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Predictions begin with an extrapolation of the properties of their underlying representations 
to forecast a future state not presently in evidence. For numerical predictions, sets of 
numbers are summarized and the result forms the basis of and constrains numerical 
predictions. One open question is how the accuracy of underlying representations 
influences predictions, particularly numerical predictions. It is possible that inaccuracies 
in individual number representations are randomly distributed and averaged over during 
summarization (e.g., wisdom of crowds). It is also possible that inaccuracies are not 
random and lead to errors in predictions. We investigated this question by measuring the 
accuracy of individual number representations of 279 children ages 8–12 years, using a 
0–1,000 number line, and numerical predictions, measured using a home run derby task. 
Consistent with prior research, our results from mixed random effects models evaluating 
percent absolute error (PAE; prediction error) demonstrated that third graders’ 
representations of individual numbers were less accurate, characterized by overestimation 
errors, and were associated with overpredictions (i.e., predictions above the set mean). 
Older children had more accurate individual number representations and a slight tendency 
to underpredict (i.e., predictions below the set mean). The results suggest that large, 
systematic inaccuracies appear to skew predictions while small, random errors appear 
to be averaged over during summarization. These findings add to our understanding of 
summarization and its role in numerical predictions.

Keywords: numerical predictions, summarization, number representations, ensemble cognition, numerical 
cognition

INTRODUCTION

Predictions make the environment more understandable by easing the burden on our limited 
cognitive capacities (Bubic et  al., 2010). Predictions are generated, in part, by summarizing 
relevant information and using this summary as the basis for plausible forecasts (Kveraga 
et  al., 2007; Henderson, 2017; Masnick and Morris, 2022). People rapidly summarize perceptual 
(e.g., color and position) and cognitive features (e.g., interpreting emotions from faces) in 
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complex scenes (Whitney and Yamanashi Leib, 2018), which 
become available for predictions (Kveraga et al., 2007). Predictions 
are derived, in part, from summaries of individual values (e.g., 
approximate means from a set of numbers; Alvarez, 2011). 
Substantial evidence indicates that adults generate predictions 
close to the set mean, a reasonable indicator of future states 
(Irwin and Smith, 1957; Griffiths and Tenenbaum, 2006). 
However, children’s predictions are less accurate than adults’ 
though the cause of this difference is unclear (Masnick and 
Morris, 2008). Because predictions emerge from a summary 
of the statistical properties of a number set, or an implicit 
aggregation of individual numerical representations (Alvarez, 
2011; Morris and Masnick, 2015), the accuracy of individual 
number representations (i.e., mapping between relative magnitude 
and number) should influence summary accuracy.

One open question is the extent to which estimation and 
prediction errors are due to imprecision in the summary values 
(Erlick, 1964; Peterson and Beach, 1967; Zou and Bhatia, 
2021). For example, adults show a tendency to underpredict 
or produce predictions below the actual value (Roy et  al., 
2005). When asked how long it would take to complete an 
assignment, participants often underestimated the amount of 
time for completion (Koole and Spijker, 2000) and when asked 
to estimate how long it would take to make an origami figure, 
those with more experience were also more likely to 
underestimate their predictions (Roy and Christenfeld, 2007). 
Are underestimates due to inaccuracies in the individual 
estimates being summarized? Although there have been 
investigations into the cognitive mechanisms underlying the 
generation of predictions (Bubic et al., 2010; Henderson, 2017), 
there has been relatively little focus on how the accuracy of 
predictions is related to the accuracy of the individual 
representations from which they are derived.

Undoubtably, predictions should be  less accurate if they are 
derived from highly inaccurate representations. However, little 
is known about the exact relation between the accuracy of 
individual representations and the predictions derived from 
them. We  explored three possibilities. One possibility is that 
inaccurate individual representations minimally affect predictions 
because summaries “average over” noise to yield an estimate 
or prediction that is more accurate than any individual 
representation. This pattern is demonstrated in the wisdom of 
crowds in which summarizing individual representations reduces 
overall error (Surowiecki, 2005). In original study of Galton 
(1907), the individual estimates of the weight of an ox were 
highly variable but the distribution of estimates reduced individual 
error estimates, yielding a summary very close to the actual 
weight (within 1%). Such a pattern requires a stochastic 
distribution of individual values in which inaccuracies deviate 
randomly from the mean and their aggregation smooths over 
individual deviations. A second possibility is that individual 
values deviate non-randomly (e.g., consistently above the mean), 
which yields inaccurate summaries and predictions (Simmons 
et  al., 2011). For example, the summaries from knowledgeable 
sports fans were inaccurate because individual fans overestimated 
player performance, leading to inaccurate predictions (Simmons 
et  al., 2011). A third possibility is that both the direction and 

magnitude of inaccuracy will influence prediction accuracy. 
For example, aggregating large overestimates would likely result 
in an overprediction (i.e., prediction that is above the mean) 
while small inaccuracies might be  averaged over regardless 
of direction.

We investigated these relations in the domain of children’s 
numerical predictions because young children often have less 
accurate number representations than adults (Kim and Opfer, 
2018), which provides an opportunity to measure the degree 
to which their accuracy influences numerical predictions. The 
accuracy of number representations improves over development 
as symbolic and approximate number representations become 
aligned (Lourenco, 2016). For example, children younger than 
nine may mark 200 at the location for 600 on a 0–1,000 
number line, indicating an inaccurate number representation 
(Thompson and Opfer, 2010). Number representations in the 
0–1,000 range become more accurate throughout development 
(Schneider et al., 2017) as children analogically map magnitudes 
to their relative positions on a mental number line (Fitzsimmons 
et  al., 2021).

Returning to the possibilities describe above, one possibility 
is that there is no relation between number line accuracy 
and prediction accuracy. Averaging over multiple values may 
control for relatively small errors in individual magnitudes 
(or evenly distributed errors), much like estimates from crowds 
average over errors in individual estimates (Herzog and 
Hertwig, 2014). If prediction accuracy is related to the accuracy 
of individual number representations, we  should see 
non-random error patterns in number line estimation and 
prediction errors in that direction. For example, in the 0–1,000 
range, there is evidence that children tend to overestimate 
individual magnitudes for smaller magnitude numbers (e.g., 
150) and underestimate magnitudes for larger magnitude 
numbers (e.g., 800; Zax et  al., 2019). If a set of numbers 
with an arithmetic mean of 200 are erroneously placed around 
the 600 position on a number line, the summary of these 
numbers should center (inaccurately) near 600. In such a 
case, overestimating the position of individual numbers should 
yield an overprediction (i.e., above the set mean). Finally, if 
there is a relation between the direction and magnitude of 
number accuracy and prediction accuracy, we  should see 
prediction errors only with large inaccuracies and small (or 
no) errors with small inaccuracies. In this case, there should 
be a threshold after which relatively large errors in individual 
magnitudes will yield larger prediction errors. If this is the 
case, individual number accuracy should show no strong 
relation to prediction accuracy until individual number 
inaccuracies are relatively large, though there is currently no 
evidence for a precise threshold.

We investigated the relation between the accuracy of children’s 
number representations and the accuracy of their numerical 
predictions in children ages 9–13 because children in this age 
range should be  fluent with numbers in the 0–1,000 range 
and because there is often lower accuracy in number 
representations for 9-year-old compared to older children (Booth 
and Siegler, 2006). To investigate these questions, we measured 
individual number accuracy using a number line estimation 
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task and prediction using the Homerun Derby paradigm (Morris 
and Masnick, 2015).

MATERIALS AND METHODS

Participants
An a priori power analysis indicated a total of 258 participants 
were needed to establish statistical sensitivity (repeated measures 
with a three factor between-subjects effect and a moderate 
effect size; effect size f = 0.14, α = 0.05, 1-ß = 0.80). A total of 
279 children were recruited from five public schools in Northeast 
Ohio. The Ohio Department of Education School Report Cards 
for the 2017–2018 school year indicated that 63.6% of children 
in these schools were economically disadvantaged. Forty-one 
third-graders (Mage = 9.47, SD = 0.50, 63% female, 34% African 
American, and 66% Caucasian), 71 fourth-graders (Mage = 10.35, 
SD = 0.45, 41% female, 31% African American, 55% Caucasian, 
10% Latinx, and 4% Asian/Pacific Islander), 54 fifth-graders 
(Mage = 11.32, SD = 0.33, 44% female, 15% African American, 
77% Caucasian, 2% Latinx, 2% Asian/Pacific Islander, and 2% 
Other), and 113 sixth-graders (Mage = 12.38, SD = 0.44, 44% 
female, 20% African American, 71% Caucasian, 10% Latinx, 
2%, and >1% Other) participated in the experiment. Children 
aged 9–13 were recruited for this work because the youngest 
children in this age range often demonstrate lower accuracy 
in number representations than older children (Booth and 
Siegler, 2006). Because this is the first experiment to investigate 
these relations, this seemed a reasonable range of ages for the 
sample and children in this age range are typically sufficiently 
familiar with 0–1,000 values to complete the task. Children’s 
participation was completely voluntary, and experimenters 
informed children that they could stop participating at any 
time for any reason. Small rewards were provided after tasks 
were completed (e.g., pencils). The experimenters were Caucasian 
female graduate research assistants.

Procedure and Materials
Children completed a number line estimation task (Thompson 
and Opfer, 2010) and a numerical prediction task (Morris and 
Masnick, 2015) using an offline version of the Qualtrics 
application on iPad minis. The order of the number line 
estimation and the numerical prediction tasks were 
counterbalanced by class such that half of the students in each 
grade-level received the number line estimation task first and 
the other half received the numerical prediction task first. 
Preliminary analyses indicated no order effects. The experimenters 
provided brief instruction on how each task would work on 
the iPad and what the students should do when they finished. 
Finally, as noted below, attention checks were included in both 
tasks and used as exclusion criteria prior to data analysis.

Number Line Estimation Task
The number line was used to measure number magnitude 
estimation based on the extensive literature demonstrating its 
reliability and relation to mathematical processing (Schneider 

et  al., 2017). Children completed a number line estimation 
task that required them to estimate the placement of 22 numbers 
using a 0–1,000 bounded number line (Thompson and Opfer, 
2010). Each number was presented directly above the 0–1,000 
number line on an iPad mini. Children dragged a digital slider 
to where they estimated the number went on the number 
line. Upon introducing the task to the children, the experimenter 
read the directions aloud, “This is a number game. There will 
be  a number above each number line. Your job is to move 
the [dot] to show where that number goes on a number line” 
and demonstrated how to tap the iPad screen and drag the 
digital slider across the number line. Children spent approximately 
5–10 min completing the number line estimation task. Two 
attention checks were implemented (e.g., “Move the slider all 
the way to the left.”) to determine whether or not the children 
completed the task reliably. All children passed the attention 
checks, and their data were subject to analysis. We  calculated 
children’s estimation accuracy by subtracting the observed 
number line estimate from the target number divided by 1,000 
(Percent Absolute Error; Thompson and Opfer, 2010). For 
example, if the target number was 250 and the participant 
estimated 300 on the number line, the Percent Absolute 
Error = [250–300]/1,000 = ABS(−0.05) = 0.05 (see Table  1 for 
means and SEs).

Numerical Prediction Task
Children completed the numerical prediction task, which required 
them to predict how far a baseball would travel based on 
players’ previous batting distances (i.e., home run derby task; 
based on Morris and Masnick, 2015). Before starting the task, 
experimenters read the following instructions aloud:

We are going to play the Home Run Derby game. A home 
run derby is a contest in baseball to see which player can 
hit the ball the farthest and get the most home runs. 
You will be  seeing the results from several batters in a 
home run derby. Each slide will show how far a player hit 
a series of balls in number of feet.

On the following screen, further instructions were explained 
to the children:

Your job is to tell us how far you think the player will hit 
the ball on the next at bat. Use the keyboard to enter a 
number in the space below each question. Now let us 
begin. Remember to tell us how far the player will hit the 
ball the next time.

TABLE 1 | Means and SEs for Prediction Error and Percent Absolute Error by 
grade level.

Grade PAE PE

3 0.14(0.07) 0.13(0.47)
4 0.09(0.05) 0.05(0.41)
5 0.07(0.04) −0.05(0.33)
6 0.08(0.05) −0.02(0.35)
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Experimenters demonstrated to the children how to progress 
through the task by completing two practice trials with them 
that included three distances presented simultaneously on the 
screen (e.g., 305, 412, and 358) for 4 s. Afterward, participants 
were prompted to enter their prediction on the following screen 
in a text response field below the prompt, “How far do you think 
the next ball will go?” After practice, participants completed 
a total of 30 trials of the numerical prediction task. Participants 
were not given assistance or feedback from the experimenters. 
Children made predictions based on five sets each of 4, 5, 8, 
9, 12, and 13 distances and distances were presented 
simultaneously. Sets were presented from smallest to largest 
(i.e., 4–13) for all participants. The sets of four distances were 
presented for 4 s and presentation duration increased 500 ms 
for each additional distance in the set such that sets of 5 = 4.5 s, 
sets of 8 = 6 s, sets of 9 = 6.5 s, sets of 12 = 8 s, and sets of 
13 = 8.5 s. Children were given an unlimited amount of time 
to make their prediction before moving on to the next number 
set and were unable to move on to the next set until they 
entered a response. Children completed the task within 
approximately 15–20 min. Two attention checks were 
implemented in the numerical prediction task (e.g., Type the 
word “star” in the box below.) to ensure participants were 
completing the task reliably. All participants passed the attention 
checks and their data were subject to analysis. Prediction 
accuracy was calculated by subtracting the observed prediction 
from the set mean divided by the set mean (i.e., Prediction 
Error: PE). For example, if the set mean was 200 and the 
observed prediction was 180, the PE = [200–180]/200 = 0.10 (see 
Table  1 for means by grade).

Analytic Approach
During data cleaning and preparation, we  noticed that some 
of the participants produced responses that were not plausible 
on the numerical prediction task (e.g., entering responses like 
1,234,567,890 or 77,777,777). Because of this, we  decided to 
systematically remove any data that was at least two SDs above 
the largest set size mean (806). This resulted in a loss of 
approximately 15% of the numerical prediction data (reducing 
the data set to 7,509 data points from 8,880 data points). 
There was no clear indication that the participants failed to 
complete the number line estimation task as accurately as 
possible, therefore, we  did not reduce this dataset through the 
removal of outliers. However, three trials in the number line 
task were removed from the dataset because they were numerically 
smaller than three digits. This was done to better align the 
two data sets to contain only three-digit numbers.

We then analyzed each dataset (number line estimation; 
numerical prediction) to estimate model fit based on linear, 
logarithmic, and exponential transformations of the data (Opfer 
and Siegler, 2007). We  also evaluated the two data sets using 
a change point analysis to determine the point at which the 
dependent variables (number line PAE; prediction error) changed 
as a function of grade level. The final analysis included a 
mixed random effects model that evaluated number line PAE 
and grade level as predictors of errors in numerical prediction. 
Fully maximal random effect structures permitting model 

convergence were always implemented, and participant and 
trial were set as random effects, using R (R Development 
Core Team, 2012). Analyses are presented below for the (1) 
number line dataset, (2) numerical prediction dataset, and (3) 
the prediction error as predicted by number line PAE by grade 
level. All analyses and R scripts are provided in the Open 
Science Framework.1

RESULTS

Number Line Percent Absolute Error
Three mixed random effects models were built to evaluate 
model fit based on linear (no transformation), logarithmic, 
and exponential transformations of the number line PAE measure 
by grade level (fixed effect). Results indicated that the exponential 
model provided the best fit to the number line PAE data 
[Akaike Information Criterion (AIC) = −233.30, x2 = 544.87, 
p < 0.001]. Evaluation of the exponential model indicated a 
significant relation between age and number line PAE (ß = −0.31, 
SE = 0.03, t = −11.98, p < 0.001, and R2 = 0.55). This suggests that 
inaccuracy for third graders was not random, number line 
PAE decreases as age increases, and age accounted for 
approximately 55% of the variance in number line PAE 
(Figure  1).

Prediction Error
Three mixed random effects models were built to evaluate 
model fit based on linear (no transformation), logarithmic, 
and exponential transformations of the Prediction Error (PE) 
measure by grade level (fixed effect). However, the logarithmic 
model was dropped from the analysis because the model failed 
to converge and NaNs (i.e., not a number) were produced. 
Evaluation of the linear (non-transformed) and exponential 
models indicated that the linear model produced the best fit, 
because it had the smallest AIC (AIC = −3303.4), but the linear 
and exponential models did not have significantly different 
model fits. Since there was no significant difference between 
the models, and the linear model produced the smallest AIC, 
it was retained and is interpreted. The results of the 
non-transformed PE measure indicated a significant relation 
between age and PE, such that decreases in PEs occurred as 
grade level increased (ß = −0.11, SE = 0.03, t = −3.91, p < 0.001, 
and R2 = 0.64). Age accounted for approximately 64% of the 
variance in PE (Figure  1).

Prediction Error Predicted by Number Line 
PAE
A mixed random effects model was used to evaluate the 
non-transformed PE measure as a function of number line 
PAE (exponential transformation) by age. The results from 
this model indicated a significant main effect of age (ß = 0.55, 
SE = 0.23, t = 2.37, and p = 0.02), and a significant interaction 
between age and number line PAE (ß = −0.60, SE = 0.21, t = −2.86, 

1 https://osf.io/856zm/
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and p = 0.004), with age, number line PAE, and their interaction 
accounting for approximately 33% of the variance in PE. The 
interaction between age by number line PAE indicated differences 
only existed between the youngest (i.e., third graders) and 
oldest children (i.e., sixth graders) in our sample. A test of 
the simple effects indicated that third graders produced larger 
prediction errors relative to sixth graders (ß = −0.78, SE = 0.31, 
t = −2.53, and p = 0.01; mean difference = 0.12). Third graders 
had a significantly stronger positive relation between number 
line PAE and PE than sixth graders (i.e., as number line PAE 
increased, PE also increased for third graders; ß = 0.82, SE = 0.27, 
t = 3.00, and p = 0.003; mean difference = 0.12; see Figure  2).

Because of this difference, and to align with the previous 
two analyses, participants’ data were evaluated based on change 
points within the number line PAE and PE measures. Only 

third graders’ data showed a significant change point between 
PE and number line PAE. Specifically, the results from the 
change point analysis indicated a significant change point at 
0.31 (number line PAE) and 0.01 (PE) for third graders (θ = 1.31, 
α = 0.01, p = 0.048; 95% CI = [1.06, 1.12]; see Figure  4, 
supplementary materials in the OSF site for more details 
regarding the break point data; see footnote 1).

DISCUSSION

Predictions are generated, in part, by summarizing over multiple, 
individual items (Kveraga et  al., 2007; Henderson, 2017). These 
summaries constrain candidate predictions because the range 
of past values sets a reasonable guide for future forecasts 

FIGURE 1 | Relation between mean prediction error (PE) and number line percent absolute error (PAE), with SEs (gray shading) by grade level.
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(representativeness; Birnbaum, 1976; Griffiths and Tenenbaum, 
2006). One gap in the literature is how the accuracy of individual 
representations affects summaries and in turn, influences 
subsequent predictions. Previous research has investigated the 
influence of underlying representations on predictions (e.g., the 
role of memory for previous events when estimating time; Roy 
et al., 2005); however, there has been little systematic investigation 
in the domain of numerical predictions. We  investigated this 
question in the domain of children’s numerical predictions 
because young children’s numerical representations are initially 
inaccurate, typically demonstrating underestimates for larger, 
individual values (Fitzsimmons et  al., 2021).

We measured the accuracy of children’s number representations 
using a number line and the accuracy of their numerical 
predictions by comparing their predictions to the mean of a 
number set. Because number sets are summarized, children 
with less accurate number representations generated less accurate 
predictions suggesting that accuracy was not due to deficits in 
younger children’s mathematics knowledge. Overall, individual 
number representation accuracy and age accounted for 33% 
of the variance in children’s numerical prediction accuracy, 
similar to the proportion of variance explained by number 
representation in children’s overall mathematical performance 
(0.30 effect size; Schneider et  al., 2017). Because nearly all of 
the variance was from third graders’ low accuracy, these data 
and the change point analysis suggest that the accuracy of 
third graders’ individual number representations influenced the 
accuracy of their summaries of set properties (e.g., mean; 
Alvarez, 2011). These data suggest that the direction and 
magnitude of inaccuracies in individual number representations 
influenced numerical predictions. This was most evident for 

third graders, who demonstrated the least accurate individual 
number representations (i.e., higher PAE), which were associated 
with the least accurate predictions (i.e., higher PE). Interestingly, 
third grader’s inaccuracies were systematic overestimates in 
number magnitude, and the change point analysis indicated 
that the larger the deviation in individual number representations 
(PAE > 0.31), the larger the overprediction error. Older children 
produced more accurate individual number representations and 
smaller, randomly distributed errors in numerical prediction. 
Underestimating predictions was not related to underestimate 
individual number representations. In fact, underestimations of 
predictions were more frequent for children with more accurate 
individual number representations, similar to the results of Roy 
and Christenfeld (2007).

This experiment is not without limitations. One limitation 
is that the findings are correlational, rather than causal. Although 
correlational, these findings suggest that improvements in 
number representation accuracy drive initial improvements in 
predictions, likely due to progressive alignment of relative 
magnitudes (Thompson and Opfer, 2010). Another potential 
limitation is that the use of the number line task has been 
criticized for being unrelated to mental representations of 
relative magnitude (Slusser and Barth, 2017). Future research 
should include other measures of magnitude representation 
(e.g., magnitude comparisons) to address this possibility. Future 
research should investigate the influence of other number 
features (e.g., perceptual; Cohen, 2009) and the interaction 
between prior knowledge (Griffiths and Tenenbaum, 2006) and 
number representations. The results suggest that developmental 
improvements in number representation may be  a significant 
factor driving initial improvements in prediction accuracy. That 
said the results from older children demonstrate that while 
underlying number representations are important, they are only 
part of a larger story.

Our results illustrate the complex influence of underlying 
representations on predictions. Predictions are an attempt to 
generate a forecast beyond the information given but are 
constrained by available information. Predictions depend on 
summaries of current representations; thus, the accuracy of 
these representations influences the accuracy of the predictions 
in specific ways. Our results suggest that third grader’s 
overestimates of individual numbers, often large in magnitude, 
were associated with overpredictions. Consistent with previous 
research with adults, older children, who demonstrated accurate 
individual number representations, showed a pattern of 
underpredicting or making predictions lower than the set 
mean (Roy et al., 2005). This suggests a complex developmental 
pattern in which inaccuracy in individual representations is 
initially highly disruptive to predictions. It also suggests 
multiple avenues for future research that investigate 
developmental changes (e.g., changes in working memory 
capacity) as well as individual differences (e.g., changes in 
strategy use). For example, increased accuracy of individual 
representations and higher-level processes (e.g., strategy use) 
might influence summary values generated to make sense of 
number sets. Another future direction is to further investigate 
the similarities and potential differences in the processes 

FIGURE 2 | Smoothed (using stat_smooth = glm) PE (prediction error) 
measure (non-transformed) predicted by number line PAE and grade.
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underlying estimation and prediction. This is relevant to our 
findings because prediction might require greater cognitive 
resources (e.g., working memory) than estimation, which may 
help to explain developmental differences in performance. 
Finally, future research on predictions should include 
measurement of underlying representations to better understand 
their role in shaping the accuracy of predictions, particularly 
how they evolve across development.
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