotavirus spread and indicating a

dependency in rotavirus transmission between age groups. The

two assumptions introduced into the multiple cohort model to

construct a population approach appeared to hold when

comparing the distribution results of the model and the

observation data. Moreover, there was close agreement between

the observed and modelled numbers of rotavirus hospitalisations

by age group per year for the pre-vaccination scenario (Table 2).

In the post-vaccination period, the observed data showed that

the seasonal peak in rotavirus hospitalisations was reduced in

magnitude and delayed (shifted to the right) in the second year

after vaccine introduction for the first two age groups, with further

reduction and delay in the fourth year across all age groups

(Figure 3A–D).

As the observational study included children aged up to 5 years,

some of the children enrolled in the post-vaccination period were

too old for vaccination when the vaccine was introduced, and thus

were unvaccinated. The age threshold increased in successive

Figure 1. Probability density functions for defining hospital-
isation rate as a function of age (pre-vaccination). Diarrhoea
events, distribution of rotavirus AGE events as a function of age from
birth to age 60 months (5 years); Hospitalisation, distribution of
hospitalised rotavirus events from birth to age 60 months (5 years);
Combined. combined function.
doi:10.1371/journal.pone.0053864.g001

Modelled and Observed Rotavirus Vaccination Data
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years post-vaccination. In the second year post-vaccination (June

2007–May 2008), the maximum age of vaccinated children was 21

months (born in or after September 2006, just in time to receive

vaccination after reimbursement of the first rotavirus vaccine

product in November 2006, and included in the last month of that

study year in May 2008), and in the fourth year post-vaccination

(June 2009–May 2010) the maximum age of vaccinated children

was 45 months (born in or after September 2006 and included in

the last month of that study year in May 2010). The reduction in

hospitalisations post-vaccination compared with pre-vaccination

observed in the age groups who were too old to be vaccinated

(Table 3), indicated that the vaccine had an indirect protective

effect.

There is a second group of children ineligible for vaccination,

those too young to receive the vaccine (aged up to 2 months). The

number of observed rotavirus gastroenteritis events in this age

group also declined in the years after vaccine introduction (Table 4)

(Chi-square-test for trend, p,0.01). The results indicated that a

herd protection effect may also occur in children too young for

vaccination, due to reduced transmission of natural rotavirus

infection after vaccine introduction.

The overall herd effect that occurred in real life was not

included in the model. But the more rapid decrease in

hospitalisations in the observed data, compared with the model,

is also noteworthy because the model assumed a decrease in

vaccine efficacy year on year (Table 1), which was not apparent in

the observed data. In sensitivity analysis, the model was run with

no decrease in vaccine efficacy (i.e. assuming that vaccine efficacy

was the same in subsequent years as in the first year). These data

Table 1. Model-specific adaptations to fit pre-vaccination observed data.

Parameter Value

Disease distribution as a function of age from birth to month 60 Weibull 1 with parametric distribution of k = 1.5 and l= 24.2

Hospitalisation distribution as function of age from birth to month 60 Weibull 2 with parametric distribution of k = 0.6 and l= 29.3

1st year vaccine coverage 60%*

2nd year vaccine coverage 80%*

3rd year vaccine coverage 85%*

4th year vaccine coverage 85%*

Estimated vaccine efficacy 1st year 95%

Estimated vaccine efficacy adjustment every subsequent year post-vaccination (reduction in
efficacy to represent vaccine waning)

15% per year

*reported from Intercontinental Medical Statistics (IMS) data.
doi:10.1371/journal.pone.0053864.t001

Figure 2. Observed and modelled numbers of hospitalised
rotavirus events (pre-vaccination). Adjusted observed data
(smoothed curves) by age group (A); Results by age group from the
multiple age-cohort model (B). Weeks are numbered according to
seasonal distribution.
doi:10.1371/journal.pone.0053864.g002

Table 2. Reported hospitalisation events over one year by
age group pre-vaccination, for observed and modelled data.

Number (%) of rotavirus hospitalisations

Age group (years) Observed Modelled

,1 454 (51.8%) 439 (49.8%)

1–2 319 (36.2%) 312 (35.4%)

2–3 86 (9.7%) 106 (12.0%)

3–4 15 (1.7%) 21 (2.4%)

4–5 7 (0.8%) 3 (0.3%)

Total 880 881

doi:10.1371/journal.pone.0053864.t002

Modelled and Observed Rotavirus Vaccination Data
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Figure 3. Impact of rotavirus vaccination after 2 and 4 years of vaccination by age group (observed data). Aged ,1 year (A); Aged 1–2
years (B); Aged 2–3 years (C); Aged .3 years (D). Weeks are numbered according to seasonal distribution.
doi:10.1371/journal.pone.0053864.g003

Table 3. Observed and modelled data pre- and post-vaccination by year and age group.

Post-vaccination % reduction from pre-vaccination

Age group (years) Pre-vaccination Year 2 Year 4 Adjusted Year 2 Year 4 Adjusted

Observed

,1 454 125 77 72% 83%

1–2 319 164 72 49% 77%

2–3 86 61 17 29% 80%

3–4 15 9 10 40% 33%

4–5 7 9 3 229% 57%

Total 880 368 179 58% 80%

Modelled

,1 439 146 127 127 67% 71% 71%

1–2 312 161 111 73 48% 64% 77%

2–3 106 106 48 29 0% 55% 73%

3–4 21 21 11 7 0% 48% 67%

4–5 3 3 3 3 0% 0% 0%

Total 881 437 300 239 50% 66% 73%

Number of rotavirus hospitalisations from observed and modelled data. Adjusted data refer to modelled data with vaccine waning removed from the model (i.e.
assuming that vaccine efficacy is the same in subsequent years as in the first year).
doi:10.1371/journal.pone.0053864.t003

Modelled and Observed Rotavirus Vaccination Data
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are shown in Table 3 and Figure 4 as ‘Adjusted’ data. They closely

followed the observed data for the fourth year post-vaccination.

The estimated ICER for rotavirus vaccination was based on the

modelled data at the time of vaccine introduction. Our earlier

results [18] indicated that the model underestimated the reduction

in hospitalisation rates. Our present results show that herd effect

on the one hand, and lack of waning on the other, were the main

differences between the original static model and real-life data

(Figure 3, Tables 3 and 4). Adjusting the model for these factors

produced an estimated ICER slightly more favourable to rotavirus

vaccination than the estimated ICER without these adjustments

(Table 5). The change in the ICER was small (approximately a

10% improvement), because the major impact of change was

mainly measured two years after vaccine introduction when the

hospitalisation rate was already reduced. The ICER was

calculated from the perspective of the healthcare system (direct

medical costs only), and so did not capture some categories of cost

such as lost productivity from parents taking time off work to look

after a sick child. Such costs were not included because we were

unable to collect data on them in a real-life setting. A further

reduction in the ICER would be expected with an analysis

performed from a societal perspective capturing a wider range of

costs.

Discussion

This analysis compared observed data on rotavirus-related

hospitalisations collected in routine clinical practice for four years

post-vaccination in Belgium with previously modelled estimates of

the effect of vaccination in the same country. The observed

reduction in hospitalisations with data from two years post-

vaccination has previously been shown to exceed the reduction

predicted by the static model [18]. Two differences between the

modelled and the observed data were identified that could explain

this discrepancy. First, the observed data indicated an indirect

herd effect in infants too young (aged ,2 months) and too old for

vaccination when the vaccine was introduced, which was not

included in the model. Second, the model assumed a waning of

vaccine efficacy over time based on clinical trial data, which did

not appear to be reflected in the observed data from a real-life

situation over time frames of three or four years.

Regarding waning of vaccine efficacy, analysis of the vaccine

efficacy results of the European trial may offer an explanation that

better helps in understanding the difference between the modelled

and the observed data. Vaccine efficacy is normally measured as

the proportion of one minus the ratio of events that appear in the

study arm that received the vaccine divided by the number of

events that occur during the same time interval in the non-

interventional arm. When analysing the vaccine efficacy in the first

and subsequent years of the trial, researchers assume that if a

dramatic decrease in events occurs in the non-interventional arm

in the second year compared with the first year, as seen in the

European trial (the decrease observed in the first versus subsequent

year is .40%), a similar decrease should also be observed in the

vaccinated arm on top of the measured vaccine benefit of the first

year. Any deviation from this result is explained as a reduction in

vaccine efficacy called vaccine waning. This assumption is hard to

accept as the explanation. The absolute number of events in the

vaccinated group during the second year amounted to about the

same values as in the first year. So, most of the decrease in vaccine

Table 4. Rotavirus hospitalisations pre- and post-vaccination in infants ,3 months old.

Number of rotavirus hospitalisations

Age group Pre-vaccination Post-vaccination second year Post-vaccination third year Post-vaccination fourth year

0-1 month 18 12 4 6

1-2 month 46 8 13 11

2-3 month 38 23 14 6

(Chi-square for trend: p,0.001).
doi:10.1371/journal.pone.0053864.t004

Figure 4. Pre- and post-vaccination data by year and age
group. Observed data (A); Modelled data (B). Pre-vac, pre-vaccination;
Post-vac2, second year post-vaccination; Post-vac4, fourth year post-
vaccination; Adjusted, modelled results assuming no vaccine waning,
included for comparison purposes.
doi:10.1371/journal.pone.0053864.g004

Modelled and Observed Rotavirus Vaccination Data
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efficacy in the second year in the trial was due to a sharp decrease

in the number of events in the denominator, rather than to a sharp

increase of the numbers in the vaccinated arm. We hypothesise

that the results in the non-interventional arm could have been

influenced by a herd effect in the trial, because the randomisation

process included 2 vaccinated children for 1 non-vaccinated child.

This 2:1 randomisation may have further decreased the number of

events in the non-vaccinated arm in the second year of the trial. As

a result of this observed evidence – a large imbalance in the

number of events observed over time in the non-vaccinated arm –

the true vaccine efficacy measured in the trial may be an

underestimate compared with vaccine effectiveness observed in

real life, as seen here in the impact study results. It is of interest

that the decrease in the subsequent year seen in the 2:1

randomised trial (.40%) was greater than that observed in a 1:1

randomised trial of rotavirus vaccination conducted in the US,

where the reduction from the first year to the second was

approximately 15% [27].

Even if we introduce a correction into the model by excluding

the waning scenario (adjusted results in Table 3), the model still

underestimates the total vaccine benefit, mainly because of the

indirect protection in infants too young to be vaccinated (aged ,2

months). This can be seen in Figure 4, where the change in

number of hospitalisations between pre-vaccination and the

second and fourth years post-vaccination in children aged ,1

year was considerably larger in the observed data (Figure 4A) than

in the modelled data (Figure 4B). The indirect vaccine efficacy

seen in these very young infants is likely to remain at steady-state

level. This analysis also provides indirect information about

rotavirus transmission in children. Since rotavirus vaccination

appeared to have an indirect protective effect on young infants,

our results suggest that children in the age range eligible for

vaccination can infect younger children.

If vaccination alters the natural transmission of rotavirus in the

population outside the at-risk group, it is possible that an age-shift

of rotavirus disease could occur, as predicted by dynamic models

[7]. However, if the wild-type rotavirus still circulates in the whole

population, allowing reinfection and boosting of natural immunity,

age-shifts of rotavirus disease may be less likely to happen after

introducing vaccination. It is not yet known how rotavirus

vaccination will affect rotavirus transmission. It is, however, likely

that reported observations over longer time periods will see less

important herd effects per year than observed here as soon as the

whole at-risk population (children aged ,5 years) has been

vaccinated.

Our analysis of the observed data suggests that no reduction in

vaccine efficacy (vaccine waning) occurred in real life during the

first 4 years. It is known that subjects repeatedly exposed to

rotavirus gradually build up natural immunity over time. This has

been well illustrated by Velazquez and colleagues [28] and others

[29]. The observed age-related disease pattern (more cases in

young children than in older ones) reflects this immunity build-up,

together with other factors that could affect exposure such as

behaviour changes. Therefore the effect measured in a clinical trial

is not only the vaccination effect, but is a difference between

vaccinated and unvaccinated groups (which can be called a net

effect) (Figure 5). As natural immunity develops over time in the

non-vaccinated group, the net effect would change over time, and

that could be mistakenly interpreted as vaccine waning. Herd

protection effects could influence the change in net effect as

natural immunity would be larger in its absence (because exposure

to the virus would be larger).

The results presented in this paper indicate that the ICER

estimated from the model for vaccination versus no vaccination,

using vaccine efficacy results from randomised controlled trials,

may have underestimated the benefit of rotavirus vaccination.

Adjusting for that difference would result in a model outcome

more closely related to the observed data. The effect is marginal

from a healthcare system perspective, as the benefit is mainly seen

after two years of vaccine exposure when hospitalisation rates are

already low. However, it may have a larger impact on the ICER

considered from a societal perspective. We conducted a simulation

exercise to explore the potential effect if the reduction in

hospitalisations observed in this study were also to occur across

the whole disease management area of non-hospital medical visits

and indirect costs. If non-hospital medical visits and indirect costs

are reduced by the same amount as observed for hospitalisations,

the ICER results estimated by the model would improve by

Figure 5. Natural immunity and immune response after
vaccination, showing the net effect of vaccination (arrow line).
doi:10.1371/journal.pone.0053864.g005

Table 5. Cost-effectiveness of rotavirus vaccination pre- and post-adjustment.

Cost Difference QALY Difference ICER

Pre-adjustment

No vaccination 70 J 20.002

Vaccination 139 J 69 J 20.00063 0.00138 51 000 J [23]

Post-adjustment

No vaccination 70 J 20.002

Vaccination 135 J 65 J 20.00055 0.00145 44 828 J (210%)

ICER, Incremental cost-effectiveness ratio; QALY, quality-adjusted life-year.
doi:10.1371/journal.pone.0053864.t005
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.30%. Collecting real-life data on non-hospital medical visits and

indirect costs to test this prediction would be a valuable area for

future research. This finding will of course be country-specific,

depending on the specific disease management programmes in

place and whether the economic assessment is conducted after

reaching the steady-state level.

In conclusion, it is likely that previously published economic

models underestimated the total benefit of rotavirus vaccination,

by not including an estimate of herd protection and by including a

vaccine waning effect that was not reflected in real-life conditions

during the first 4 years of vaccine introduction. These findings

could be applicable in other disease areas in which natural

immunity develops over time as a result of regular exposure to the

infectious agent, although this is not often observed. Static cohort

models have major difficulties in capturing such effects and may

therefore underestimate the total benefit of vaccines when

introduced in children.
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