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ABSTRACT: Entry of SARS-CoV-2 into the central nervous system (CNS)
activates microglia, triggering chronic neuroinflammation and possibly neuro-
degeneration. The complex transcriptome of SARS-CoV-2 shares molecular
similarities with diverse human CNS protein epitopes, leading to a cytokine storm
and various autoantibodies, potentially culminating in an autoimmune state. A
COVID-19 initiated CNS autoimmune cascade may occur via multiple pathways
including molecular mimicry, bystander activation, epitope spreading, production of
autoantibodies, and immortalization of effector B-cells.
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■ INTRODUCTION

Since its initial outbreak in December 2019, coronavirus
disease 2019 (COVID-19) has posed a significant threat to
humankind and an enormous burden upon healthcare systems.
To date, nearly 180 million cases have been diagnosed globally,
with 3.8 million deaths (https://coronavirus.jhu.edu/map.
html). In addition to acute respiratory symptoms, COVID-
19 also presents with neurological manifestations resulting
from either direct or indirect brain damage. The SARS-CoV-2
virus enters the central nervous system (CNS) via multiple
routes: hematological spread with associated blood−brain
barrier (BBB) penetration; trans-synaptic viral spreading; entry
through circumventricular structures and the blood−cerebro-
spinal fluid. Upon CNS entry, the virus binds to multiple cell
types (e.g., neurons, astrocytes, oligodendrocytes, and micro-
glia across diverse brain regions) by various interactions but
principally via the angiotensin-converting enzyme-2 (ACE2)
protein, a primary receptor for SARS-CoV-2. This CNS entry
subsequently activates microglial and inflammatory mediators,
which in turn activate T-lymphocytes. As a consequence,
immunopathological mechanisms such as autoimmunity, direct
immune cytotoxicity, and indirect bystander damage are
responsible for the neurological manifestations of COVID-
19. The severity of this COVID-19 neurological damage
correlates with the innate and adaptive host immune response
to the virus and upon the existence of previous or concomitant
CNS disease.

■ HOW COVID-19 TRIGGERS AUTOIMMUNE BRAIN
DISORDERS

Autoimmune diseases develop as a result of an aberrant
immune response when recognizing self- versus non-self-
antigens, thereby leading to a misguided attack on healthy host
tissue. The biological mechanisms that lead to the hyper-
stimulated immune response in autoimmunity are the same as
the mechanisms occurring during the body’s overactive
immune response following COVID-19 infection and occur
via multidirectional mechanistic pathways as discussed herein
(Figure 1).

a. Molecular Mimicry. Molecular mimicry involves
structural similarity of a pathogen’s antigens to self-antigens,
which in turn activates T- and B-lymphocytes and leads to a
cross-reactive response involving conformationally similar
human proteins, thereby causing autoimmune disease.
Molecular mimicries between SARS-CoV-2 and several
neuronal autoantigens in brain and CSF from individuals
afflicted with COVID-19 have been identified (Table 1).1

b. Bystander Activation. As an acute first line of defense,
the innate immune system mounts a forceful response to
SARS-CoV-2 infection resulting in elevated levels of
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proinflammatory cytokines (e.g., interleukin (IL)-1β, IL-6, IL-
8, TNF-α, interferon (IFN)γ) and chemokines (e.g.,
granulocyte colony stimulating factor (G-CSF), interferon γ-
induced protein 10 (IP-10), monocyte chemoattractant
protein 1 (MCP-1), and macrophage inflammatory protein
1α (MIP-1α)). This nonspecific and over-reactive antiviral
immune response produces a “cytokine storm” characterized
by an exaggerated proinflammatory environment which further
initiates self-tissue (blood−brain barrier, myelin sheath, axonal

membrane) damage along with production of self-antigens that
mimic COVID-19 antigens. These self-antigens are ultimately
taken up by antigen presenting cells (APCs), simulating
surrounding autoreactive T-cells and further triggering the
ongoing autoimmune response. Thus, the CNS tropism of
SARS-COV-2 leads to maladaptive innate immunity and
hyper-inflammation with stimulated microglia and astrocytes
contributing to neurodegenerative processes, including demye-

Figure 1. Mechanisms of SARS-CoV-2 induced autoimmunity. (a) Molecular mimicry. SARS-CoV-2 carries epitopes structurally similar to human
CNS protein epitopes. Antigen presenting cells (APCs) present SARS-CoV-2 epitopes to activate T-cells, which in turn bind to self-antigens having
similar epitopes and induce self-tissue damage. (b) Bystander activation. A nonspecific and an overactive immune response due to activation of M1
microglia and resulting cytokine storm create a localized proinflammatory environment. Antigens released from self-tissue (e.g., BBB, myelin
sheath) are taken up and presented by APCs which leads to further tissue damage. (c) Epitope spreading. Continuous SARS-CoV-2 infection leads
to persistent self-tissue damage and consequently to release of CNS specific self-antigens. New self-antigens are also presented by APCs to further
activate T-cells. T-cell response then spreads to target additional self-epitopes leading to autoimmunity. (d) Autoantibodies production.
Immunological memory of effector B cells against self-antigens continues to produce antibodies against CNS tissues (e.g., BBB, myelin sheath),
which ultimately leads to manifestation of an autoimmune neurological disorder.

Table 1. Shared Peptide (≥6 Amino Acids) Sequences between SARS-CoV-2 Spike Glycoprotein and Human Proteins Present
in Human CNSa

SARS-CoV-2
epitope human protein name human protein epitope human protein intracellular localization

VYSTGSN Neural cell adhesion
molecule L1-like protein

RVYSTGSNVFQ - B
lymphocytes

Plasma membrane, apical part of cell, dendrite, integral component of
membrane and extracellular exosome.

TGRLQSL Neuron navigator 3 LITGRLQSL - T lymphocytes Nucleus, nuclear outer membrane. Highly expressed in brain.
DEVRQIA Histone-lysine N-

methyltransferase 2C
VIRGDEVRQIAPG - T
lymphocytes

In brain, highest expression is in hippocampus, caudate nucleus, and
substantia nigra.

NSASFS Neuron navigator 1 LYNSASFSTF - T lymphocytes Cytoskeleton, microtubule, microtubule cytoskeleton, other locations,
axon initial segment, cytoplasm; broadly expressed at low levels in
forebrain.

LVLLPL Corticotropin-releasing factor
receptor 2

FLVLLPLVSSQCVNL - B
lymphocytes

Plasma membrane, integral component of plasma membrane, axon
terminus, dendrite; expressed in frontal cortex.

FLVLLP Calcitonin gene-related peptide
type 1 receptor

FLVLLPLVSSQCVNL - B
lymphocytes

Endoplasmic reticulum, endosome, lysosome, plasma membrane,
adrenomedullin receptor complex, calcitonin gene-related peptide
(CGRP) receptor complex, integral component of plasma membrane,
cytoplasm

aData on proteins and their localization in CNS are from Uniprot (https://www.uniprot.org/).
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lination, BBB disintegration, and aberrant activation of CNS
innate immunity signaling pathways.
c. Epitope Spreading. Upon continuous CNS self-tissue

damage emerging from SARS-CoV-2 inflicted autoimmunity
and neuroinflammation, additional self-antigens are produced
that further activate autoreactive T-cells. Consequently, the
viral infection spreads to stimulate T-cells with additional self-
epitopes. SARS-CoV-2 initiated autoimmunity therefore may
result in chronic and progressive CNS degenerative disease
pathology.
d. Self-Attacking Autoantibodies and Immortaliza-

tion of Effector B Cells. Along with immune-targeting
autoantibodies and antiphospholipid antibodies, people with
COVID-19 also sometimes exhibit high prevalence of other
CNS-tissue associated autoantibodies (e.g., neuronal injury
marker NINJ1, metabotropic glutamate receptor GRM5,
orexin receptor HCRT2R enriched in the hypothalamus).
Moreover, immunological memory enabled by effector B-cells
against self-antigens fosters ongoing antibody production
against diverse CNS tissue targets in the BBB and myelin
sheath. These diverse and varied self-targeting CNS tissue
autoantibodies result in targeted, longer-term damage and may
result in neurodegenerative disease severity in post-COVID-19
patients in coming decades. The SARS-CoV-2 virus therefore
has the capacity to damage the human brain via complex
indirect mechanisms, resulting in autoantibodies, predom-
inantly against brain-based antigens as has been clinically
demonstrated in cerebrospinal fluid samples from patients with
COVID-19 neurological complications.2

■ AUTOIMMUNE NEURODEGENERATIVE
DISORDERS AND COVID-19

The clinical manifestations of autoimmune neurological
disorders such as multiple sclerosis (MS) or Guillain−Barre ́
syndrome (GBS) have been reported in COVID-19 case
studies.3 For example, following 2−3 weeks of SARS-CoV-2
infection a 29-year-old female developed multiple sclerosis
with right optic neuritis;4 MS-like demyelination may occur in
COVID-19 patients due to autoimmune mechanisms resulting
from T-lymphocyte activation secondary to M1 microglia
phenotype activation with associated inflammatory mediator
release. As presented in another case report, myelin
oligodendrocyte glycoprotein antibody-positive neuromyelitis
optica was observed in a 26-year-old male who presented with
bilateral optic neuritis and extensive longitudinal transverse
myelitis, occurring several days after COVID-19 symptom
onset.5 Upon the basis of these MS-based observations
coupled with evolving insights pertaining to the pathogenesis
of proteopathic dementia, we further speculate that SARS-
CoV-2 infection may also play a role as a long-term risk factor
for long-term protein-misfolding neurodegenerative diseases
such as Alzheimer’s disease (AD) and Parkinson’s disease;
ACE2-mediated accelerated production of neurotoxic proin-
flammatory cytokines with subsequent pathological innate and
adaptive immune activation leads to CNS cellular organelle
(mitochondria, lysosomes) impairment (as has been observed
in so-called COVID-19 long-haulers) and may be the start of a
neurodegenerative cascade.

■ CONCLUSIONS AND FUTURE DIRECTIONS

COVID-19 is a devastating multiorgan disease with global
prevalence; we are still in the early days of this disease, but

regrettably its legacy may be long-lasting, specifically as a risk
factor for AD. The possibility that COVID-19 might culminate
(after a latent phase) in AD is suggested by diverse
accumulating data, including the neurotropic properties of
SARS-CoV-2 and the neurological clinical features of COVID-
19. Innate-immune activation, such as that instigated by SARS-
CoV-2, is an early event in AD pathogenesis, occurring
possibly 20−30 years prior to the first symptoms. This
activation is triggered by pathogen-associated molecular
patterns (PAMPs) which induce cytotoxic proinflammatory
cytokine release. Long-past infections have thus been proposed
as triggers of AD and include human herpes viruses and most
recently Porphyromonas gingivalis. We are proposing that
SARS-CoV-2 is a trigger similar to Porphyromonas gingivalis.
In response to such PAMPs the subsequent sustained released
of proinflammatory cytokines and activated microglia heralds a
chronic autoimmune neurotoxic state creating the substrate for
AD’s persistent preclinical progressive neuronal death over
subsequent decades. Long-term cognition assessment and
overall neurological competence are recommended in acute
COVID-19 patients, specifically for patients having any history
of autoimmune disorders.
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