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Abstract

Obesity, associated with having excess body fat, is a critical public health problem that can

cause serious diseases. Although a range of techniques for body fat estimation have been

developed to assess obesity, these typically involve high-cost tests requiring special equip-

ment. Thus, the accurate prediction of body fat percentage based on easily accessed body

measurements is important for assessing obesity and its related diseases. By considering

the characteristics of different features (e.g. body measurements), this study investigates

the effectiveness of feature extraction for body fat prediction. It evaluates the performance

of three feature extraction approaches by comparing four well-known prediction models.

Experimental results based on two real-world body fat datasets show that the prediction

models perform better on incorporating feature extraction for body fat prediction, in terms of

the mean absolute error, standard deviation, root mean square error and robustness. These

results confirm that feature extraction is an effective pre-processing step for predicting body

fat. In addition, statistical analysis confirms that feature extraction significantly improves the

performance of prediction methods. Moreover, the increase in the number of extracted fea-

tures results in further, albeit slight, improvements to the prediction models. The findings of

this study provide a baseline for future research in related areas.

1 Introduction

Obesity, characterised by excess body fat, is a medical problem that increases one’s risk of

other diseases and health issues, such as cardiovascular diseases, diabetes, musculoskeletal dis-

orders, depression and certain cancers [1–3]. These diseases could result in escalating the spi-

ralling economic and social costs of nations [4]. Conversely, having extremely low body fat is

also a significant risk factor for infection in children and adolescents [5], and it may cause

pubertal delay [6], osteoporosis [7] and surgical complications [8]. Thus, the accurate predic-

tion of both excess and low body fat is critical to identifying possible treatments, which would

prevent serious health problems. Although a huge volume of medical data is available from
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sensors, electronic medical health records, smartphone applications and insurance records,

analysing the data is difficult [9]. There are often too many measurements (features), leading

to the curse of dimensionality [10] from a data analytics viewpoint. With a relatively small size

of patient samples, but a large number of disease measurements, it is very challenging to train

a highly accurate prediction model [11]. In addition, redundant, irrelevant or noise features

may further hinder the prediction model’s performance [12].

Feature extraction, as an important tool in data mining for data pre-processing, has been

applied to reduce the number of input features by creating new, more representative combina-

tions of features [13]. This process reduces the number of features without leading to signifi-

cant information loss [14]. In this study, three widely used feature extraction methods are

utilised to reduce features. Specifically, by analysing large interrelated features, Factor Analysis

(FA) can be used to extract the underlying factors (latent features) [15]. It is able to identify

latent factors that adequately predict a dataset of interest. Unlike FA, which assumes there is

an underlying model, Principal Component Analysis (PCA) is a descriptive feature reduction

method that applies an optimal set of derived features, extracted from the original features, for

model training [16]. PCA data projection concerns only the variances between samples and

their distribution. Independent Component Analysis (ICA), a technique that assumes the data

to be the linear mixtures of non-Gaussian independent sources [17], is widely used in blind

source separation applications [18].

Feature extraction has been widely used in the medical area to map redundant, relevant and

irrelevant features into a smaller set of features from the original data [19, 20]. For example,

Das et al. [21] applied feature extraction methods to extract significant features from the raw

data before using an Artificial Neural Network (ANN) model for medical disease classification.

Their results showed that feature extraction methods could increase the accuracy of diagnosis.

Tran et al. [22] proposed an improved FA method for cancer subtyping and risk prediction

with good results. Sudharsan and Thailambal [23] applied PCA to pre-process the experimen-

tal datasets used for predicting Alzheimer’s disease. Their results showed that applying PCA

for pre-processing could improve the precision of the prediction model. In the work of Franz-

meier et al. [24], ICA was utilised to extract features from cross-sectional data for connectiv-

ity-based prediction of tau spreading in Alzheimer’s disease with impressive results.

In addition, machine learning methods have been increasingly applied to solve body fat pre-

diction problems [25]. Shukla and Raghuvanshi [26] showed that the ANN model is effective

for estimating the body fat percentage using anthropometric data in a non-diseased group.

Kupusinac et al. [27] also employed ANNs for body fat prediction and achieved high predic-

tion accuracy. Keivanian et al. [28, 29] considered a weighted sum of body fat prediction errors

and the ratio of features, and optimised the prediction using a metaheuristic search-based fea-

ture selection-Multi-Layer Perceptron (MLP) model (MLP is a type of ANN). Chiong et al.

[30] proposed an improved relative-error Support Vector Machine (SVM) for body fat predic-

tion with promising results. Fan et al. hybridised a fuzzy-weighted operation and Gaussian

kernel-based machine learning models to predict the body fat percentage, while Uçar et al.

[31] combined a few machine learning methods (e.g. ANN and SVM) for the same purpose,

and their models achieved satisfactory predictions.

In this study, we apply FA, PCA and ICA to extract critical features from the available fea-

tures, using four machine learning methods—MLP, SVM, Random Forest (RF) [32], and

eXtreme Gradient Boosting (XGBoost) [33]—to predict the body fat percentage. We consider

five metrics, that is, the mean absolute error (MAE), standard deviation (SD), root mean

square error (RMSE), robustness (MAC) and efficiency, in the evaluation process. We use

experimental results based on real-world body fat datasets to validate the effectiveness of fea-

ture extraction for body fat prediction. One of the datasets is from the StatLib, based on body
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circumference measurements [34]; the other dataset is from the National Health and Nutrition

Examination Survey (NHANES) based on physical examinations [35]. In addition, we employ

the Wilcoxon rank-sum test [36] to validate whether the prediction accuracy based on feature

extraction improves significantly or not. The motivation of this study is to assess and compare

different feature extraction methods for body fat prediction as well as provide a baseline for

future research in related areas. It is worth pointing out that the results presented here are new

in the context of body fat prediction. We also explore the optimal number of features used for

each of the feature extraction methods while balancing accuracy and efficiency.

The rest of this paper is organised as follows: Section 2 briefly introduces the feature extrac-

tion methods and prediction models. In Section 3, experimental results based on the real-

world body fat datasets are provided; specifically, performance measurements are first

described, and then experimental results based on feature extraction for the prediction of body

fat percentage are discussed. Lastly, Section 4 concludes this study and highlights some future

research directions.

2 Methods

In this section, we first discuss three widely used feature extraction methods: FA, PCA and

ICA. Then, we present four well-known machine learning algorithms—MLP, SVM, RF and

XGBoost.

2.1 Feature extraction methods

Feature extraction methods are widely used in data mining for data pre-processing [37]. They

can reduce the number of input features without incurring much information loss [38]. In this

case, they can alleviate the overfitting of prediction models by removing redundant, irrelevant

or noise measurements/features. In addition, with less misleading features, the model accuracy

and computation time could be further improved.

2.1.1 Factor analysis. This widely used statistical method for feature extraction is an

exploratory data analysis method. FA can be used to reduce the number of observable features

with a set of fewer latent features (factors) without losing much information [39]. Each latent

feature is able to describe the relationships between the corresponding observed features.

Since the factor cannot be directly measured with a single feature, it is measured through the

relationships in a set of common features, if and only if one of these requirements is satisfied:

(a) The minimum number of features is used to capture maximum variability in the data and

(b) the information overlap among the factors is minimised. By doing so, (1) the most com-

mon variance between features is extracted by the first latent factor; (2) eliminating the factor

extracted in (1), the second factor with the most variance between the remaining features is

extracted; and (3) steps (1) and (2) are repeated until the rest of features are tested. FA is very

helpful for reducing features in a dataset where a large number of features can be presented by

a smaller number of latent features. An example of the relationship between a factor and its

observed features is given in Fig 1, in which p denotes the number of observed features. If the

models has k latent features, then the assumption in FA is given in Eq 1. Generally, FA calcu-

lates a correlation matrix based on the correlation coefficient to determine the relationship for

each pair of features. Then, the factor loadings are analysed to check which features are loaded

onto which factors where factor loadings can be estimated using maximum likelihood [40].

Featurei ¼
Xk

r¼1

wirFactorr þ ei; ð1Þ
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where ffwirg
p
i¼1
g

k
j¼1

are factor loadings, which means that wir is the factor loading of the ith
variable on the rth factor (similar to weights or strength of the correlation between the feature

and the factor) [41], and ei is the error term, which denotes the variance in each feature that is

unexplained by the factor.

2.1.2 Principle component analysis. PCA is a very useful tool for reducing the

dimensionality of a dataset, especially when the features are interrelated [42]. This non-

parametric method uses an orthogonal transformation to convert a set of features into a

smaller set of features termed principal components. Using a covariance matrix, we are able to

measure the association of each feature with other features. To decompose the covariance

matrix, singular value decomposition [43] can be applied for linear dimensionality reduction

by projecting the data into a lower dimensional space, which yields eigenvectors and eigenval-

ues of the principal components. In this case, we could obtain the directions of data distribu-

tion and the relative importance of these directions. A positive covariance between two

features indicates that the features increase or decrease together, whereas a negative covariance

indicates that the features vary in opposite directions. The first principal component could pre-

serve as much of the information in the data as possible, whereas the second one could retain

as much of the remaining variability as possible until no features are left. In other words, the

extracted principal components are ordered in terms of their importance (variance). Consider-

ing that PCA is sensitive to the relative scaling of the original features, in practice, it is better to

normalise the data before using PCA. An example of using a component to represent its corre-

sponding features is given in Fig 2. As this figure shows, each component is a linear function

of its corresponding features, whereas a feature in FA is a function of given factors plus an

error term.

2.1.3 Independent component analysis. ICA is a blind source separation technique [44].

It is very useful for finding factors hidden behind random signals, measurements or features

based on high-order statistics. The purpose of ICA is to minimise the statistical dependence of

the components of the representation. By doing so, the dependency among the extracted sig-

nals is eliminated. To achieve good performance, some assumptions should be met before

using ICA [45]: (1) The source signals (features) should be statistically independent; (2) the

mixture signals should be linearly independent from each other; (3) the data should be centred

(zero-mean operation for every signals); and (4) the source signals should have a non-Gaussian

distribution. One widely used application of ICA is the cocktail party problem [46]. As Fig 3

illustrates, there are two people speaking, and each has a voice signal. These signals are

received by the microphones, which then send the mixture signals. Since the distance between

the microphones and the people differ, the mixture signals from microphones differ as well.

Fig 1. An example of the relationship between a factor and its observed features.

https://doi.org/10.1371/journal.pone.0263333.g001

PLOS ONE Body fat prediction through feature extraction based on anthropometric and laboratory measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0263333 February 22, 2022 4 / 24

https://doi.org/10.1371/journal.pone.0263333.g001
https://doi.org/10.1371/journal.pone.0263333


Using ICA for signal extraction, the original signals can be obtained. Notably, it is difficult for

FA and PCA to extract source signals (original components).

2.2 Prediction models

In this section, four widely used machine learning models—MLP, SVM, RF and XGBoost—

are introduced.

2.2.1 MLP. The MLP is a type of ANN that generally has three different kinds of layers,

including the input, hidden and output layers [47]. Each layer is connected to its adjacent lay-

ers. Similarly, each neuron in the hidden and output layers is connected to all the neurons in

the previous layer with a weight vector. The values from the weighted sum of inputs and bias

term are fed into a non-linear activation function as outputs for the next layer. Fig 4 shows an

example of MLP with three, two and one input, hidden and output neurons, respectively. We

can see from the figure that the input layer has three input neurons (x1, x2, x3) and one bias

term with a value of b1. Their values, based on the inner product with the weight matrix, are

fed into the hidden layer. In this step, the input is first transformed using a learned non-linear

transformation—an activation function g(�)—that projects the input data into a new space

where it becomes linearly separable. The outputs of two neurons in the hidden layer depend

on the outputs of input neurons and a bias neuron in the same layer with a value of b2. The

output layer has one neuron that takes inputs from the hidden layer with the activation func-

tion, where f(x) is the feed-forward prediction value from an input vector x.

2.2.2 SVM. SVMs, founded on the structural risk minimisation principle and statistical

learning theory [48], have been widely used in many real-world applications and have

Fig 2. An example of using a component to represent its corresponding features.

https://doi.org/10.1371/journal.pone.0263333.g002

Fig 3. An example of the process of extracting signals from the cocktail party problem with two speaking people (source signals) and two

microphones (mixture signals).

https://doi.org/10.1371/journal.pone.0263333.g003
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displayed satisfactory performance (e.g., see [49–51]). Given n training samples fðxi; yiÞg
n
i¼1

,

the standard form of ε-SVM regression can be expressed as Eq (2). We can see from Fig 5 that,

unlike the SVM for classification problems that classifies a sample into a binary class, the SVM

regression fits the best line within a threshold value ε with tolerate errors (ξi and x
�

i ).

arg min
w;b;xi ;x

�
i

1

2
wTwþ C

X

i

ðxi þ x
�

i Þ

s:t:

yi � ðwT�ðxiÞ þ bÞ⩽ εþ xi

ðwT�ðxiÞ þ bÞ � yi ⩽ εþ x�i

xi; x
�

i ⩾ 0

8
>>>>><

>>>>>:

ð2Þ

where w is a weight vector, wT is the transpose of w, b is a bias term, ξi and x
�

i are slack variables

of the ith sample, C is a penalty parameter, ε is a tolerance error, xi and yi are the ith input vec-

tor and output value, respectively, and ϕ(x) is a function that is able to map a sample from a

low dimension space to a higher dimension space.

After solving the objective function in Eq (2) using the Lagrangian function [52] and Kar-

ush–Kuhn–Tucker conditions [53], we can obtain the best parameters (�w and �b) for the SVM.

The final prediction model, g(x), can be expressed as follows:

gðxÞ ¼
X

i

ð�a i � �a�i ÞKernelðxi; xÞ þ �b; ð3Þ

where Kernel(xi, xj) = ϕ(xi)ϕ(xj) is a kernel function [54].

2.2.3 RF. The RF, proposed by Ho [55], is a decision tree-based ensemble model. For

body fat prediction, the RF regression model uses an ensemble learning method for regression.

It creates many decision trees based on the training set [56]. By combining multiple decision

trees into one model, the RF model improves the prediction accuracy and stability. It is also

able to avoid overfitting by utilising resampling and feature selection techniques. The training

procedure of RF is given in Fig 6. As the figure illustrates, the RF generates many sub-datasets

Fig 4. An example of MLP with three input neurons, two hidden neurons, and one output neuron.

https://doi.org/10.1371/journal.pone.0263333.g004
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with the same size of samples from the given training samples based on the re-sampling strat-

egy. Then, for each new training set, each decision tree is trained with the selected features

based on recursive partitioning, where a decision tree search is applied for the best split from

the selected features. The final output is based on the average of predictions from all the deci-

sion trees.

2.2.4 XGBoost. XGBoost is also an ensemble model [57]. It employs gradient boosting

[58] to group multiple results from the decision tree-based models as the final result. In addi-

tion, it uses shrinkage and feature sub-sampling to further reduce the impact of overfitting

[59]. XGBoost is suitable in applications that require parallelisation, distributed computing,

out-of-core computing, and cache optimisation, which is suitable in real-world applications

that have high requirements of computation time and storage memory [60]. The training pro-

cedure of XGBoost is depicted in Fig 7. It can be seen from the figure that XGBoost is based on

gradient boosting. More specifically, new models (decision trees) are built to predict the errors

(residuals) of prior models (from f1 to the current model). Once all the models are obtained,

they are integrated together to make the final prediction.

3 Experimental results and discussions

In this section, we present the results of the computational experiments conducted based on

two body fat datasets—Cases 1 and 2—to validate the effectiveness of feature extraction meth-

ods for body fat prediction. Case 1 is based on anthropometric measurements, while Case 2 is

based on physical examination and laboratory measurements. We compare four well-known

Fig 5. ε-SVM regression with the ε-insensitive hinge loss, meaning there is no penalty to errors within the ε margin.

https://doi.org/10.1371/journal.pone.0263333.g005
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machine learning algorithms, the MLP, SVM, RF and XGBoost, with the feature extraction

methods used. Specifically, MLP_FA, MLP_PCA and MLP_ICA are the MLP based on FA,

PCA and ICA; SVM_FA, SVM_PCA and SVM_ICA are the SVM based on FA, PCA and ICA;

RF_FA, RF_PCA and RF_ICA are the RF based FA, PCA and ICA; and XGBoost_FA,

XGBoost_PCA and XGBoost_ICA are XGBoost based on FA, PCA and ICA. The program-

ming/development environment was based on Python using scikit-learn, and the experiments

were executed on a computer with an i5-6300HQ CPU of 2.30GHz having 16.0 GB RAM.

3.1 Performance measures

In this study, we considered five performance measures. Specifically, the MAE and RMSE were

used to evaluate the model’s approximation ability, SD was used to measure the variability of

the errors between the predicted and target values, MAC [61] was used to evaluate model

robustness, and computation time was used to measure the efficiency. To better evaluate the

performance, we randomly shuffled the data and ran the experiments of five-fold cross valida-

tion for 20 times, then averaged them to get the final results. The computation time included

Fig 6. An example of the RF model.

https://doi.org/10.1371/journal.pone.0263333.g006

PLOS ONE Body fat prediction through feature extraction based on anthropometric and laboratory measurements

PLOS ONE | https://doi.org/10.1371/journal.pone.0263333 February 22, 2022 8 / 24

https://doi.org/10.1371/journal.pone.0263333.g006
https://doi.org/10.1371/journal.pone.0263333


the time for feature extraction and 20 runs of five-fold cross validation. Our objective was to

minimise the MAE, SD, RMSE and computation time while maximising MAC.

MAE ¼
1

n

Xn

i¼1

ðjyp
i � yt

i jÞ; ð4Þ

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðei � �eÞ2
s

; ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyp
i � yt

iÞ
2

s

; ð6Þ

MACypyt ¼
ððypÞ

TytÞ
2

ððytÞ
TytÞððypÞ

TypÞ
; ð7Þ

where n is the number of samples, yp
i and yt

i are prediction and target values of the ith sample,

respectively, ei is the ith sample’s absolute error, �e is the average of absolute errors, (yp)Tyt is

the inner product operation for (yp)T and yt, and (yp)T is the transpose of yp.

3.2 Parameter settings

We used the grid search approach with cross validation for parameter selection [62]. The set-

tings used in our experiments, obtained after some tuning process, are listed in Table 1.

A flowchart of different feature extraction methods used for body fat prediction based on

K-fold cross validation with N repeated experiments is given in Fig 8 to further clarify the pro-

cedure of our experiments. In the figure, K = 5 and N = 20; i.e., the experiments were repeated

20 times and each experiment was conducted based on 5-fold cross validation.

Fig 7. An example of the XGBoost model.

https://doi.org/10.1371/journal.pone.0263333.g007
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3.3 Case 1: Body fat percentage prediction based on anthropometric

measurements

3.3.1 Data description. The body fat dataset used in Case 1 contained 252 samples with

13 input features and one output feature. It was downloaded from the StatLib (see http://lib.

stat.cmu.edu/datasets/bodyfat). The statistical descriptions of this dataset are provided in

Table 1. Parameter settings for the prediction models, where #neurons is the number of neurons, #iterations is the

maximum number of iterations, regularisation is the regularisation parameter, σ2 is the variance within the RBF

kernel, #trees is the number of trees, and depth is the maximum depth of the tree.

Grid search Optimal parameters

MLP #neurons = [100, 500, 1000] #neurons = 500

#iterations = [100, 500, 1000] #iterations = 500

SVM regularisation = [10, 100, 1000] regularisation = 10

1/σ2 = [0.001, 0.01, 0.1] 1/σ2 = 0.001

RF #trees = [10, 100, 1000] #trees = 1000

depth = [3, 4, 5] depth = 5

XGBoost #trees = [10, 100, 1000] #trees = 100

depth = [3, 4, 5] depth = 3

https://doi.org/10.1371/journal.pone.0263333.t001

Fig 8. A flowchart of different feature extraction methods used for body fat prediction based on K-fold cross validation with N repeated

experiments.

https://doi.org/10.1371/journal.pone.0263333.g008
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Table 2. The input features included age, weight and various body circumference measure-

ments, and the output feature was the body fat percentage.

3.3.2 Determination of the number of extracted features. To determine the number of

extracted features, we calculated the explained variance for each feature by using scikit-learn

[63]. We only selected the principal components that have the largest eigenvalues based on a

given threshold (i.e. how much information it contained). The four steps to determine the

number of extracted features were as follows: (1) constructing the covariance matrix; (2)

decomposing the covariance matrix into its eigenvectors and eigenvalues; (3) sorting the

eigenvalues by decreasing order to rank the corresponding eigenvectors; and (4) selecting the

k largest eigenvalues such that their cumulative explained variance reached the given thresh-

old. The explained variance ratio for the StatLib dataset is given in Fig 9. Here, the threshold

was set to 0.99, which means 99% of the information remained. In this case, six features were

extracted from the 13 input features.

3.3.3 Experiments and results. Table 3 presents the results obtained by the MLP, SVM,

RF and XGBoost for body fat prediction with and without feature extraction. As shown in the

table, the SVM, RF and XGBoost perform better than MLP. The performance of SVM and

XGBoost is similar, whereas that of RF is the best in terms of accuracy. However, it is clear

that, by incorporating feature extraction, the learning models can achieve higher prediction

accuracy, stability and robustness in most cases. The XGBoost model with FA feature extrac-

tion generated the most precise and stable results, albeit taking longer computation time than

the standalone XGBoost. Using the feature extraction method increases the computation time

because feature extraction pre-processing also takes time, even though it is more efficient to

train the prediction model with less input features. Among all the prediction models, XGBoost

with FA for feature extraction shows the best prediction accuracy (MAE = 3.433, SD = 4.188

and RMSE = 4.248), and the SVM with PCA obtained results in the shortest computation time

(close to the standalone SVM).

3.3.4 Statistical analysis based on the Wilcoxon rank-sum test. Although the results of

MLP, SVM and XGBoost presented thus far have shown that the use of feature extraction can

improve their performance, statistical analysis is needed to validate whether the differences

between the results obtained are statistically significant. In this section, we report the results of

statistical tests conducted based on the Wilcoxon rank-sum test [64]. Table 4 shows the

Table 2. Statistical properties of Case 1’s body fat dataset.

Variable Unit Symbol Minimum Maximum Mean Standard deviation

Age (years) years Age 22 81 44.8849 12.6020

Weight (lbs) lbs Weight 118.5 363.15 178.9244 29.3892

Height (inches) inches Height 29.5 77.75 70.1488 3.6629

Neck circumference cm Neck 31.1 51.2 37.9921 2.4309

Chest circumference cm Chest 79.3 136.2 100.8242 8.4305

Abdomen 2 circumference cm Abdomen 69.4 148.1 92.5560 10.7831

Hip circumference cm Hip 85 147.7 99.9048 7.1641

Thigh circumference cm Thigh 47.2 87.3 59.4060 5.2500

Knee circumference cm Knee 33 49.1 38.5905 2.4118

Ankle circumference cm Ankle 19.1 33.9 23.1024 1.6949

Biceps (extended) circumference cm Biceps 24.8 45 32.2734 3.0213

Forearm circumference cm Forearm 21 34.9 28.6639 2.0207

Wrist circumference cm Wrist 15.8 21.4 18.2298 0.9336

Body fat percentage % Bodyfat% 0 47.5 19.1508 8.3687

https://doi.org/10.1371/journal.pone.0263333.t002
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statistical test results based on the 20-run experimental results. As shown in the table, the

MLP, SVM and XGBoost and their versions with the feature extraction methods incorporated

are significantly different (the p-value is less than 0.05). However, the difference between the

RF and RF_PCA is not significant. This means the use of feature extraction is effective in

improving the performance of MLP, SVM and XGBoost.

Fig 9. Explained variance ratio for the StatLib dataset.

https://doi.org/10.1371/journal.pone.0263333.g009

Table 3. Experimental results based on the StatLib dataset (best results are highlighted in bold).

Algorithm MAE SD RMSE MAC Computation time (s)

MLP 6.872 8.177 8.336 0.845 150

MLP_FA 3.764 4.547 4.606 0.952 884

MLP_PCA 3.716 4.500 4.564 0.953 378

MLP_ICA 6.372 7.644 7.746 0.862 442

SVM 3.941 4.764 4.824 0.947 9

SVM_FA 3.740 4.529 4.603 0.952 67

SVM_PCA 3.796 4.660 4.724 0.949 10

SVM_ICA 3.678 4.449 4.511 0.954 20

RF 3.837 4.612 4.676 0.951 411

RF_FA 3.891 4.734 4.788 0.947 437

RF_PCA 3.866 4.670 4.739 0.948 374

RF_ICA 4.007 4.814 4.891 0.945 368

XGBoost 3.945 4.758 4.829 0.947 84

XGBoost_FA 3.433 4.188 4.248 0.949 116

XGBoost_PCA 3.538 4.289 4.337 0.947 56

XGBoost_ICA 3.558 4.296 4.362 0.946 74

https://doi.org/10.1371/journal.pone.0263333.t003
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3.3.5 Prediction performance with more extracted features. To investigate the impact

of having a different number of anthropometric features on the prediction performance, we

increased the number of extracted features from 6 (as calculated in Section 3.3.2) to 13 (the

total number of input features) in this series of experiments. Tables 5–7 show the results

obtained by the MLP, SVM, RF and XGBoost using FA, PCA and ICA, respectively. As shown

Table 4. Wilcoxon rank-sum tests for the MLP, SVM, RF, XGBoost, and the use of feature extraction, based on the StatLib dataset in terms of RMSE (p-values less

than 0.05 are highlighted in bold).

MLP SVM RF XGBoost

MLP_FA 6.302×10−8

MLP_PCA 6.302×10−8

MLP_ICA 6.302×10−8

SVM_FA 3.180×10−7

SVM_PCA 2.756×10−5

SVM_ICA 6.302×10−8

RF_FA 0.030

RF_PCA 0.256

RF_ICA 6.302×10−8

XGBoost_FA 6.302×10−8

XGBoost_PCA 6.302×10−8

XGBoost_ICA 1.329×10−7

https://doi.org/10.1371/journal.pone.0263333.t004

Table 5. Experimental results for the MLP, SVM, RF, and XGBoost, based on the StatLib dataset, with FA feature extraction (best results are highlighted in bold; #

means the number of features).

# MLP SVM RF XGBoost

MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC
6 3.764 4.547 4.606 0.952 3.740 4.529 4.603 0.952 3.891 4.734 4.788 0.947 3.433 4.188 4.248 0.949

7 3.719 4.474 4.539 0.953 3.728 4.483 4.542 0.953 3.939 4.783 4.833 0.946 3.511 4.252 4.296 0.948

8 3.718 4.449 4.504 0.954 3.665 4.424 4.501 0.954 3.905 4.725 4.777 0.947 3.463 4.179 4.231 0.949

9 3.674 4.396 4.447 0.955 3.627 4.403 4.466 0.955 3.946 4.769 4.832 0.946 3.463 4.163 4.218 0.950

10 3.672 4.381 4.433 0.955 3.542 4.344 4.408 0.956 3.915 4.748 4.791 0.947 3.460 4.160 4.217 0.950

11 3.653 4.356 4.436 0.956 3.556 4.399 4.458 0.955 3.926 4.772 4.827 0.946 3.445 4.143 4.210 0.951

12 3.634 4.347 4.414 0.956 3.517 4.356 4.428 0.956 3.979 4.803 4.890 0.945 3.464 4.196 4.247 0.949

13 3.671 4.404 4.471 0.955 3.647 4.419 4.484 0.955 3.934 4.771 4.819 0.946 3.462 4.152 4.202 0.950

https://doi.org/10.1371/journal.pone.0263333.t005

Table 6. Experimental results for the MLP, SVM, RF, and XGBoost, based on the StatLib dataset, with PCA feature extraction (best results are highlighted in bold; #

means the number of features).

# MLP SVM RF XGBoost

MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC
6 3.716 4.500 4.564 0.953 3.796 4.660 4.724 0.949 3.866 4.670 4.739 0.948 3.538 4.289 4.337 0.947

7 3.727 4.504 4.557 0.953 3.820 4.671 4.728 0.949 3.901 4.722 4.782 0.947 3.511 4.237 4.287 0.948

8 3.729 4.503 4.556 0.953 3.850 4.693 4.764 0.948 3.914 4.774 4.823 0.946 3.558 4.277 4.336 0.947

9 3.754 4.515 4.580 0.952 3.822 4.663 4.722 0.949 3.916 4.744 4.805 0.947 3.530 4.286 4.324 0.947

10 3.737 4.501 4.543 0.953 3.807 4.662 4.729 0.949 3.946 4.778 4.835 0.946 3.520 4.279 4.320 0.947

11 3.703 4.445 4.518 0.954 3.789 4.623 4.687 0.950 3.919 4.748 4.817 0.946 3.493 4.222 4.273 0.948

12 3.716 4.475 4.546 0.953 3.781 4.629 4.693 0.950 3.958 4.825 4.864 0.944 3.485 4.229 4.290 0.948

13 3.635 4.401 4.456 0.955 3.777 4.618 4.683 0.950 3.981 4.818 4.893 0.945 3.438 4.149 4.205 0.950

https://doi.org/10.1371/journal.pone.0263333.t006
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in Tables 5–7, in most cases, the accuracy (RMSE and MAE) and stability (SD and MAC) were

not necessarily enhanced by extracting more features as the inputs of the learning models.

Among the models being compared, XGBoost-FA performs the best for predicting the body

fat percentage in terms of MAE, RMSE, SD and MAC, which means it is able to predict the

body fat percentage with the highest accuracy and stability on the StatLib dataset.

It is critical to reduce the number of dimensions when the data size or the number of

dimensions is large (big data scenarios). In addition, the prediction models with PCA outper-

form the corresponding versions with ICA in terms of all the metrics used. This might be due

to the Gaussian distribution of the body fat dataset since PCA can process the Gaussian distri-

bution data while ICA cannot.

Fig 10 depicts the comparative experimental results of the computation time for the MLP,

SVM, RF and XGBoost using FA, PCA and ICA, respectively. The results show that XGBoost

with FA is the fastest among the compared methods. Fig 10 also reveals that in some cases, the

computation time increases with more features, which further highlights the importance of

Table 7. Experimental results for the MLP, SVM, RF, and XGBoost, based on the StatLib dataset, with ICA feature extraction (best results are highlighted in bold; #

means the number of features).

# MLP SVM RF XGBoost

MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC
6 6.372 7.644 7.746 0.862 3.678 4.449 4.511 0.954 4.007 4.814 4.891 0.945 3.558 4.296 4.362 0.946

7 6.349 7.533 7.687 0.868 3.730 4.536 4.592 0.952 4.168 5.032 5.105 0.940 3.588 4.366 4.430 0.944

8 6.305 7.507 7.630 0.868 3.791 4.648 4.708 0.949 4.335 5.220 5.286 0.935 3.676 4.492 4.546 0.941

9 6.271 7.515 7.596 0.865 3.792 4.621 4.689 0.950 4.399 5.293 5.345 0.933 3.693 4.503 4.558 0.941

10 6.286 7.493 7.624 0.866 3.799 4.606 4.670 0.950 4.410 5.325 5.393 0.932 3.701 4.492 4.574 0.941

11 6.275 7.500 7.611 0.866 3.730 4.508 4.573 0.953 4.418 5.325 5.389 0.933 3.626 4.408 4.463 0.944

12 6.205 7.448 7.541 0.867 3.754 4.556 4.618 0.952 4.586 5.491 5.575 0.929 3.657 4.499 4.556 0.942

13 6.234 7.407 7.543 0.871 3.714 4.496 4.563 0.953 4.563 5.496 5.548 0.928 3.612 4.438 4.494 0.942

https://doi.org/10.1371/journal.pone.0263333.t007

Fig 10. Comparison results in terms of computation time based on FA, PCA and ICA feature extraction for the StatLib dataset.

https://doi.org/10.1371/journal.pone.0263333.g010
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feature extraction in improving the efficiency. The computation time includes the time for fea-

ture extraction and 20 runs of five-fold cross validation, which means that when a different

number of features are extracted, the time for feature extraction may also differ.

3.4 Case 2: Body fat percentage prediction based on physical examination

and laboratory measurements

3.4.1 Data description. The body fat dataset used in Case 2 was downloaded from the

NHANES (see https://www.cdc.gov/nchs/nhanes/index.htm). The data were pre-processed as

in [65] by (1) combining DEMO, LAB11, LAB18, LAB25, BMX, and BIX files into one dataset,

(2) keeping data on male adults (age > 18); and (3) removing samples with missing values.

After pre-processing, 862 samples with 39 features were obtained. These features and their sta-

tistical descriptions are provided in Table 8.

3.4.2 Determination of the number of extracted features. We ran the same experiment

as in Section 3.3.2 to determine the number of extracted features. The explained variance ratio

for the NHANES dataset is given in Fig 11. With the threshold set to 0.99, 12 features were

extracted from the 38 input features.

3.4.3 Experiment results. Table 9 presents results obtained through the MLP, SVM, RF

and XGBoost for body fat prediction with and without feature extraction. These results are

consistent with those shown in Table 3, and show that ensemble models such as XGBoost per-

forms better than the MLP and SVM. Similarly, results show that incorporating feature extrac-

tion into the prediction models enhances the body fat prediction accuracy. The XGBoost

model with PCA feature extraction generated the most precise and stable results, as well as

shorter computation time than the standalone XGBoost.

3.4.4 Statistical analysis based on the Wilcoxon rank-sum test. Table 10 presents statis-

tical test results between the experimental results with and without feature extraction pre-pro-

cessing. As shown in the table, the MLP, SVM, RF and XGBoost and their versions that use

feature extraction are significantly different (the p-value is less than 0.05). This means the use

of feature extraction methods are effective in improving the performance of MLP, SVM and

XGBoost, but not that of RF (the performance of RF_FA, RF_PCA and RF_ICA is less than

that of RF in Table 9).

3.4.5 Prediction performance with more extracted features. To evaluate the prediction

performance on increasing the number of extracted features, we conducted experiments in

which the number of features used ranged from 12 (as calculated in Section 3.4.2) to 38 (the

total number of input features).

Tables 11–13 show the results obtained from the MLP, SVM, RF and XGBoost by using FA,

PCA and ICA for feature extraction, respectively. From the tables, we can observe that with

more features extracted, the prediction models can be further improved using feature extrac-

tion methods. Table 11 shows that XGBoost based on FA feature extraction has the best pre-

diction accuracy (3.713, 4.707 and 4.728 in terms of (MAE, SD, RMSE) using 38 features.

However, it performs satisfactorily using 24 features (3.772, 4.783, 4.803), which is more feasi-

ble in real applications. As shown in Table 12, the MLP has the best performance using 35 fea-

tures. It has improved (from 4.160, 5.230, 5.250 and 0.948 to 3.621, 4.618, 4.647 and 0.960) in

terms of MAE, SD, RMSE and MAC. As Table 13 shows, XGBoost outperforms the other mod-

els in comparison with the use of different number of features. Its best result is 3.805, 4.818,

4.840 and 0.955 in terms of MAE, SD, RMSE and MAC based on 24 extracted features. The

results with 38 features are used as the baseline. Analysing the results from Tables 11–13

reveals that the MLP, SVM, RF, and XGBoost with feature extraction performed similarly or

better than their corresponding baselines in terms of all metrics with only half the features (19
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features). This shows the potential of greatly improving the efficiency in real-world applica-

tions. In addition, analysis reveals that PCA is more suitable for extracting features for the

body fat dataset than ICA. The reason could be that this body fat dataset has a Gaussian distri-

bution and PCA is better suited for Gaussian-distribution data whereas ICA is better suited for

non-Gaussian distribution data.

Among the three feature extraction algorithms, PCA is the most effective one for this data-

set. It greatly improves the performance of the prediction models being compared. In addition,

Table 8. Statistical properties of Case 2’s body fat dataset. More details can be found at https://www.cdc.gov/nchs/nhanes/index.htm.

Variable Unit Symbol Minimum Maximum Mean Standard deviation

Segmented neutrophils number ANC 1.2 9.9 4.011 1.5443

Basophils number ABC 0 0.2 0.0311 0.0468

Lymphocyte number ALC 0.3 5.3 2.0561 0.6086

Monocyte number AMC 0.1 1.6 0.5812 0.1828

Eosinophils number AEC 0 2.1 0.206 0.1736

Red cell count SI RBC 3.43 6.78 5.1373 0.389

Hemoglobin (g/dL)�10 HGB 113 183 155.3677 9.953

Hematocrit % / 100 HCT 0.355 0.547 0.461 0.028

Mean cell volume fL MCV 65.1 108.6 89.9342 4.4912

Mean cell hemoglobin pg MCH 20.9 37.4 30.3227 1.7578

Mean cell volume fL � 10 MCHC 310 360 337.0534 7.49

Red cell distribution width % RDW 11 18.8 12.4017 0.7036

Platelet count (%) SI PLT 11 491 251.3631 55.2816

Mean platelet volume fL MPV 6.1 11.8 8.3609 0.8788

Sodium mmol/L SNA 129.9 146.4 139.7056 2.3272

Potassium mmol/L SK 3.11 5.36 4.1586 0.3065

Chloride mmol/L SCL 92.4 112.3 102.0905 2.8116

Calcium, total mmol/L SCA 2.125 2.7 2.3791 0.0912

Phosphorus mmol/L SP 0.549 2.357 1.1111 0.164

Bilirubin, total umol/L STB 3.4 63.3 11.6911 5.9454

Bicarbonate mmol/L BIC 17 32 24.1717 2.2766

Glucose mmol/L GLU 3.22 31.141 5.1061 1.5484

Iron umol/L IRN 3.94 46.39 17.9708 6.5508

LDH U/L LDH 45 578 151.9362 34.5774

Protein, total g/L STP 64 96 77.0151 4.3629

Uric acid umol/L SUA 172.5 642.4 354.5239 71.593

Albumin g/L SAL 34 57 46.8329 2.8720

Triglycerides mmol/L TRI 0.282 11.595 1.5610 1.2548

Blood urea nitrogen mmol/L BUN 1.4 15 4.9233 1.2775

Creatinine umol/L SCR 35.4 901.7 72.4034 31.6012

Cholesterol, total mmol/L STC 1.68 9.72 4.9024 1.0921

AST U/L AST 9 827 29.0325 37.1348

ALT U/L ALT 7 1163 34.7738 47.1822

GGT U/L GGT 7 698 37.4849 47.624

Alkaline phosphotase U/L ALP 30 271 84.2541 25.5154

Weight kg WT 42.7 138.1 81.9086 17.2013

Standing height cm HT 152.3 201.3 174.3531 7.8856

Waist circumference cm WC 62.4 147.7 93.3414 13.6034

Estimated percent body fat % BFP 4 61.8 24.1874 7.5771

https://doi.org/10.1371/journal.pone.0263333.t008
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Fig 12 depicts the comparative experimental results of computation time for the MLP, SVM,

RF and XGBoost with different number of features extracted from FA, PCA and ICA. As

shown in the figure, for each prediction model, there is a trend that with more features used,

more time is needed. The prediction models ordered by computation time from the most

time-consuming to the most efficient are the MLP, RF, XGBoost and SVM.

Fig 11. Explained variance ratio for the NHANES dataset.

https://doi.org/10.1371/journal.pone.0263333.g011

Table 9. Experimental results based on the NHANES dataset (best results are highlighted in bold).

Algorithm MAE SD RMSE MAC Computation time (s)

MLP 5.088 6.394 6.434 0.936 689

MLP_FA 4.727 6.015 6.038 0.943 3360

MLP_PCA 4.160 5.230 5.250 0.948 2684

MLP_ICA 4.919 6.265 6.288 0.939 1206

SVM 6.022 7.542 7.572 0.911 70

SVM_FA 6.210 8.030 8.060 0.887 563

SVM_PCA 4.837 6.058 6.081 0.929 63

SVM_ICA 4.705 6.203 6.225 0.939 28

RF 4.554 5.730 5.746 0.949 1479

RF_FA 4.822 6.044 6.064 0.943 1068

RF_PCA 4.696 5.856 5.877 0.946 542

RF_ICA 4.706 5.889 5.905 0.946 549

XGBoost 4.592 5.780 5.802 0.948 584

XGBoost_FA 4.169 5.255 5.276 0.946 656

XGBoost_PCA 4.021 5.07 5.089 0.950 178

XGBoost_ICA 4.039 5.081 5.096 0.950 183

https://doi.org/10.1371/journal.pone.0263333.t009
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Table 10. Wilcoxon rank-sum tests for the MLP, SVM, RF, XGBoost, and the use of feature extraction, based on the NHANES dataset in terms of RMSE (p-values

less than 0.05 are highlighted in bold).

MLP SVM RF XGBoost

MLP_FA 6.302×10−8

MLP_PCA 6.302×10−8

MLP_ICA 4.229×10−7

SVM_FA 6.302×10−8

SVM_PCA 6.302×10−8

SVM_ICA 6.302×10−8

RF_FA 6.302×10−8

RF_PCA 1.473×10−6

RF_ICA 5.509×10−6

XGBoost_FA 6.302×10−8

XGBoost_PCA 6.302×10−8

XGBoost_ICA 6.302×10−8

https://doi.org/10.1371/journal.pone.0263333.t010

Table 11. Experimental results for the MLP, SVM, RF, and XGBoost, based on the NHANES dataset, with FA feature extraction (best results are highlighted in

bold; # means the number of features).

# MLP SVM RF XGBoost

MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC
12 4.727 6.015 6.038 0.943 6.210 8.030 8.060 0.887 4.822 6.044 6.064 0.943 4.169 5.255 5.276 0.946

13 4.590 5.810 5.827 0.947 5.525 7.057 7.086 0.909 4.711 5.884 5.907 0.946 4.021 5.062 5.074 0.950

14 4.599 5.810 5.832 0.947 5.248 6.619 6.638 0.917 4.717 5.884 5.901 0.946 4.034 5.073 5.092 0.950

15 4.585 5.796 5.814 0.948 5.043 6.336 6.358 0.923 4.739 5.955 5.981 0.944 4.031 5.078 5.103 0.950

16 4.545 5.730 5.748 0.949 4.697 5.862 5.882 0.934 4.711 5.905 5.924 0.945 4.021 5.070 5.088 0.950

17 4.539 5.745 5.762 0.948 4.542 5.662 5.679 0.938 4.748 5.937 5.964 0.945 4.017 5.045 5.069 0.950

18 4.304 5.436 5.454 0.954 4.198 5.270 5.292 0.947 4.573 5.721 5.742 0.948 3.855 4.860 4.879 0.954

19 4.262 5.396 5.410 0.954 4.130 5.194 5.210 0.948 4.556 5.701 5.723 0.949 3.837 4.844 4.859 0.955

20 4.250 5.401 5.419 0.954 4.076 5.107 5.127 0.950 4.558 5.722 5.747 0.948 3.802 4.802 4.820 0.955

21 4.189 5.345 5.360 0.955 4.039 5.106 5.128 0.950 4.592 5.736 5.749 0.948 3.809 4.824 4.840 0.955

22 4.150 5.279 5.295 0.956 3.955 5.011 5.027 0.951 4.597 5.739 5.763 0.948 3.784 4.788 4.809 0.955

23 4.161 5.299 5.319 0.956 3.924 4.982 5.009 0.952 4.600 5.737 5.756 0.948 3.792 4.767 4.785 0.956

24 4.155 5.297 5.315 0.956 3.923 4.999 5.014 0.952 4.606 5.760 5.781 0.948 3.772 4.783 4.803 0.956

25 4.148 5.294 5.311 0.956 3.897 4.954 4.980 0.952 4.601 5.762 5.781 0.948 3.809 4.790 4.807 0.955

26 4.145 5.291 5.307 0.956 3.897 4.973 4.991 0.952 4.608 5.753 5.772 0.948 3.800 4.782 4.802 0.955

27 4.136 5.274 5.291 0.956 3.890 4.951 4.975 0.952 4.625 5.768 5.796 0.948 3.798 4.787 4.810 0.955

28 4.141 5.291 5.302 0.956 3.897 4.963 4.980 0.952 4.629 5.775 5.790 0.948 3.787 4.782 4.798 0.955

29 4.136 5.263 5.287 0.956 3.898 4.956 4.973 0.952 4.615 5.753 5.772 0.948 3.832 4.822 4.841 0.955

30 4.118 5.259 5.276 0.957 3.913 4.994 5.015 0.952 4.614 5.764 5.781 0.948 3.838 4.824 4.843 0.955

31 4.101 5.233 5.254 0.957 3.890 4.963 4.982 0.952 4.605 5.761 5.779 0.948 3.814 4.817 4.834 0.955

32 4.098 5.225 5.240 0.957 3.902 4.978 5.002 0.952 4.607 5.755 5.774 0.948 3.799 4.791 4.809 0.955

33 4.112 5.243 5.260 0.957 3.884 4.968 4.982 0.952 4.633 5.793 5.821 0.947 3.797 4.803 4.822 0.955

34 4.092 5.226 5.246 0.957 3.901 4.985 5.000 0.952 4.626 5.780 5.804 0.947 3.793 4.809 4.825 0.955

35 4.109 5.233 5.252 0.957 3.898 4.984 5.002 0.952 4.631 5.792 5.811 0.947 3.801 4.801 4.821 0.955

36 4.105 5.231 5.251 0.957 3.887 4.966 4.981 0.952 4.629 5.776 5.798 0.948 3.813 4.809 4.831 0.955

37 4.110 5.236 5.255 0.957 3.880 4.953 4.970 0.953 4.632 5.782 5.801 0.947 3.777 4.774 4.791 0.955

38 4.120 5.233 5.256 0.957 3.909 4.965 4.986 0.952 4.526 5.649 5.665 0.950 3.713 4.707 4.728 0.957

https://doi.org/10.1371/journal.pone.0263333.t011
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4 Conclusion

The accurate prediction of body fat is important for assessing obesity and its related diseases.

However, researchers find it challenging to analyse the large volumes of medical data gener-

ated. The main purpose of this study is to analyse and compare the prediction effectiveness of

four well-known machine learning models (MLP, SVM, RF and XGBoost) when combined

with three widely used feature extraction approaches (FA, PCA and ICA) for body fat predic-

tion. The results presented in this paper are new in the context of body fat prediction; they

could, therefore, provide a baseline for future research in this domain.

Experimental results showed that feature extraction methods can reduce features without

incurring significant loss of information for body fat prediction. In Case 1, with only six

extracted features, the prediction models exhibited better performance than the models with-

out using feature extraction. This finding confirms the effectiveness of feature extraction.

Among the comparison models, XGBoost with FA had the best approximation ability and

high efficiency. With the increase in the number of extracted features, model performance

can be further improved. For Case 2, PCA was the most effective in improving model

Table 12. Experimental results for the MLP, SVM, RF, and XGBoost, based on the NHANES dataset, with PCA feature extraction (best results are highlighted in

bold; # means the number of features).

# MLP SVM RF XGBoost

MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC
12 4.160 5.230 5.250 0.948 4.837 6.058 6.081 0.929 4.696 5.856 5.877 0.946 4.021 5.07 5.089 0.950

13 4.056 5.119 5.139 0.950 4.831 6.046 6.065 0.929 4.668 5.826 5.848 0.947 4.010 5.06 5.077 0.950

14 4.057 5.108 5.126 0.950 4.841 6.070 6.093 0.929 4.661 5.815 5.837 0.947 4.026 5.06 5.086 0.950

15 4.000 5.052 5.073 0.951 4.852 6.077 6.099 0.929 4.694 5.863 5.883 0.946 4.028 5.069 5.088 0.950

16 3.982 5.018 5.033 0.952 4.831 6.049 6.071 0.929 4.677 5.810 5.833 0.947 4.023 5.062 5.078 0.950

17 3.816 4.807 4.829 0.955 4.827 6.057 6.074 0.929 4.545 5.678 5.694 0.949 3.835 4.809 4.828 0.955

18 3.743 4.736 4.755 0.957 4.830 6.050 6.068 0.929 4.514 5.634 5.656 0.950 3.850 4.819 4.842 0.955

19 3.716 4.688 4.707 0.958 4.828 6.035 6.061 0.929 4.524 5.657 5.673 0.950 3.804 4.797 4.816 0.955

20 3.697 4.693 4.714 0.958 4.849 6.072 6.093 0.928 4.520 5.653 5.670 0.950 3.786 4.773 4.795 0.956

21 3.677 4.669 4.689 0.958 4.831 6.036 6.059 0.929 4.530 5.649 5.666 0.950 3.769 4.759 4.775 0.956

22 3.663 4.655 4.675 0.958 4.833 6.054 6.079 0.929 4.524 5.645 5.663 0.950 3.765 4.768 4.783 0.956

23 3.645 4.662 4.688 0.960 4.845 6.077 6.099 0.928 4.539 5.673 5.689 0.949 3.747 4.731 4.751 0.957

24 3.665 4.642 4.672 0.959 4.828 6.048 6.066 0.929 4.524 5.659 5.671 0.950 3.722 4.704 4.721 0.957

25 3.661 4.658 4.687 0.960 4.856 6.091 6.116 0.928 4.515 5.671 5.688 0.949 3.719 4.710 4.728 0.957

26 3.652 4.653 4.679 0.960 4.812 6.023 6.049 0.930 4.532 5.652 5.675 0.950 3.744 4.730 4.746 0.956

27 3.648 4.667 4.688 0.959 4.838 6.075 6.098 0.928 4.502 5.626 5.646 0.950 3.751 4.729 4.749 0.956

28 3.650 4.644 4.667 0.960 4.833 6.063 6.083 0.929 4.527 5.662 5.685 0.950 3.736 4.709 4.725 0.957

29 3.653 4.641 4.662 0.958 4.825 6.036 6.059 0.929 4.518 5.651 5.669 0.950 3.722 4.692 4.707 0.957

30 3.651 4.655 4.681 0.959 4.822 6.029 6.056 0.929 4.524 5.654 5.673 0.950 3.745 4.729 4.751 0.956

31 3.665 4.674 4.701 0.959 4.835 6.065 6.092 0.929 4.507 5.635 5.652 0.950 3.741 4.723 4.740 0.956

32 3.622 4.631 4.651 0.960 4.816 6.036 6.054 0.929 4.493 5.622 5.642 0.950 3.735 4.695 4.713 0.957

33 3.641 4.642 4.669 0.960 4.831 6.040 6.063 0.929 4.511 5.625 5.652 0.950 3.720 4.697 4.713 0.957

34 3.638 4.637 4.656 0.960 4.870 6.089 6.113 0.928 4.516 5.642 5.657 0.950 3.745 4.729 4.742 0.956

35 3.621 4.618 4.647 0.960 4.836 6.053 6.075 0.929 4.524 5.646 5.665 0.950 3.731 4.712 4.735 0.957

36 3.628 4.638 4.662 0.960 4.839 6.053 6.071 0.929 4.506 5.617 5.634 0.950 3.706 4.684 4.701 0.957

37 3.635 4.614 4.638 0.959 4.842 6.054 6.074 0.929 4.510 5.628 5.648 0.950 3.745 4.754 4.768 0.956

38 3.626 4.634 4.660 0.960 4.841 6.066 6.091 0.928 4.533 5.666 5.684 0.949 3.738 4.726 4.743 0.956

https://doi.org/10.1371/journal.pone.0263333.t012
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performance. Although the MLP with PCA had the best prediction accuracy, it required signif-

icantly more computation time. This means XGBoost is more appropriate for real-world appli-

cations, given its similar prediction accuracy and greater efficiency. Statistical analysis based

on the Wilcoxon rank-sum test confirmed that feature extraction significantly improved the

performance of MLP, SVM and XGBoost. This finding confirms the effectiveness of using fea-

ture extraction in these models. Although, the prediction models can be further improved

slightly by increasing the number of extracted features, the number of features determined by

the explained variance ratio was sufficient in both the considered cases.

The feature extraction results themselves are a novel contribution of this work. The results

provided by XGBoost with PCA feature extraction could be used as the baseline for future

research in related areas. In future studies, we plan to investigate ways to improve the feature

extraction method specified for body fat datasets. Methods of improving the prediction model

(e.g. an improved MLP [66]), using XGBoost with PCA as a baseline for body fat prediction,

also need to be investigated. It is also worth noting that the findings of this work could be

applied to other prediction problems with a large number of features, e.g., finance, engineering

Table 13. Experimental results for the MLP, SVM, RF, and XGBoost, based on the NHANES dataset, with ICA feature extraction (best results are highlighted in

bold; # means the number of features).

# MLP SVM RF XGBoost

MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC MAC SD RMSE MAC
12 4.919 6.265 6.288 0.939 4.705 6.203 6.225 0.939 4.706 5.889 5.905 0.946 4.039 5.081 5.096 0.950

13 4.872 6.213 6.233 0.940 4.725 6.207 6.229 0.939 4.743 5.935 5.957 0.945 4.006 5.039 5.056 0.950

14 4.865 6.180 6.206 0.940 4.701 6.165 6.182 0.940 4.758 5.951 5.970 0.944 3.982 5.024 5.045 0.951

15 4.887 6.222 6.248 0.939 4.702 6.157 6.179 0.941 4.759 5.951 5.973 0.944 3.994 5.031 5.047 0.951

16 4.863 6.184 6.204 0.940 4.695 6.129 6.147 0.941 4.784 5.992 6.011 0.944 4.007 5.054 5.074 0.950

17 4.613 5.853 5.872 0.946 4.460 5.759 5.780 0.948 4.628 5.780 5.800 0.947 3.828 4.835 4.851 0.955

18 4.552 5.775 5.801 0.948 4.423 5.630 5.648 0.950 4.619 5.793 5.815 0.947 3.830 4.820 4.836 0.955

19 4.552 5.790 5.809 0.948 4.402 5.609 5.620 0.951 4.635 5.816 5.835 0.947 3.811 4.795 4.811 0.955

20 4.503 5.731 5.751 0.949 4.394 5.689 5.710 0.949 4.673 5.879 5.902 0.946 3.832 4.814 4.829 0.955

21 4.507 5.730 5.744 0.949 4.396 5.668 5.689 0.950 4.711 5.910 5.935 0.945 3.819 4.819 4.836 0.954

22 4.471 5.697 5.722 0.949 4.382 5.638 5.661 0.950 4.692 5.897 5.912 0.945 3.817 4.826 4.840 0.955

23 4.458 5.707 5.723 0.949 4.354 5.660 5.681 0.950 4.729 5.926 5.948 0.945 3.824 4.837 4.855 0.955

24 4.394 5.681 5.694 0.949 4.319 5.634 5.654 0.950 4.774 6.001 6.022 0.943 3.805 4.818 4.840 0.955

25 4.446 5.661 5.687 0.950 4.329 5.633 5.653 0.950 4.781 6.022 6.038 0.943 3.819 4.835 4.851 0.954

26 4.430 5.670 5.692 0.950 4.325 5.612 5.627 0.951 4.813 6.050 6.072 0.943 3.850 4.873 4.888 0.954

27 4.437 5.673 5.687 0.950 4.330 5.632 5.660 0.950 4.823 6.081 6.101 0.942 3.871 4.874 4.894 0.954

28 4.426 5.666 5.686 0.950 4.306 5.589 5.608 0.951 4.841 6.083 6.112 0.942 3.853 4.875 4.896 0.954

29 4.432 5.671 5.694 0.950 4.320 5.578 5.605 0.951 4.883 6.158 6.179 0.940 3.863 4.885 4.901 0.954

30 4.410 5.649 5.668 0.950 4.324 5.629 5.649 0.950 4.911 6.173 6.201 0.940 3.883 4.911 4.930 0.953

31 4.405 5.653 5.673 0.950 4.302 5.566 5.589 0.952 4.876 6.127 6.148 0.941 3.895 4.915 4.932 0.953

32 4.399 5.630 5.653 0.950 4.333 5.682 5.702 0.949 4.915 6.163 6.190 0.940 3.890 4.901 4.918 0.953

33 4.393 5.629 5.646 0.950 4.314 5.632 5.651 0.950 4.942 6.199 6.223 0.940 3.898 4.919 4.947 0.953

34 4.389 5.610 5.631 0.951 4.313 5.555 5.575 0.952 4.949 6.224 6.244 0.939 3.903 4.922 4.943 0.953

35 4.384 5.623 5.644 0.951 4.354 5.666 5.693 0.950 4.966 6.230 6.257 0.939 3.904 4.928 4.949 0.953

36 4.386 5.625 5.647 0.950 4.345 5.659 5.678 0.950 4.986 6.268 6.291 0.938 3.925 4.952 4.970 0.952

37 4.415 5.651 5.672 0.950 4.329 5.602 5.625 0.951 5.003 6.271 6.294 0.938 3.911 4.949 4.970 0.952

38 4.401 5.634 5.653 0.950 4.344 5.629 5.646 0.950 5.022 6.290 6.316 0.938 3.931 4.970 4.986 0.952

https://doi.org/10.1371/journal.pone.0263333.t013
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and healthcare. Finally, we will explore other applications of analysing the body fat percentage.

For example, applying domain knowledge to group body fat percentages into different disease

classes in order to confirm the relationship between the body fat percentage and specific dis-

ease(s).
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