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As the emerging member of zero-dimension transition metal dichalcogenide, WSe2 quantum dots (QDs) have been applied to
memristors and exhibited better resistance switching characteristics and miniaturization size. However, low power
consumption and high reliability are still challenges for WSe2 QDs-based memristors as synaptic devices. Here, we
demonstrate a high-performance, superlow power consumption memristor device with the structure of Ag/WSe2 QDs/
La0.3Sr0.7MnO3/SrTiO3. The device displays excellent resistive switching memory behavior with a ROFF/RON ratio of ~5× 103,
power consumption per switching as low as 0.16 nW, very low set, and reset voltage of ~0.52V and~ -0.19V with excellent
cycling stability, good reproducibility, and decent data retention capability. The superlow power consumption characteristic of
the device is further proved by the method of density functional theory calculation. In addition, the influence of pulse
amplitude, duration, and interval was studied to gradually modulating the conductance of the device. The memristor has also
been demonstrated to simulate different functions of artificial synapses, such as excitatory postsynaptic current, spike timing-
dependent plasticity, long-term potentiation, long-term depression, and paired-pulse facilitation. Importantly, digit recognition
ability based on the WSe2 QDs device is evaluated through a three-layer artificial neural network, and the digit recognition
accuracy after 40 times of training can reach up to 94.05%. This study paves a new way for the development of memristor
devices with advanced significance for future low power neuromorphic computing.

1. Introduction

The human brain is a sophisticated and highly efficient
information processing and storage system, including
approximately 1011 neurons, and more than 1014 synapse
connections [1–3]. The complicated neural network can
process a large amount of information at the same time with
a much lower power consumption of ~20W [4, 5]. It per-
forms better than traditional computers on complex tasks
owing to the intrinsic characteristics of the integration of
storage and computing, a key to overcoming the bottleneck
of the von Neumann architecture [6–8]. However, there is

an urgent need for a basic unit with a simple structure to
simulate biological synaptic activities to realize the intricate
artificial neural network while reducing the huge demand
for basic devices [3, 9–15]. Memristor, as one of the most
promising technologies for constructing simulated neural
networks for neuromorphic computing, has reconfigurable
history-dependent resistance switching behavior and is com-
petent to simulate the synaptic function of biological synap-
ses [16, 17]. Although the great potential of the memristor in
neuromorphic computing has been witnessed, its electrical
characteristics, power consumption, linear conductance
modulation, and other characteristics still need to be further
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improved [18–20].
In recent years, transition metal dichalcogenides

(TMDs) have received extensive attention owing to their
excellent electronic, optical, and mechanical properties and
extensive applications [21]. Among them, WSe2 displays
unique electrical and optical properties endowed by its high
surface area and increased active edge sites urgently desired
by plenty of practical applications [22, 23]. It has the advan-
tages of high in-plane carrier mobility and electrostatic mod-
ulation of conductance and has been proven to be the first
TMD material with bipolar transport characteristics, which
opens up the opportunity for making high-performance
nanoelectronic devices [24]. By transforming the 2D layered
WSe2 to zero dimension (WSe2 quantum dots (QDs)) with a
diameter of less than 10nm, the quantum confinement and
edge effects will cause additional electrical properties to be
revealed [25, 26]. Due to the excellent features of WSe2
QDs, and the unique features of QDs-based memory, such
as simple sandwiched structure, fast operation, low power
consumption, and low-cost fabrication, several researchers
have applied WSe2 QDs to the construction of memristors
[21, 27]. For example, Perumalveeramalai et al. demon-
strated a flexible memristor prepared by WSe2 QDs sand-
wiched between two poly(methyl methacrylate) layers with
a retention time of 7 × 103 s, switching endurance up to
100 cycles, desirable ON/OFF current ratio of 104 [23].
However, the application of WSe2 QDs-based memristors
in synaptic devices remains to be further investigated, and
the realization and research of the synaptic plasticity in
WSe2 QDs memristors with low power consumption and
high reliability will further equip the analogue neural net-
works for neuromorphic computing.

In this work, the resistive switching memristor with a
novel device structure of Ag/WSe2 QDs/La0.3Sr0.7MnO3
(LSMO)/SrTiO3 (STO) is presented, in which the Ag and
WSe2 QDs layer, LSMO layer, and STO layer were used
as top electrode, active layer, bottom electrode, and buffer
layer, respectively. According to the research results of Xu
et al. [28], the LSMO bottom electrode has high self-
resistance compared with traditional metal bottom elec-
trodes, which can be used as a series resistor to provide
compliance current; so, the device structure can be simpli-
fied. Meanwhile, the reset process can be implemented at
low current, thereby reducing the energy consumption of
the device. Fabricated WSe2 QDs-based memristor device
demonstrates excellent resistive switching characteristics
with good data retention capability up to 1:5 × 104 s,
switching endurance up to 100 cycles, desirable ROFF/RON
ratio of ~5× 103 with good cycling stability. Moreover, an
ultra-low set voltage (V set) of ~0.52V, reset voltage (V reset
) of ~-0.19V, and power consumption per switching of
0.16 nW are achieved, which are much lower than that of
other QDs-based memristors, as illustrated in Table S1 in
the Supplementary Material. In addition, the superlow
power consumption characteristic of the device is further
demonstrated by density functional theory calculation.
Furthermore, conduction regulation can be obtained by
changing pulse amplitude, duration, and interval of the
pulse sequences. According to the change of conductance

representing synaptic weight, various synaptic functions
such as excitatory postsynaptic current (EPSC), spike
timing-dependent plasticity (STDP), long-term potentiation
(LTP), long-term depression (LTD), and paired-pulse
facilitation (PPF) are observed to simulate the biosynaptic
behavior with proper rehearsal. More importantly, digit
recognition ability based on the WSe2 QDs device is
verified according to a three-layer artificial neural network
(ANN), and the digit recognition accuracy after 40 times of
training can reach up to 94.05%. The fabricated Ag/WSe2
QDs/LSMO/STO device could be further developed and
applied for constructing neural network for future
neuromorphic computing architecture.

2. Results

To observe the morphology of WSe2 QDs, high-resolution
transmission electron microscope (HR-TEM) image was
acquired and shown in Figure 1(a). The dark spots in
Figure 1(a) exhibit that WSe2 QDs have clear boundaries
and circular properties within a size range from 1.6 nm to
3.44 nm. The clearly visible lattice fringe spacing of the quan-
tum dots is 0.23 nm, which is consistent with the literature
[23]. In addition, the cross-sectional scanning electron
microscope (SEM) image of the WSe2 QDs/LSMO/STO
device was achieved, as illustrated in Figure S1, which
shows that the thickness of the WSe2 QDs active layer is
approximately 97 nm. Furthermore, to verify the successful
deposition while identifying the chemical composition and
states of LSMO bottom electrode and WSe2 QDs active layer,
the X-ray photoelectron spectroscopy (XPS) measurements
were executed. The XPS detection results of main elements
(C, O, La, Sr, Mn, O, Se, and W) of LSMO/STO and WSe2
QDs/LSMO/STO were analyzed by CasaXPS (Version
2.3.13Dev29). Figure S2 in the Supplementary Material
shows the XPS analysis result of the wide spectra and the
core spectra of La 3d, Sr 3d, Mn 2p, and O 1s of LSMO/STO,
which clearly show the successfully formation of the LSMO
bottom electrode film. The XPS wide spectra of WSe2 QDs/
LSMO/STO are exhibited in Figure S3 in the Supplementary
Material. Figure 1(b) demonstrates the core spectra of W 4 f.
The peaks located at 34.3 and 36.4 eV represent W 4f5/2 and
W 4f7/2, respectively, proving the appearance of the oxidation
state of W4+ on the surface of the WSe2 QDs film [29, 30].
The peak located at 40.1 eV can be attributed to W 4f5/2 for
W6+ (WO3), which may be due to surface oxidation [31].
Figure 1(c) shows the core spectra of Se 3d. The peaks
located at 54.0 and 54.9 eV represent Se 3d5/2 and Se 3d3/2,
respectively [32]. Through the above XPS analysis of WSe2
QDs/LSMO/STO, the presence of W and Se in WSe2 QDs is
clearly characterized. The calculated chemical stoichiometric
ratio of W and Se is about 1 : 1.34, demonstrating that
there are selenium vacancies in our prepared WSe2 QDs
film. Figure 1(d) depicts the current-voltage (I - V) curves
over 100 cycles of the Ag/WSe2 QDs/LSMO/STO device in
the voltage sweep mode of 0V⟶ 1V⟶ 0V⟶ −0:5V
⟶ 0V. The corresponding logarithmic form of I - V
curves is illustrated in Figure 1(e). The device indicates
typical bipolar resistance switching behavior, with the
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transition of high-resistance state (HRS) and low-resistance
state (LRS). As the positive scanning voltage increases and
reaches V set~0.52V, the memristor changes from HRS to
LRS with a steeply incremental current from ~0.2 nA to 1μA
when applying a sweep voltage of 0V~+1V. During the
reverse scanning from +1V to -0.5V, the memristor realizes
the conversion from LRS to HRS under a V reset of ~-0.19V.
It is interesting to note that the set and reset power
consumption of the Ag/WSe2 QDs/LSMO/STO device are as
low as ~0.16nW (Pset =V set × Iset) and~6nW
(Preset =V reset × Ireset), respectively, which are much lower
than many reported QDs-based memristors [21, 33–41], as
illustrated in Figure 1(f). Over 100 cycles of the I - V
sweeps, the device displayed rather robust I - V curves and
did not degrade, showing good endurance. In addition, a set
of control experiments were conducted to verify the
resistance switching behavior of WSe2 QDs active layer. The
I - V curves of the Ag/LSMO/STO device without spin-
coated WSe2 QDs layer (Figure S4 in the Supplementary
Material) under the same experimental conditions show
linear relationships of the voltage and current when the
applied voltage is 1~5V, which suggests that the WSe2 QDs
layer is the main reason for the resistance switching
characteristics of Ag/WSe2 QDs/LSMO/STO device.

To further study the uniformity of the device, the distri-
bution of switching voltages of the device is analyzed and
shown in Figures 2(a) and 2(b). The histogram statistics of
the V set and V reset distributions over 100 cycles were per-
formed by Gaussian fitting analysis (the black lines are the
fitted curves). The V set and V reset of the device were confined
in the range of 0.30 to 0.75V and -0.15 to -0.49V, respec-
tively. The corresponding Gaussian fitted values of the V set
and V reset were (0:52 ± 0:01) V and (−0:19 ± 0:05) V, respec-
tively. The distribution of the switching voltages of the
device was concentrated and less diffuse, which is conducive
to the realization of accurately control and read of set and
reset process, as well as the future practical application of
Ag/WSe2 QDs/LSMO/STO device. The low threshold volt-
age is very advantageous to reduce the power consumption
of the memristor device. The distribution of HRS, LRS,
and the ROFF/RON ratios of the device is illustrated in
Figures 2(c) and 2(d). The low and high resistance values
are distributed on the order of 106 and 109, respectively.
The device can maintain 102 switching cycles, indicating
the excellent endurance ability, and the ratios of ROFF/RON
between the HRS and LRS can up to ~ 5 × 103. Moreover,
both HRS and LRS displayed long retentions of 104 s at the
reading voltage of 0.5V without being reduced, showing
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Figure 1: (a) HR-TEM image of WSe2 QDs. (b) and (c) are XPS analysis results of WSe2 QDs: (b) W 4f core spectra and (c) Se 3d core
spectra. (d) I-V curves of Ag/WSe2 QDs/LSMO/STO memristor clearly display resistive switching characteristics. (e) The logarithm form
of (d). (f) Comparison of the power consumption of the device with the values of other QDs-based memristors.
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Figure 2: (a, b) Distribution histogram and Gaussian fitted curves of set and reset voltage. (c) Statistics of high and low resistance over 100
cycles. The read voltage is 0.2 V. (d) The ratios of ROFF/RON of Ag/WSe2 QDs/LSMO/STO device. (e) Retention data at HRS and LRS of the
device in the room temperature. The read voltage is 0.5 V. (f) The cumulative probability plot of the HRS and LRS. (g) and (h) are the linear
fitted curves of LRS and HRS by ln ðJÞ∝ 1/E, demonstrating the trap-assisted tunneling (TAT) conduction mechanism. (i) and (j) are the
fitted curves of LRS and HRS by formulas (1)–(3). (k) The density of states of pristine WSe2 and the five defect models. The corresponding
crystal structures are also shown. The dark green, light green, and gray balls represent upper layer Se atoms, lower layer Se atoms, and W
atoms, respectively; “d” represents defect sites.
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excellent stability (Figure 2(e)). The cumulative probability
of HRS and LRS of the device is displayed in Figure 2(f),
demonstrating the distinguishable HRS and LRS with the
ROFF/RON ratio of ~ 5 × 103.

To further understand the conduction mechanism of
Ag/WSe2 QDs/LSMO/STO device, the switching character-
istics were studied throughout the whole testing process.
The analysis and fitting results are illustrated in
Figures 2(g)–2(j). LRS and HRS of the I - V curves are fitted
by the linear function ln ðJÞ∝ 1/E, respectively
(Figures 2(g) and 2(h)), and the results indicate that the con-
ductive characteristic of the device is in accordance with the
TAT conduction mechanism [42]. HRS and LRS of the I - V
curves can be fitted with formulas (1)–(3). Based on the
conductance theory of TAT conduction mechanism, the
tunneling current (I) can be expressed as [19, 43]

I =N × q × v ð1Þ

Here, N represents the total number of the closest traps
that conduce to the conduction, and the transition rate v
can be expressed as

v = v0 × f × P ð2Þ

v0 represents the frequency factor, and the Fermi-Dirac
distribution of electrons in the electrode can be calculated as
f = 1/½1 + exp ðEb − Et + F × dÞ/kTÞ�. Eb represents the
height of the barrier between the electrode and the conduc-
tion band, and k and T are Boltzmann constant and room
temperature, respectively. The transmission probability P
can be defined as

P = exp −
4

3ħqF
ffiffiffiffiffiffiffiffi
2mc

p
Et

3/2 − Et − F × dð Þ3/2
h i� �

ð3Þ

ħ and q represent the reduced Planck’s constant and
electronic charge quantity, respectively. F, d, and Et repre-
sent the electric field intensity, tunneling distance, and
defect trap energy lower than the conduction band, respec-
tively [44]. By fitting with formulas (1)–(3), two parameters
can be received from the fitting results in Figures 2(i) and
2(j): the tunneling distance d and the trap energy Et .
Figures 2(i) and 2(j) exhibit the fitting results of the I - V
curves obtained by adjusting d and Et , where N is regarded
as a constant [45]. From the fitting results of LRS
(Figure 2(i)), Et and d are 1.32 eV and 0.4 nm, respectively.
In HRS (Figure 2(j)), Et and d are slightly increased to
1.44 eV and 0.41 nm, respectively. The obtained results illus-
trate that HRS has deeper defect energy level traps and
larger tunneling distances. In the TAT model, the move-
ment of electrons is realized with the aid of defects [42].
Therefore, the lower trap energy Et and distance d in LRS
are beneficial to carrier transport.

The chemical stoichiometric ratio of W and Se obtained
by XPS characterization indicates that there are enormous
number of Se-site defects (Sed) in our prepared WSe2QDs
films, which is consistent with the reports that chalcogen
defects are generally supposed to be the most common

intrinsic defects in TMDs [46, 47]. Therefore, we investi-
gated the defect formation energies and defect electronic
structures of several defect models in WSe2, including one
Sed and the composite defects. For the composite defects,
two Sed, as well as two Sed containing one W-site defect
(Wd), are considered, whereas the above composite defects
with two Sed may be arranged in opposite (opp), cis, or
trans configurations. The defect formation energies for
one Sed and the composite defect models are listed in
Table S2 in the Supplementary Material. Figure 2(f)
illustrates the calculated density of states (DOS) diagrams
of pristine WSe2 and the five most preferred defect
models, i.e., the structure with one Sed, the opposite, cis,
and trans configurations of two Sed (Sed-opp, Sed-cis, and
Sed-trans), and the trans configuration of two Sed containing
one W-site defect (Sed-trans +Wd). The computational details
are shown in the Supplementary Material. As shown in
Figure 2(f), the electronic structure of the pristine WSe2
shows a band gap of about 1.6 eV, which is consistent with
the previous report [48]. The presence of a Sed and
composite defects prefers to lead to the generation of
defect states in the band gap of WSe2. A single Sed can
create a single defect state 0.28 eV below the conduction
band. In addition, the case of the spatial configuration
with 2Sed proves to be extremely meaningful. Unlike a
single Sed, the presence of a second Sed results in the
change of defect states and band energy of the opposite
configuration but creates new and different defect states
for the trans configurations. However, due to the
composite defects of two Sed and Wd in the trans
configurations, the defect state system distributed
throughout the whole band gap is generated. The above
analysis proves that the defect states formed by one Sed
and composite defects are at deep energy levels with
localized characteristics; therefore, current leakage is not
prone to occur, which further explains and demonstrates
the superlow consumption characteristic of the Ag/WSe2
QDs/LSMO/STO device [19].

Similar to biological synapses, the conductance of our
WSe2 QDs-based device can not only be modulated by the
pulse amplitude and duration but also by the pulse interval,
which proves the synaptic plasticity of our device. To further
investigate the conductance modulation properties of Ag/
WSe2 QDs/LSMO/STO device, a series of positive pulse
sequences were introduced to the device. The controllability
of the conductance modulation was investigated by chang-
ing the amplitude, duration, and interval of the applied
pulse. The conductance of the device was recorded instantly
after the excitation was applied, and the serials of pulses
were expressed by different colors. Figure 3(a) indicates that
the conductance and the amplitude of the device are posi-
tively correlated under the condition of the same number
of pulses; that is, the conductance increases with the increas-
ing pulse amplitude (the pulse interval and duration are both
fixed at 50μs). Figure 3(b) indicates that the conductance
increases with the increasing pulse duration (the pulse
amplitude is 4V, and the pulse interval is 50μs).
Figure 3(c) illustrates that the conductance and the pulse
interval are negatively correlated; in other words, the
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conductance decreases with the increasing pulse interval (the
pulse amplitude is 4V, and the pulse duration is 50μs). The
effect of the pulse amplitude on the variation of the conduc-
tance is illustrated in Figure 3(d) under the constant pulse
interval and duration (the pulse interval and duration are
both fixed at 50μs): a higher amplitude will result in an
increased rate of rise in conductance and reach the saturated
conductance value. The effect of the pulse duration on the
variation of the conductance is illustrated in Figure 3(e) with
a constant amplitude and interval (i.e., 4V and 50μs). The
results suggest that the rate of conductance increases as the
pulse duration increases. The influence of the pulse interval
on the variation of the conductance is shown in Figure 3(f)
with a constant amplitude and duration (i.e., 4V and
50μs), but the opposite result from Figure 3(e) is observed:
the rate of conductance decreases with the increase of the
pulse interval. In general, the conductance of the device
can be finely modulated by the pulse number, amplitude,
duration, and interval, which is conducive to the simulation
of biological synaptic functions.

The forgetting curve of human memory is closely related
to the approach of learning information. The “learning

approach” (that is, the stimulus conditions) changes with
the stimulation amplitude, duration, and interval [49]. EPSC
means that the action signals and potentials of presynaptic
neurons are transmitted to postsynaptic neurons through
synapses under the action of an external excitation source.
Figure 4 shows that when pulses of different numbers,
amplitudes, durations, and intervals were applied to the
device, the tail wave after the last pulse of each stimulation
was measured and recorded [50]. After removing the applied
square wave voltage, the synaptic weight would decay spon-
taneously in the absence of external inputs [51].

The correspondence between the forgetting behavior of the
Ag/WSe2 QDs/LSMO/STO device and the short-term plastic-
ity (STP) of human neurons was investigated through an expo-
nential decay equation describing the STP relaxation process:

M tð Þ =Me + M0 −Með Þ exp −t
τ

� �
, ð4Þ

whereM0 andMe represent the initial and stable memory state,
respectively, and τ represents the relaxation time constant. A
larger τ value indicates a slower forgetting rate [50, 51].
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Figure 3: The conductance of the device for 30 pulse cycles was measured under different pulse (a) amplitudes, (b) durations, and (c)
intervals. The device conductance was measured under a train of positive pulses: (d) the pulse duration and interval are both 50μs and
different pulse amplitudes. (e) The pulse amplitude and interval are 4V and 50 μs, respectively, and different pulse durations. (f) The
pulse amplitude and duration are 4V and 50 μs, respectively, and different pulse intervals.
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Figure 4: (a)–(c) Comparison of EPSC measurement response (orange curves) and fitted curves (green curves) under the condition of
different pulse numbers. (d)–(f) Comparison of EPSC measurement response (orange curves) and fitted curves (green curves) under
different square wave amplitudes. (g)–(i) Comparison of EPSC measurement response (orange curves) and fitted curves (green curves)
under different pulse durations. (j)–(l) Comparison of EPSC measurement response (orange curves) and fitted curves (green curves) at
different intervals.
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Figures 4(a)–4(c) depict EPSC response results under different
stimulation times. The fitted values of τ are 49.6μs
(Figure 4(a)), 102.3μs (Figure 4(b)), and 156.1μs
(Figure 4(c)). If the applied number of pulses is larger, the stim-
ulation time is longer, and the value of τ is larger, i.e., the for-
getting is slower. Figures 4(d)–4(f) depict the response results
corresponding to different amplitudes, where the fitted τ values
are 92.4μs (Figure 4(d)), 103.7μs (Figure 4(e)), and 113.9μs
(Figure 4(f)). The results illustrate that the greater the ampli-
tude, the greater the value of τ, i.e., the slower the forgetting.
Figures 4(g)–4(i) show the response results of different dura-
tions, with different τ values of 88.7μs (Figure 4(g)), 91.5μs
(Figure 4(h)), and 101.2μs (Figure 4(i)). The results show that
a larger pulse duration will result in a larger τ value, i.e., a
slower forgetting rate. Figures 4(j)–4(l) are the response results
with respect to different intervals, and the fitted τ values are
160.4μs (Figure 4(j)), 90.5μs (Figure 4(k)), and 71.4μs
(Figure 4(l)), respectively. The results show that a smaller inter-
val will result in a larger τ value, i.e., a slower forgetting rate.
The above analysis suggests that our device can realize EPSC
simulation commendably.

STDP is one of the most significant biological features in
the Hebbian learning rules for learning and memory, which
can regulate the connection strength between human brain
neurons [52, 53]. Figure 5(a) is a schematic illustration of a
biological synapse, which is the connection between two
neurons. The structure of Ag/WSe2 QDs/LSMO/STO mem-
ristor device is similar to a typical nerve synapse. The top
electrode (Ag) is considered as the presynaptic membrane,
while the bottom electrode (LSMO) is considered as the
postsynaptic membrane. Previous studies have demon-
strated that metal ions such as Ag+ and Cu2+ can migrate
under the application of electric field and form conductive
filaments, which is able to simulate the weight change of bio-
logical synapses caused by the release of Ca2+ or Na+ from
preneurons [3]. For devices based on Ag/WSe2 QDs/
LSMO/STO structure, the change of device resistance is
studied when the driving voltage pulse sequence is applied.
The setting mode of programming voltage is as below: the
negative voltage pulse part is −7⟶−0:2V, the voltage
change step is -0.2V; the positive voltage pulse part is 0:2
⟶ 7V, and the voltage change step is 0.2V. The duration
and interval of each pulse are both 41.5μs, and the obtained
resistance change of the device is illustrated in Figure 5(b).
In the negative voltage pulse part (blue), the absolute voltage
value is increasing, and the resistance of the device increases
with the decrease of negative voltage (depression). In the
positive voltage pulse part (red), the absolute voltage value
is increasing, and the resistance of the device decreases with
the increase of positive voltage (potentiation). Therefore, the
regulation of the weight of biological synapses (i.e., the var-
iations of connection strength between biological synapses)
can be simulated by the change of memristor resistance.
STDP adjusts the synaptic weight by changing the interval
from presynaptic to postsynaptic peaks (Δt). If the prestimu-
lation time of the neuron is earlier than the poststimulation
time of the neuron (i.e., Δt > 0), an increase in the postsyn-
aptic current will caused. The phenomenon indicates that
the stimulation signal of presynaptic neuron can be condu-

cive to promote the producing of postsynaptic neuron stim-
ulation signal, and the synapse weight increases more as jΔtj
decreases. On the contrary, if the presynaptic stimulation
time is later than the postsynaptic stimulation time (i.e., Δt
< 0), the postsynaptic current will be inhibited. This indi-
cates that the stimulation signal of presynaptic neurons plays
an inhibitory role in the generation of postsynaptic neuron
stimulation signals, and the synaptic weight decreases more
as jΔtj decreases. The STDP rule what we generally referred
to occurs in the time window between excitement and
excitement. When the action potential of presynaptic neu-
rons is earlier than that of postsynaptic neurons, the weight
of synaptic will increase, signifying LTP [34, 54–57]. On the
contrary, when the action potential of presynaptic neurons
is later than that of postsynaptic neurons, the weight of syn-
aptic will decrease, signifying LTD [58]. This is called the
anti-Hebbian learning rule. Following the above rules and
definitions, we designed presynaptic and postsynaptic spike
waveforms (as shown in Figure 5(c)) to stimulate Ag/WSe2
QDs/LSMO/STO synapses, and the results (as shown in
Figure 5(d)) demonstrate our device can implement this
rule well. The fitted curve in Figure 5(d) is expressed by
Equation (5):

ΔW = Ae−Δt/τ + ΔW0 ð5Þ

Here, A is the scale factor of the STDP function, τ is the
time constant [59, 60], and W0 is a constant which repre-
sents the nonassociative part of the synaptic change.

PPF is a typical physiological phenomenon in which the
synaptic weight of biological synapses is increased in a short
time during the continuous release of calcium ions at the
presynaptic end owing to the presynaptic influx of ions. In
a pair of presynaptic stimuli, when the second stimulus is
triggered within a short time interval, the post-synaptic
response of the second stimulus will be greater than that of
the first stimulus, resulting in synaptic weights [61, 62]. In
order to prove the PPF phenomenon in our device, a pulse
with a pulse duration of 1.25ms and a voltage amplitude
of ±1V was applied to Ag top electrodes. The correlation
between synaptic weight and pulse time interval are shown
in Figures 5(e) and 5(f). The pulse waveforms applied to
the device for PPF simulation are illustrated in Figure S5
in the Supplementary Material. The ratios of PPF are
expressed by [37]:

PPF = G2 −G1ð Þ
G1

× 100% = C1 exp
−t
τ1

� �
+ C2 exp

−t
τ2

� �

ð6Þ

Here, G1 and G2 are the conductance values after the
action of the previous and subsequent pulses,
respectively, and τ1 and τ2 are the fitted time constants,
corresponding to the fast and slow decaying components,
respectively [18]. For a positive voltage pulse, the fitted
τ1 and τ2 are 48μs and 700μs, respectively (Figure 5(e)),
while for a negative voltage pulse, the fitted τ1 and τ2
are 48μs and 855μs, respectively (Figure 5(f)). Our
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results indicate that as the pulse interval was decreased,
the memory effect of the prespiking pulse on subsequent
pulses was improved, which is excellently consistent with
biological synapses.

To better evaluate the application of the Ag/WSe2
QDs/LSMO/STO device in neuromorphic computing, we
built a three-layer ANN to simulate the performance of
the WSe2 QDs-based memristor, including the input layer,
hidden layer, and output layer in the network, as illus-
trated in Figure 6(a). Here, two datasets are used for eval-
uation, small images (8 × 8 pixels) of hand-written digits
from the “Optical Recognition of Handwritten Digits”
(ORHD) dataset [63] and large images (28× 28 pixels) of
hand-written digits from the “Modified National Institute
of Standards and Technology” (MNIST) dataset [64], and
the representative images of the MNIST dataset are illus-
trated in Figure 6(b). In the process of neural network
simulation based on the WSe2 QDs device, the weights
between the neurons will be mapped to the intersection
of the horizontal bar and the vertical bar in the crossbar
based on the WSe2 QDs device (Figure S6 in the
Supplementary Material) [65]. A crossbar, considered
part of the “neural core,” is used to perform vector-
matrix multiplication and outer product update operations
(Figure S7 in the Supplementary Material). The detailed

simulation process is shown in the Supplementary Material.
After 40 times of training in ANN, the recognition accuracy
of WSe2 QDs-based device in recognizing small images
reaches 91.59%, and the ideal performance of floating-point-
based neural networks [66] is 96.71%, which represents the
theoretical limit of the simulator, as illustrated in Figure 6(c).
The recognition accuracy of WSe2 QDs-based device reaches
94.05% in recognizing large images, and the ideal
performance of the floating-point-based neural network
reaches 98.19%, as illustrated in Figure 6(d). Compared to
the work of Ge et al. [66], the image recognition accuracy of
our devices for large images is improved by 3.05%. The
above results fully demonstrate that the WSe2 QDs-based
device is very suitable for neuromorphic computing and
provides new ideas for the further development of
neuromorphic computing.

3. Discussion

In conclusion, we have presented a high-performance and
superlow power consumption memristor device with the
structure of Ag/WSe2 QDs/LSMO/STO. The device
exhibits excellent resistive switching characteristics with
stable memory performance, with decent ROFF/RON ratio
up to 5 × 103, superlow consumption of 0.16 nW, set and
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Figure 5: Simulation of the characteristics of STDP and PPF in biological synapses. (a) Schematic illustration of the structure of biological
synapses. (b) The relationship between the pulse number and the resistance of the device. Applying a negative/positive pulse to the device
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pulses. (c) Schematic diagram of the pulse waveforms applied to the device for STDP simulation. (d) Measured STDP characteristics of
Ag/WSe2 QDs/LSMO/STO device, the green lines are the curves fitted by Equation (5). (e, f) Measured PPF characteristics of Ag/WSe2
QDs/LSMO/STO device, (e) and (f) are the test results after applying positive and negative voltage pulses, respectively.
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reset voltages as low as ~0.52V and~ -0.19V, and reliable
repeatability. The movement of electrons assisted by
defects obtained by the TAT model is responsible for the
resistive switching behavior of the device. Meanwhile, den-
sity functional theory calculations demonstrate that the
defect states formed by Sed and Wd are at deep energy
levels; so, current leakage does not easily occur, which fur-
ther explain and prove the low power consumption char-
acteristic of the device. Moreover, conduction regulation
can be achieved by changing the external conditions, such
as pulse amplitude, duration, and interval. And biological
synaptic characteristics including EPSC, STDP, LTP,
LTD, and PPF were successively proved. The recognition
accuracy of digit images obtained by a three-layer ANN
can reach up to 94.05%. This work demonstrates the Ag/
WSe2 QDs/LSMO/STO memristor device holds great
potential for application in low power consumption neuro-
morphic computing system.

4. Materials and Methods

4.1. Fabrication of the WSe2 QDs Suspension. WSe2 QDs
were prepared based on the method reported in the refer-
ence [25]. First, WSe2 powder was dispersed in N-methyl-
2-pyrrolidone (NMP) to prepare a mortar with a concen-
tration of 50mg/mL. After dilution treatment in a glass
vial containing 3mL NMP and grinding for 30min, the
suspension was sonicated in an ice bath with a power of
260W for 4 h. After regrinding for 30 minutes, the
suspension was diluted to 15mL and then resonication
in an ice bath for another 4 h with a power of 260W.
After that, the resulting suspension was centrifuged at
8000 rpm for 20 minutes. After two cycles of centrifuga-
tion, the supernatant was collected and finally filtered with
a 250nm Teflon filter. In order to prevent WSe2 from
being oxidized, the entire ultrasonic treatment was carried
out in a nitrogen atmosphere.
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Figure 6: Simulation of neural network based on WSe2 QDs device. (a) A three-layer neural network structure is shown. It contains input
layer, hidden layer and output layer. (b) Image representation of some handwritten digits in the MNIST dataset. (c) The comparison between
the recognition accuracy of the optical recognition dataset of handwritten digits in the neural network simulation and the ideal case. After 40
training sessions, the ideal case recognition accuracy reaches 96.71%, and the device-based recognition accuracy reaches 91.59%. (d)
Regarding the comparison of the recognition accuracy of the MNIST dataset in the neural network simulation with the ideal case, after
40 training sessions, the ideal case recognition accuracy reaches 98.19%, and the device-based recognition accuracy reaches 94.05%.
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4.2. Fabrication of the Device. The sandwich structure device
was fabricated by a combination of pulsed laser deposition
(PLD), spin coating, and magnetron sputtering technology.
First, the P-type Si substrate with a 1μm-thick SiO2 layer
was cleaned with acetone, ethanol, and deionized water
(DIW), respectively and then immersed in amixture of hydro-
fluoric acid and DIW (1 : 3) to remove the silicon dioxide.
Next, the STO buffer layer was deposited on the Si substrate
by PLD under a growth temperature at 750°C, an oxygen pres-
sure at 7.5 mTorr, and a laser repetition frequency of 5Hz for
15min. Then, the LSMO bottom electrode was deposited
using a laser with an energy density of 350mJ/cm2 and repeti-
tion frequency of 2Hz, while maintaining the growth temper-
ature at 750°C and oxygen pressure at 200 mTorr for 30min.
Afterward, the WSe2 QDs active layers were formed by spin-
coating on the LSMO bottom electrode at a coating speed of
600 rpm for 60 s. Finally, an Ag top electrode film with a thick-
ness of 60nm and a diameter of 90μmwas fabricated by direct
current magnetron sputtering technology under a pressure of
3Pa and an Argon flow rate of 25 sccm.

4.3. Characterizations. HR-TEM (JEM-2100HR) was applied
to identify the quality of theWSe2 QDs. SEM (FEI Nova Nano
SEM450) was utilized to identify the thickness of the WSe2
QDs active layer. XPS (Thermo Fischer ESCALAB Xi+) was
utilized to analyze the chemical configurations of the WSe2
QDs using a 12.5kV monochromatic Al Kα source. The C
1 s peak at 284.8 eV was used for charge calibration of all the
binding energies. The electrical characterization experiments
of Ag/WSe2 QDs/LSMO/STO device, including the direct cur-
rent I - V curves and pulse measurements, were determined at
atmospheric pressure in air ambient using a Keithley 2400 dig-
ital source meter. A function/arbitrary waveform generator
(RIGOL DG5102) was applied to conductance regulation
experiment and tests EPSC, STDP, LTP, LTD, and PPF. An
oscilloscope (RIGOL DS4022) was utilized to capture the
waveforms throughout the pulse measurements. During all
the electrical characterization experiments, the voltage bias
was applied to the Ag electrode while the LSMO electrode
and Si substrate were grounded all the time.

4.4. The Method Used in Digit Recognition Ability. The neu-
ral network simulations based on WSe2 QDs memristors
were performed in Python software. The Cross Sim simula-
tor was used for supervised learning of the ORHD dataset
and MNIST dataset. There are a total of 5620 8 × 8 pixel pic-
tures of written digits in the ORHD dataset, of which 3823
are used for training and 1797 are used for testing. There
are a total of 70,000 pictures of handwritten digits in the
MNIST dataset, of which 60,000 are used for training and
10,000 are used for testing. During the simulations on both
datasets, a learning rate of 0.1 was used.
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