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Abstract: A model of signal transduction from the perspective of informational thermodynamics has
been reported in recent studies, and several important achievements have been obtained. The first
achievement is that signal transduction can be modelled as a binary code system, in which two
forms of signalling molecules are utilised in individual steps. The second is that the average entropy
production rate is consistent during the signal transduction cascade when the signal event number is
maximised in the model. The third is that a Szilard engine can be a single-step model in the signal
transduction. This article reviews these achievements and further introduces a new chain of Szilard
engines as a biological reaction cascade (BRC) model. In conclusion, the presented model provides
a way of computing the channel capacity of a BRC.

Keywords: biological reaction cascade; binary code system; average entropy production rate; mutual
entropy; Szilard engine chain; fluctuation theorem

1. Introduction

Information science provides a theoretical framework for understanding cell biology. Variable types
of information entropy have been defined and applied for biological research. “Single cell entropy”
was introduced for the estimation of the specified gene and kinase protein expression network [1,2].
Further, multicellular behaviour was analysed by a mathematical model in which individual cells
interact with each other by secretion and sensing [3,4]. Immunological responses against variable
antigens were quantified using entropy defined by the selective probability of amino acid residues [5].
The genetic entropy defined by DNA mutation rate is computable and useful in analysing molecular
evolution [6], and the correlation analysis of the mutated gene frequency responsible for the cancer
pattern development provides a useful predictive data for clinical prognosis. Further, the transfer
entropy is generalised by the Kullback–Leibler divergence between two probabilistic transition statuses
along a time course and a measurement of the transfer entropy enables the quantification of the
information flow between stationary systems evolving in time [7,8]. Mutual entropy was defined on
the basis of the correlation analysis between enzymes and metabolites such as ATP [9].

In addition to these recent develpments, significant achievements have been reported by the
application of information thermodynamics to cell system that involves a feedback controller; hence,
it can be an integrative system, in which information and thermodynamic entropy intersect [10–15].
Many reports on the study of information-driven works have recently been presented. For example,
an information-driven artificial molecular motor device consisting of an enzyme has been reported [11].
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The upper limit of the average work <w> that can be extracted from thermodynamic engine
depends on the system temperature T, Boltzmann constant kB, free energy change ∆F and mutual
entropy H informed by the feedback controller [12–15]:

〈w〉 ≤ −∆F + kBTH. (1)

Inequality (1) implies that free energy and mutual entropy are exchangeable parameters. For the
isovolumic and isothermal biological system, Inequality (1) can be simplified to

〈w〉 ≤ kBTH. (2)

As shown in below, the work extracted from an ideal Szilard engine is,

〈w〉 = kBTH (3)

From the viewpoint of information thermodynamics, the signal transduction in Escherichia coli
was reported [16]. Our earlier works considered a probability that the mutual entropy may be utilised
for exchanging signalling molecules along the biological reaction cascade (BRC) [17–20]. This review
later particularly introduces an ideal chain of Szilard engine constituting the BRC model [17].

2. A Common BRC Model

Let us consider modelling signal transduction by focusing on aspects that are common to several
signal transductions. In BRC, the substrate protein in the reaction may become an enzyme or modulator
in the next reaction. The most well-known example of a chain reaction is the chain of phosphorylation
of proteins in the mitogen-activated protein kinase (MAPK) cascade [21–26] that is shown in (4):

EGF + EGFR(X1)↔ EGF + EGFR∗(X1
∗),

EGFR∗ + Ras(X2)→ EGFR∗ + Ras∗(X2
∗),

Ras∗ + c− Ra f (X3)→ Ras∗ + c− Ra f ∗(X3
∗),

c− Ra f ∗ + MEK(X4)→ c− Ra f ∗ + MEK∗(X4
∗),

MEK∗ + ERK(X5)→ MEK∗ + ERK∗(X5
∗).

(4)

In this BRC, the epidermal growth factor receptor (EGFR), Ras (a type of GTPase), a proto-
oncogene c-Raf, MAP kinase-extracellular signal-regulated kinase (MEK) and kinase-extracellular
signal-regulated kinase (ERK) follow the stimulation with the epidermal growth factor (EGF).
Phosphatases were omitted in the above equation. This MAPK cascade is a ubiquitous signalling
pathway in variable cell types, which allows growth and proliferation. The EGFR mutation promotes
the enhancement of this cascade, which contributes to the tumourogenesis of the lung and other
cancers [27].

To understand the essence of complicated cell signaling, the BRC model consisting of jth and
reverse −jth steps can be constructed (1 ≤ j ≤ n):
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X1(R) + L→ X1 − L∗ : 1st

X1 − L∗ → X1 + L : −1st

X1 − L∗ + X2 + A→ X1 − L∗ + X2
∗ + D : 2nd

X2
∗ + Ph2 → X2 + Ph2 + Pi : −2nd

· · ·
Xj
∗ + Xj+1 + A→ Xj

∗ + Xj+1
∗ + D : jth

Xj+1
∗ + Phj+1 → Xj+1 + Phj+1 + Pi : −jth

· · ·
Xn−1

∗ + Xn + A→ Xn−1
∗ + Xn

∗ + D : (n− 1)th

Xn
∗ + Phn → Xn + Phn + Pi : −(n− 1)th

Xn
∗ + DNA + RNApol + N ribonucleotide→

Xn + DNA∗ + RNApol + (ribonucleotide)N : nth

(5)

Each step represents an activation of the signalling molecules Xj in the cytoplasm maintained
by a chemical reservoir of mediator A, such as adenosine triphosphate (ATP), and an inactivation of
the signalling molecules Xj* by enzymes Phj. ATP is hydrolysed into adenosine diphosphate (ADP;
D in (5)) and inorganic phosphate (Pi), which modifies the amino acid residue of Xj. Xj and Xj* denote
unmodified (inactive) and modified (active) signalling molecules, respectively. The first reaction
represents the ligand (L), EGF in the MAPK cascade, an extracellular molecule and stimulates X1,
which represents a receptor (R), EGFR in the MAPK cascade, on the cellular membrane. Afterward,
X1 − L* complex promotes the modification of X2 in the cytoplasm into X2* activated by Pi that
originated from A, and D is produced. Further, X2* promotes the modification of X3 into X3*. In this
manner, the jth signalling molecule, Xj*, activates Xj+1 in the cytoplasm into Xj+1*. Following the
(n − 1)th step, the signalling molecule Xn* binds to the promoter region of the DNA and induces the
mRNA transcription in the nth step. In addition, during the reverse BRC steps, the inactivation of Xj*
into Xj occurs through enzymes that catalyse inactivation or through self-inactivation by Xj*, in which
Pi is released. Thus, jth and −jth step forms a cycle reaction consisting of activation and inactivation.
Finally, a pre-stimulation steady state of the individual step is recovered. Such reaction chain schemes
were previously described by Gaspard et al. and Tsuruyama [17,18,28–30].

3. Binary Code Model of BRCs

Recent studies showed that the BRC can be interpreted as a binary code system with two forms
of signalling molecules, namely an active form (Xj*) and an inactive form (Xj) in individual step [18–20].
The total signal event number Ψ in a given BRC event, can be described using the concentration of
inactive Xj and active molecules Xj* as follows:

Ψ =
X!

n
∏
j=1

Xj!
n
∏
j=1

Xj
∗!

(6)

X represents the total concentration of signalling molecules. The logarithm of Ψ is approximated
according to Starling’s equation and gives Shannon’s entropy S using the selection probability of Xj or
Xj*, pj = Xj/X and pj* = Xj*/X [19]:

S = log Ψ = −X

(
n

∑
j=1

pj log pj +
n

∑
j=1

pj
∗ log pj

∗
)

(7)

Selecting the jth step component of S in (7) gives:

sj , −X
[
pj log pj + pj

∗ log pj
∗] (8)
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When the signal is transmitted to the jth step, concentrations of Xj or Xj* fluctuate, and sj is given
using the probability fluctuation dpj and dpj*,

sj , −X
[(

pj + dpj
)

log
(

pj + dpj
)
+
(

pj
∗ + dpj

∗) log
(

pj
∗ + dpj

∗)] (9)

Because the signal has not yet reached the (j + 1)th step; hence, the entropy of the (j + 1)th

step remains:
sj+1 , −X

[
pj log pj + pj

∗ log pj
∗] (10)

Therefore, the entropy difference Hj is generated between the jth and (j + 1)th step is presented as
follows [17–19]:

Hj , sj − sj+1 = X∆pj
∗ log

pj

pj
∗ = ∆Xj

∗ log
pj

pj
∗ (11)

with
Xj + Xj

∗ = const. (12)

pj + pj
∗ = const. (13)

and
∆Xj + ∆Xj

∗ = 0
∆pj + ∆pj

∗ = 0
(14)

In addition, the entropy difference per single active molecule, hj, is given by Equation (11):

hj , Hj/∆Xj
∗ = log

pj

pj
∗ (15)

In previous report [19], entropy current Cj was introduced as follows:

Cj = kBT
∂sj

∂pj
∗∆pj

∗ ≈ kBT log
pj

pj
∗∆Xj+1

∗ (16)

Accordingly, the entropy current density cj per single active molecule is given as:

cj =
Cj

∆Xj
∗ = kBT log

pj

pj
∗ (17)

4. Mutual Entropy in BRCs

For the evaluation of mutual entropy in Equation (15) according to information theory, let us
consider the channel capacity of the jth cycle (1≤ j≤ n) (Figure 1). The natural logarithm was applied in
place of the base-2 logarithm to simplify the description. The entropy hj

0 is given using qj = pj/(pj + pj*)
and qj* = pj*/(pj + pj*), as follows:

hj
0 = −qj log pj − qj

∗ log qj
∗ (18)

The conditional entropies hj (j + 1|j) from the (j + 1)th step for the given jth step can be described
as a linear function of qj* using the probability of the noise occurrence probability φj and ξj = −φjlogφj
− (1 − φj)log (1 − φj) [13]:

h( j + 1|j) = −ξ jqj
∗ ≡ −

(
ϕj log ϕj + (1− ϕj) log ϕj

)
qj
∗ (19)
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hj
0 and h(j + 1|j) are chosen in such a manner as to maximize mutual entropy, which is defined by

hj
0 − h(j + 1|j), subject to the constraint qj* + qj = 1. The channel capacity is defined as the maximum

value of mutual entropy:

cj ,
[

hj
0 − h(j + 1|j)

]max
(20)

with
hj , hj

0 − h(j + 1|j) (21)

Figure 1. Schematic of the relationship between the jth step to (j + 1)th step (left) and the −jth step to
(−j − 1)th step (right) of a simple discrete channel. The left graph shows a signal transduction and its
channel capacity is expressed by Cj. The right graph shows the reverse signal transduction and its
channel capacity is expressed by C−j. In the reverse signal transduction, from the−jth step to (−j − 1)th

step, qj transmits the signal to qj−1, but it may transmit the signal to qj−1* in error.

To obtain the maximized mutual entropy, the following function Uj using the undetermined
parameter λ is maximized using Lagrange’s method for undetermined multipliers as follows [13]:

Uj = −qj log qj − qj
∗ log qj

∗ − ξ jqj
∗ + λ

[
qj + qj

∗] (22)

Then
∂

∂qj
Uj = − log qj − 1 + λ (23)

∂

∂qj
∗Uj = − log qj

∗ − 1 + λ− ξ j (24)

Setting the right-hand side of Equations (23) and (24) to zero, and eliminating λ, we have:

log
qj

qj
∗ = log

pj

pj
∗ = ξ j (25)

From qj + qj* = 1 and (25), the following can be derived:

qj =
φj

φj + 1
(26)

qj
∗ =

1
φj + 1

(27)

with
φj = exp

(
ξ j
)

(28)
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As a result, the channel capacity of the jth step, Cj, is given using (21), (26)–(28) as a maximum
value of mutua entropy:

Cj , hj
max =

(
−

φj

φj + 1
log

φj

φj + 1
− 1

φj + 1
log

1
φj + 1

− ξ j
φj

φj + 1

)
= − log

φj

φj + 1
(29)

The mutual entropy of reverse signal transduction is also given by the entropy h−j
0 = hj

0 = −qjlogqj
− qj*logqj* and mutual entropy as h−j

0 − h(−j − 1|−j) (Figure 1). The following function, U−j for the
reverse transduction using the undetermined parameter λ′, is maximised as follows:

U−j = −qj log qj − qj
∗ log qj

∗ − ξ−jqj + λ′
[
qj + qj

∗] (30)

In above, ξ−j = −φ−j logφ−j − (1 − φ−j) log (1 − φ−j), and φ−j denotes the noise occurrence
probability in the reverse cascade. Then:

∂

∂qj
U−j = − log qj − 1 + λ′ − ξ−j (31)

∂

∂qj
∗U−j = − log qj

∗ − 1 + λ′ (32)

Setting the right-hand side of Equations (31) and (32) to zero, and eliminating λ′, we have:

log
qj

qj
∗ = log

pj

pj
∗ = −ξ−j = ξ j (33)

Accordingly, the channel capacity C−j is given by:

C−j , h−j
max ,

(
−

φj

φj + 1
log

φj

φj + 1
− 1

φj + 1
log

1
φj + 1

− ξ−j
1

φj + 1

)

=

(
−

φj

φj + 1
log

φj

φj + 1
− 1

φj + 1
log

1
φj + 1

+ log φj
1

φj + 1

)
= − log

1
φj + 1

(34)

The channel capacity of the jth cycle step is defined and calculated as follows:

hj = C−j − Cj = log φj = ξ j = log
pj

pj
∗ (35)

Thus, we can obtain the mutual entropy as entropy difference in Equation (15).

5. Szilard Engine Chain as a BRC Model

Subsequently, let us consider that phosphorylation and dephosphorylation reactions form a cycle
reaction that simultaneously activates the next cycle reaction in a BRC. A cycle reaction of individual
step can be modelled as a Szilard engine, which may serve as a model of the conversion system [17].
The Szilard engine was established by Leo Szilard considering Maxwell’s demon paradox [31,32].
In the engine model, Maxwell’s demon, which is a feedback controller, utilises the position information
of a single gas particle in a box that contacts with a heat bath. As an initial state, the boundary is
inserted to a room at the middle position such that the controller can determine whether a single
gas particle is in the left space or in the right space of the room. The information gained by the
controllers is equal to one bit (i.e., left or right). In the case of the particle in the left, let the boundary
be quasi-statically moved in the right orientation for recovery of the full volume of the room. In both



Entropy 2018, 20, 617 7 of 15

cases, the particle isothermally expands with the movement of the boundary back to its original full
volume. The extracted work is equal to kBTln2. This process is equivalent to the system, in which the
feedback controller transforms the gained information into the actual expansion work. The feedback
controller system has been produced in the actual experimental study [33,34]. Thereby, let us consider
the feedback controller is informed whether the signalling molecule is an active or inactive type in
place of measuring the particle position.

As reported previously [17,19], the BRC for modelling can be divided into n number of hypothetical
compartment fields corresponding to the individual jth steps (1 ≤ j ≤ n) that corresponds to a single
Szilard engine. The diffusion rate of signaling molecule is sufficiently low because of its high molecular
weight and they are hypothesised to be localized in the compartment fields. Each field contains all
Xj+1* and Xj+1 species (1 ≤ j ≤ n − 1), with the concentrations identical to those of Xj+1*st and Xj+1

st,
respectively, at the steady state. The feedback controller has the potential to recognise the molecule
concentration. Subsequently, the controller selects Xj+1* or Xj+1 for its transfer (Figure 2). The steps are
summarised as follows when BRC proceeds:

(i) When the signal transduction initiates, the controller measures the changes in the concentration
of the active molecule Xj+1* and Xj+1 in the jth field.

(ii) At the jth step in the signalling cascade, the feedback controller introduces ∆Xj+1* of Xj+1* to
the (j + 1)th field from the jth field by opening the forward gate on the boundary in the jth field to
the (j + 1)th field. Simultaneously, the controller introduces ∆Xj+1 of Xj+1 to the (j + 1)th field from
the jth field by opening the back gate on the boundary.

(iii) Subsequently, Xj+1* can flow back with the forward transfer of Xj+1 from the (j + 1)th field
to the jth field because of the entropy difference (see Equation (13)). Xj+1 can also flow back
with the backward transfer of Xj+1 from the (j + 1)th field to the jth field because of the
concentration gradient.

(iv) In (iii), ∆Xj+1* and ∆Xj+1 can quasi-statically rotate the exchange machinery on the hypothetical
partition between the jth and (j + 1)th fields, which has the ability to extract chemical work
equivalent to wj+1 = kBThj+1.

(v) As the next step, wj+1 is linked to the modification of Xj+2 into Xj+2*, which further causes the
concentration difference of Xj+2* introduced by the feedback controller from the (j + 1)th field to
the (j + 2)th field. The next step proceeds as aforementioned in (ii) to (iii).

Figure 2. Schematic showing a Szilard engine chain. The feedback controller measures the changes in
concentration of signalling molecules. For the signal transduction, the controller opens the gate of the
hypothetical boundary. The grey circles on the boundary represent the exchanger between ∆Xj+1 and
∆Xj+1*. The jth field recovers to the initial state.
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Accordingly, replacing the suffix j + 1 by j for simplification, the chemical work wj extracted from
the jth Szilard engine is given using the mutual entropy hj informed to the controller whether the
signalling molecules increase or decrease according to Equations (15) and (35) [12–14,18,19]:

wj = kBThj∆Xj
∗ = kBT∆Xj

∗ log
pj

pj
∗ (36)

6. Conservation of the Average Entropy Production

Next, let us review the optimized coding way for maximizing the signal event number for a given
duration in this binary coding model of signal transduction in a nonequilibrium steady system. First,
the duration of signal transduction is defined in consideration of the signal orientation (i.e., forward τj
and backward τ−j). Positive and negative values are assigned to τj and τ−j for distinction of the signal
direction. τj represents the duration of the tentative increase in the active molecule Xj*, whilst τ−j
represents the duration to the recovery to the initial state. The step cycle duration is represented
by τj − τ−j.

The average entropy production ζj and ζ−j during the signal transduction are defined during
τj − τ−j and the average entropy production rate (AEPR) is defined using a bracket < > as:

〈ζ j〉 ,
1

τj − τ−j

∫ τj−τ−j

0
ζ j
(
sj
)
dsj (37)

〈ζ−j〉 ,
1∣∣τj − τ−j

∣∣∫ |τj−τ−j |

0
ζ j
(
sj
)
dsj (38)

where, sj is an arbitrary parameter representing the progression of a reaction event [35]. The transitional
probability p (j + 1|j) is the probability of the (j + 1)th step given the jth step during τj, and p (j|j + 1) is
the transitional probability of the jth step given the (j + 1)th step during τ−j. The AEPR <ζj > during
the signal transduction from the jth to the (j + 1)th field is given according to fluctuation theorem (FT)
at the steady state:

lim
τj−τ−j→∞

1
τj − τ−j

log
p(j + 1|j)
p(j|j + 1)

= 〈ζ j〉 (39)

The AEPR <ζ−j> from the (j + 1)th to the jth field is given:

lim
|τ−j−τj |→∞

1∣∣τ−j − τj
∣∣ log

p(j|j + 1)
p(j + 1|j) = 〈ζ−j〉 (40)

The following equation is given using signal current density cj in (17) [19,35]:

lim
τj−τ−j→∞

1
τj − τ−j

log
p(j + 1|j)
p(j|j + 1)

=
cj

kBT
(
τj − τ−j

)∆Xj
∗ (41)

Substituting the right side of Equation (17) into the right side of (41), an important result is
given [19]:

lim
τj−τ−j→∞

1
τj − τ−j

log
p(j + 1|j)
p(j|j + 1)

= lim
τj−τ−j→∞

1
τj − τ−j

log
pj

pj
∗ (42)

When the signal even number is maximised, the logarithm of the selection probability is described
simply using the average entropy production rate β independent of the step number according to
previous reports [17–20]:

− log pj = βτj (43)

log pj
∗ = βτ−j (44)
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This is one type of entropy coding. Substitution of the right sides of Equations (43) and (44) into
(42) gives:

lim
τj−τ−j→∞

1
τj − τ−j

log
p(j + 1|j)
p(j|j + 1)

= lim
τj−τ−j→∞

β
−τj − τ−j

τj − τ−j
∼ −β (45)

Likewise,

lim
|τj−τ−j |→∞

1∣∣τj − τ−j
∣∣ log

p(j + 1|j)
p(j|j + 1)

= lim
|τj−τ−j |→∞

β
−τj − τ−j

τj − τ−j
∼ β (46)

We used τj << τ−j as shown in Figure 3 in (45) and (46) and sufficient long duration of the whole
signal transduction according to experimental data [23,36,37]. The dephosphorylation of signaling
molecule Xj* takes a significantly longer time, τ−j. Subsequently, Equations (39), (40), (45) and
(46) provide:

β = −〈ζ j〉 = 〈ζ−j〉 ≡ 〈ζ〉 (47)

In summary, we obtained the following result from Equations (43)–(47):

− log pj = 〈ζ〉τj (48)

log pj
∗ = 〈ζ〉τ−j (49)

Equations (48) and (49) implies the integration of information entropy, code length, and thermodynamic
AEPR. In these equations, step numbers j and −j in ζj and ζ−j were omitted because ζj and ζ−j are
independent of the step number. Thus, the theoretical basis of the consistency of the average entropy
production rate can be obtained.

The chemical extracted average chemical work <wj> in Equation (36) from (i) to (iv) in Section 5 is
calculated as follows using Equations (15), (36), (48) and (49) [18]:

〈wj〉 = kBTHj =
∫

kBT log
pj

pj
∗ dXj

∗ = kBT∆Xj
∗〈ζ〉

(
τj − τ−j

)
(50)

The summation of the right side of (50) gives the total work:

〈w〉 , kBT
n

∑
j=1
〈ζ〉
(
τj − τ−j

)
∆Xj

∗ = kBTH (51)

with

H , 〈ζ〉
n

∑
j=1

(
τj − τ−j

)
∆Xj

∗ =
n

∑
j=1

σj∆Xj
∗ (52)

and
σj , 〈ζ〉

(
τj − τ−j

)
. (53)

Here, σj stands for the entropy production during τj − τ−j at the jth step.
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Figure 3. A common time course of the jth cycle showing the concentration of Xj* during
phosphorylation [36,37]. The vertical axis represents the concentration of Xj*. The horizontal axis
denotes the duration (min or time unit). τj and τ−j denote the duration of the jth step and the reversible
−jth step, respectively. Line Xj* = Xj*st denotes the Xj* concentration at the initial steady state before
the beginning of the signal event.

7. Conclusions

Signal transduction is an important research topic in life science, but quantitatively evaluating
data remains difficult. This review pointed out the possibility of quantitative signalling to life scientists.
The current review can be summarised in the following points:

(i) The BRC can be expressed by a kind of binary code system consisting of two types of signalling
molecules: activated and inactivated.

(ii) The individual reaction step of the BRC can be thought of as a cycle of a Szilard engine chain,
in which the process of repeats of signalling molecule activation/inactivation.

(iii) The average entropy production rate is consistent during BRC.
(iv) The signal transduction amount can be calculated through the BRC.

The chain of Szilard engines is a useful model to show how signal transduction in one step induces
signal transduction in the next step, in which a series of chains is formed. The most important point
of this model is to directly give the signal transduction amount by the exchange work according to
Equation (3). The currently introduced chain illustrates that the feedback controller transfers signal
molecules based on the measurement of the increase and decrease of the signal molecule. Subsequently,
the exchanger molecule on the boundary between the steps can extract work between because of
the entropy gradient consisting of the two types of signalling molecules. In this way, the signal
transduction amount can be clearly quantified by the combination of chemical work.

Herein, let us consider the calculation of the entropy production based on the kinetics of the
activation of signalling molecules according to (5). The signalling system is contacted with a chemical
bath outside the system that provides ATP. The transitional rate from the jth step to the (j + 1)th step, vj,
obtained using the kinetic coefficient kj for the jth step as follows:

vj = k j AXj
∗Xj+1 (54)
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The transitional rate from the (j + 1)th step to the jth step, v−j, which is equal to the demodification
(dephosphorylation) of the backward signal transduction, is given using the kinetic coefficient k−j for
the −jth step:

v−j = k−jPhj+1Xj+1
∗ (55)

where, kj and k−j represent the kinetic coefficients. The signal transduction system remains at a detailed
balance around the steady state, the homeostatic point:

p (j
∣∣j + 1)v−j = p(j + 1

∣∣j)vj (56)

Combining Equations (47), (54)–(56), we obtain the following from FT:

lim
τj−τ−j→∞

1
τj − τ−j

log
p(j + 1|j)
p(j|j + 1)

= lim
τj−τ−j→∞

1
τj − τ−j

log
k j AXj

∗Xj+1

k−jPhj+1Xj+1
∗

== lim
τj−τ−j→∞

1
τj − τ−j

(
log

k j AXj
∗

k−jPhj+1
+ log

pj+1

pj+1∗

)
' lim

τj−τ−j→∞

1
τj − τ−j

log
pj+1

pj+1∗
= −〈ζ〉

(57)

Above result contains Equation (42). Therefore, for sufficient long duration τj − τ−j:

log
p(j + 1|j)
p(j|j + 1)

= log
k j AXj

∗Xj+1

k−jPhj+1Xj+1
∗ ' −〈ζ〉

(
τj − τ−j

)
= −σj. (58)

Using the concentration of the active signalling molecules at the steady state, Xj+1
st*, we have:

Xj+1
∗ = Xj+1

st∗ + ∆Xj+1
∗ (59)

Substitution of Equation (59) into Equation (58) produces:

log
k j AXj

∗Xj+1

k−jPhj+1Xj+1
∗ = −σj + log

k j AXj
st∗Xst

j+1

k−jPhj+1Xj+1
st∗ (60)

Here, the entropy production σj in (53) is defined in the jth step:

−σj = kBT log

(
1 + ∆Xj+1/Xst

j+1

1 + ∆Xj+1
∗/Xst

j+1
∗

)
. (61)

In Equation (61), the fluctuation of Xj* is negligible during signal transduction relative to ∆Xj+1

and ∆Xj+1* according to experimental data (36). The sum of the concentrations of Xj+1 and Xj+1* is
equal to the total concentration Xj+1

0 that is kept constant because the signal transduction rate is
significantly greater than the production of signalling molecular proteins. Then:

Xj+1 + Xj+1
∗ = Xj+1

0 = const. (62)

Equations (54), (55) and (62) give the concentrations at steady state:

Xj+1
st =

k−jPhj+1 p(j
∣∣j + 1)

k−jPhj+1 p(j
∣∣j + 1) + k j p(j + 1

∣∣j)A
Xj+1

0 (63)

Xj+1
st∗ =

k j p(j + 1
∣∣j)A

k−jPhj+1 p(j
∣∣j + 1) + k j p(j + 1

∣∣j)A
Xj

0 (64)
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Phj+1 signifies the phosphatase concentration in the jth step. The fluctuation of the transmitted
information is described as follows using an integral form of Equation (61):

−σj =
τj−τ−j∫

0
log

(
1 + ∆Xj+1/Xst

j+1

1 + ∆Xj+1
∗/Xst

j+1
∗

)
∆Xj+1

∗

∆sj
dsj

=
τj−τ−j∫

0

Xj+1
0

Xj+1
st∗Xj+1

st

∆Xj+1
∗

∆sj
dsj =

τj−τ−j∫
0

Xj+1
0

Xj+1
st∗Xj+1

st

dXj+1
∗

dA
dA
dsj

dsj

(65)

We used the approximation log (1 + x) ~x in the logarithmic term in (65). A simple calculation of
Equations (63) and (64) gives:

dXj+1
∗

dA
=

1
A

Xj+1
st∗Xj+1

st

Xj+1
0 (66)

Then, substitution of Equation (66) into Equation (65) gives:

−σj =
∫ Aj f

Aji

1
A

dA = [log A]
Aj f
Aji

= log
Aj f

Aji
= log

Aji − ∆Aj

Aji
≈ −

∆Aj

Aji

(67)

with
Aj f = Aji − ∆Aj (68)

Ajf and Aji signify the local concentration of the mediator ATP at the initial and final state, respectively,
at the jth step. ∆Aj signifies the concentration change of ATP at the jth step. Thus, the total entropy
production σ is simply given as follows:

σ ,
n

∑
j=1

σj = −
n

∑
j=1

log
Aj f

Aji
= − log

A1i −
n
∑

j=1
∆Aj

A1i
'

n
∑

j=1
∆Aj

A
. (69)

In above, we used the approximation log (1 + x) ~x again and set A1i equal to the initial
concentration of ATP, A. Thus, ATP is the mediator of signal transduction. In an actual experiment,
rigorously measuring the concentration change of ATP at individual signal steps is difficult because
ATP is consumed in a variety of reactions as a basic metabolite for cell activity. Alternatively, the ratio
∆Xj+1/∆Xj+1

st is negligible during signal transduction according to experimental data [36], we have
from (61):

− σj =
∫ τj−τ−j

0
log
(
1 + ∆Xj+1

∗(sj
)
/∆Xj+1

st ∗)dsj (70)

or

− 〈ζ〉 =
−σj

τj − τ−j
=

1
τj − τ−j

∫ τj−τ−j

0
log
(
1 + ∆Xj+1

∗(sj
)
/∆Xj+1

st ∗)dsj (71)

As aforementioned, the right side of Equation (71) indicates that AEPR <ζ> is consistent during
the cascade. Accordingly, the measurement of AEPR will provide an evidence of its consistency during
the signaling cascade. In this manner, the rigorous measurement of the concentration change of active
signaling molecule may provide more direct evidence in the presented theory.To date, experimental
data have demonstrated that the time course of increase in active signaling molecules shows a similar
time course plot, as shown in Figure 3, suggesting the consistency of the AEPR [36,37].

Further study is required to prove which signal transduction strategy a biological system will
select. For example, the cell system may select a strategy to maximise signal event number during
a given duration by application of non-redundant signal system; in contrast, accuracy of the signal
transduction may be prioritized by application of redundant signal system. The strategy chosen for
signal cascade by the cell system will likely be determined experimentally. The cost-performance of
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metabolomics substance tradeoffs for cellular regulatory functions and information processing will
been argued by evaluation of recent experimental data [23–26]. By measuring the consumption of
metabolite, Luo et al. were successful in their estimation of biological information [38]. The relationship
between the ATP concentration in cellular tissues and information transmission has been vigorously
studied in the analysis of nerve excitement transmission [39], and this review may suggest implications
for quantitative information transmission.

The discussion developed herein has some limitations; hence, we would like to mention it at
the end. A detailed balancing between modification and demodification is assumed at each step
for the application of FT. Therefore, the current discussion is also possible only when the distance
from the detailed balance is not great [17–20]. This also depends on how we consider the range of FT
application or Jarzynski equality. FT has been applied to study a non-equilibrium system [28,29,40,41],
limit cycle [42], molecular machines [43], and biological phenomenon [44], including membrane
transport [45], molecular motor activity [46], and RNA folding [47]. The adaptation and extension
of the current discussion to the non-linear phenomenon [48,49] and far from steady state or active
matters will be the next theoretical subjects. However, at the least, interpreting the signal cycle as a
Szilard engine is considered as an effective idea for thought of experiments, and a chain of the engines
will serve as an actual BRC.

In conclusion, the information thermodynamics approach described herein provides a framework
for the analysis of signal transduction BRC. This theoretical approach appears suitable for the
identification of novel active signalling cascades among response cascades in which AEPR is consistent
through the given cascade. This review presents that the binary coding system and the Szilard engine
chain model may be the theoretical basis of computation of the channel capacity of BRC.
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