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MolE: a foundation model for molecular
graphs using disentangled attention

Oscar Méndez-Lucio 1 , Christos A. Nicolaou 1,2 & Berton Earnshaw 1

Models that accurately predict properties based on chemical structure are
valuable tools in the chemical sciences. However, for many properties, public
and private training sets are typically small, making it difficult for models to
generalize well outside of the training data. Recently, this lack of general-
ization has been mitigated by using self-supervised pretraining on large
unlabeled datasets, followed by finetuning on smaller, labeled datasets.
Inspired by these advances, we report MolE, a Transformer architecture
adapted for molecular graphs together with a two-step pretraining strategy.
The first step of pretraining is a self-supervised approach focused on learning
chemical structures trained on ~842 million molecular graphs, and the second
step is amassivemulti-task approach to learn biological information.We show
that finetuning models that were pretrained in this way perform better than
the best published results on 10 of the 22 ADMET (absorption, distribution,
metabolism, excretion and toxicity) tasks included in the Therapeutic Data
Commons leaderboard (c. September 2023).

Machine learning has been successfully applied to chemical sciences for
many decades1. In particular, molecular property prediction has been
critical in successfully advancing material and drug discovery projects2.
Nonetheless, amajor challenge in this area still is to represent amolecule
in a way that is compatible with machine learning algorithms with
minimum information loss. Initially, molecules were represented in
terms of their physicochemical properties (e.g., partition coefficient) or
information that can be obtained from the molecular formula such as
molecular weight or number of heteroatoms3. While this approach was
successful for thefirst quantitative structure-activity relationship (QSAR)
studies4, it used only global properties of the molecule, and not the
chemical structure itself. With time, molecules were described in more
sophisticated ways using molecular fingerprints such as MACCS keys5

and Extended Connectivity Fingerprints (ECFPs)6 among others. These
molecular fingerprints encode substructures of the molecules either in
the form of preset chemical groups or as atom environments. Despite
their successful use in numerous QSAR applications, molecular finger-
prints fail to preserve the completemolecular graph topology especially
when using a small fingerprint length6.

Following recent advances in natural language modeling, it was
noted that molecules could be used directly as input for predictive

models in the form of SMILES7,8, a string-based representation devel-
oped to store and search molecular structures in a fast and easy way.
SMILES have been used as inputs for deep learning architectures such
as recurrent neural networks (RNNs)9 and Transformers10–14, though
they suffer from the fact that molecules do not have unique SMILES
representations. Other types of string-based representations have
been proposed15, e.g., Self-Referencing Embedded Strings (SELFIES)16,
which encode the molecular graph in the form of a Chomsky type-2
free context grammar appropriate for deep learning applications. An
alternative is to use a graph representation of the molecule where
nodes represent atoms and edges represent bonds. Such an approach
is compatible with graph neural networks (GNNs), which have been
extensivelyused formolecularproperty prediction17,18. Typically, GNNs
aggregate the local information of each node with that of its neigh-
boring atoms, and this information is then aggregated into a single
molecular representation used to predict specific properties. Despite
the fact that GNNs could provide the most natural way for learning
representations of molecules that perform well in property prediction
tasks, they also suffer from some drawbacks, e.g. in each layer of the
GNN, an atom can only aggregate information from its nearest
neighbors.

Received: 11 March 2024

Accepted: 18 October 2024

Check for updates

1Recursion, Salt Lake City, UT, USA. 2Present address: Novo Nordisk Research Center, Lexington, MA, USA. e-mail: oscar.mendez-lucio@recursion.com;
berton.earnshaw@recursion.com

Nature Communications |         (2024) 15:9431 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0345-1168
http://orcid.org/0000-0003-0345-1168
http://orcid.org/0000-0003-0345-1168
http://orcid.org/0000-0003-0345-1168
http://orcid.org/0000-0003-0345-1168
http://orcid.org/0000-0002-1466-6992
http://orcid.org/0000-0002-1466-6992
http://orcid.org/0000-0002-1466-6992
http://orcid.org/0000-0002-1466-6992
http://orcid.org/0000-0002-1466-6992
http://orcid.org/0000-0002-9728-2408
http://orcid.org/0000-0002-9728-2408
http://orcid.org/0000-0002-9728-2408
http://orcid.org/0000-0002-9728-2408
http://orcid.org/0000-0002-9728-2408
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53751-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53751-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53751-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-53751-y&domain=pdf
mailto:oscar.mendez-lucio@recursion.com
mailto:berton.earnshaw@recursion.com
www.nature.com/naturecommunications


A strategy frequently employed for learning meaningful repre-
sentations in language involves training foundation models. These are
models typically trained on extensive unlabeled datasets via self-
supervised training, which can subsequently be finetuned for various
downstream tasks19–21. This strategy has also been used to train foun-
dation models for chemistry using SMILES11,14. Conversely, pretraining
strategies for molecular graphs are not as straightforward and only a
few attempts have been reported on relatively limited data22–24. In
particular, Hu et al. proposed theContext Prediction approach22 where
the task consists of encoding part of the molecule using a GNN and
matching the resulting embedding with the embedding of the rest of
themolecule (referred as context graph) using negative sampling, and
trained on 2 million molecules. In this paper we report a foundation
model for chemistry trained on the molecular graphs of ~842 million
molecules using self-supervised pretraining. We refer to this model as
MolE, short for Molecular Embeddings. In particular, MolE learns
molecular embeddings, at the atomic environment level, directly from
a molecular graph using a transformer25. Specifically, we modified the
disentangled attention in DeBERTa26 to account for relative atom
positions in a molecular graph. We also describe a self-supervised
pretraining strategy for graphs in which each atom predicts its atom
environment, i.e. the atom type and connectivity of all neighboring
atoms. Using the ADMET tasks defined in the Therapeutic Data Com-
mons (TDC)27, we show that MolE is capable of being finetuned on
small datasets to achieve top performance. This work is of relevance
for chemical sciences where large amounts of unlabeled molecular
structures are available but the size of labeled datasets is usually
very small.

Results
A transformer model for molecular graphs
Model inputs. Contrary to SMILES-based models, in which characters
composing the SMILES string are used as tokens, MolE directly works
with graphs by providing both atom identifiers as input tokens and
graph connectivity as the relative position information. Atom identi-
fiers are calculated by hashing different atomic properties (i.e., Day-
light atomic invariants) into a single integer6. In particular, this hash
contains the following information: number of neighboring heavy
atoms, number of neighboring hydrogen atoms, valence minus the
number of attached hydrogens, atomic charge, atomic mass, attached
bond types, and ring membership. Atom identifiers (also known as
atom environments of radius 0) were computed using the Morgan
algorithm28 as implemented inRDKit29. In addition to tokens,MolE also
takes graph connectivity information as input which is an important
inductive bias since it encodes the relative position of atoms in the
molecular graph. In this case, the graph connectivity is given as a
topological distance matrix d where dij corresponds to the length of
the shortest path over bonds separating atom i from atom j.

Model architecture. MolE uses a Transformer25 as its base archi-
tecture, which also has been applied to graphs previously30,31. The
performance of transformers can be attributed in large part to the
extensive use of the self-attention mechanism. In standard transfor-
mers, the input tokens are embedded into queries, keys and values
Q,K,V 2 RN ×d , which are used to compute self-attention as:

A=
QKT

ffiffiffi

d
p ð1Þ

H0 = softmax Að ÞV ð2Þ

where H0 2 RN ×d are the output hidden vectors after self-attention,
and d is the dimension of the hidden space. In order to explicitly carry
positional information through each layer of the transformer, MolE

uses the disentangled self-attention from DeBERTa26:
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where Qc,Kc,Vc 2 RN ×d are context queries, keys and values that
contain token information (used in standard self-attention), and
Qp

i, j ,K
p
i, j 2 RN × d are the position queries and keys that encode the

relative positionof the ith atomwith respect to the jth atom.Theuseof
disentangled attentionmakes MolE invariant with respect to the order
of the input atoms.

Pretraining strategy. As mentioned earlier, self-supervised pretrain-
ing can effectively transfer information from large unlabeled datasets
to smaller datasets with labels. Here we present a two-step pretraining
strategy as shown in Fig. 1. The first step is a self-supervised approach
to learn chemical structure representation. For this we use a BERT-like
approach32 in which each atom is randomly masked with a probability
of 15%, from which 80% of the selected tokens are replaced by a mask
token, 10% replaced by a random token from the vocabulary, and 10%
are not changed. Different from BERT, the prediction task is not to
predict the identity of the masked token, but to predict the corre-
sponding atom environment (or functional atom environment6) of
radius 2, meaning all atoms that are separated from the masked atom
by two or less bonds. It is important to keep in mind that we used
different tokenization strategies for inputs (radius 0) and labels (radius
2) and that input tokens do not contain overlapping data of neigh-
boring atoms to avoid information leakage. This incentivizes the
model to aggregate information from neighboring atoms while
learning local molecular features. MolE learns via a classification task
where each atom environment of radius 2 has a predefined label,
contrary to the Context Prediction approach22 where the task is to
match the embedding of atom environments of radius 4 to the
embedding of context atoms (i.e., surrounding atomsbeyond radius 4)
via negative sampling. The second step uses a graph-level supervised
pretraining with a large labeled dataset. As proposed by Hu et al.22,
combining node- and graph-level pretraining helps to learn local and
global features that improve the final prediction performance. More
details regarding the pretraining steps can be found in the Methods
section.

Achieving high performance on downstream tasks. MolE was pre-
trained using an ultra-large database of ~842 million molecules from
ZINC2033 andExCAPE-DB34, employing a self-supervised scheme (with an
auxiliary loss) followedbya supervisedpretrainingwith ~456Kmolecules
(see Methods section for more details). We assess the quality of the
molecular embedding by finetuningMolE on a set of downstream tasks.
In this case, we use a set of 22 ADMET tasks included in the Therapeutic
Data Commons (TDC) benchmark27. This benchmark is composed of 9
regression and 13 binary classification tasks on datasets that range from
hundreds (e.g, DILI with 475 compounds) to thousands of compounds
(such asCYP inhibition taskswith ~13,000 compounds). An advantage of
using this benchmark is that it provides a standardized way to compare
model performance (using the mean and standard deviation of 5 inde-
pendent runs). As of September 2023, there have been ~15 different
methods officially evaluated on this benchmark, includingmodels using
precomputed fingerprints (e.g., RDKit or Morgan Fingerprints), con-
volutional neural networksusing SMILES, anddifferent versions of graph
neural networks such as ChemProp18.
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Table 1 lists the result of MolE on the TDC benchmark achieving
state-of-the-art performance on 10 of the 22 tasks (September 2023)
and is the second best model on 4 tasks. More specifically, it was the
best model on 6 regression and 4 classification (mainly CYP inhi-
bition) tasks. Note that after including MolE’s results, the next best
model, ZairaChem, achieves top performance on only 5 of the 22
tasks. Not surprisingly, MolE achieves top results on tasks with
larger datasets, such as those predicting CYP inhibition. None-
theless, it also achieves top performance on some tasks with only a
few hundred training examples, such as predicting half-life and CYP
substrates.

Understanding MolE performance through ablation studies
Using the TDC ADMET tasks described previously, we conducted
ablation studies to understand the impact of various architectural
and pretraining choices on model performance. Table 2 provides a
summary of the results, while Supplementary Tables S1–S5 provide
a detailed view. In order to minimize the large amount of training
required to complete these ablation studies, we performed
the self-supervised training step on the GuacaMol dataset35 (~1.2
million compounds) while maintaining the same supervised
strategy.

Effect of disentangled attention. An important structural choice of
MolE is the use of disentangled attention26. This feature uses relative
positional embeddings to inform themodel about the location of each
atom in the molecule making it invariant to the order of the atoms.
Removing disentangled attention has a significant impact on perfor-
mance, similar to the impact of removing positional embeddings from
standard bidirectional transformers36,37. Supplementary Fig. S1 shows
the training loss and test accuracy for both scenarios of self-supervised
pretraining. As expected, self-supervised pretraining using disen-
tangled attention achieves high accuracy (of 0.96) during the masked
modeling task while not using this attention results in an accuracy of
0.12.We also evaluateMolEwithout disentangled attention on the TDC
benchmark where it performed worse in 19 out of 22 tasks compared
to the model with disentangled attention (Supplementary Table S1).

Effect of pretrainings. Supplementary Table S1 shows the perfor-
mance ofMolE on the TDCADMET tasks 1) without any pretraining and
2)with supervisedpretraining only. Remarkably, trainingMolEon each
individual task without any pretraining already exhibits better per-
formanceon4of the 22 tasks (PPBR,VDss, Half life andDILI) compared
to early models benchmarked on TDC by Huang et al.27. This suggests
that just the use of transformers with disentangled attention already

Fig. 1 | Pretraining and finetuning approaches used in this study. a A self-
supervised approach inwhich an input atom ismasked and the task is to predict the
corresponding atom environment of radius 2, i.e. the masked atom plus all the
neighboring atoms separated by no more than two bonds. Note that in this

particular example the two masked tokens correspond to the same atom identifier
(2041434490), but the atom environment associated with each is different.
b Supervised approach in which embeddings of individual tokens are aggregated
into an aggregation token which is fed into a prediction head.
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positively impacts performance despite training only on small, task-
specific datasets. Unfortunately, none of these models performed
better than the best models on the TDC leaderboard (c. September
2023). Supervised pretraining alone improves performance on the
TDC tasks, however the improvement over the baseline is only mar-
ginal, suggesting that supervised pretraining alone is not enough to
learn transferable representations.

In Supplementary Table S2 we display the results for self-
supervised pretraining. Here we consider three approaches: vanilla

Masked Token Modeling (MTM), MolE and MolE-FE. While all
approaches useatomenvironments of radius 0 as input, the prediction
labels are different in each of them. The vanilla MTM task predicts the
identity of the masked token used as input (i.e., predicts atom envir-
onments of radius 0), MolE task predicts atom environments of radius
2, while MolE-FE predicts functional atom environments6 of radius 2.
Though high accuracy (>98%) on the validation set was obtained with
either strategy, MolE-FE performed slightly better on the benchmark
tasks, outperforming previous models27,38 on the leaderboard (c. Sep-
tember 2023) on 4 of 22 tasks, whereasMolE did so on only 2 tasks (see
Table 2). However, adding supervised pretraining after self-supervised
pretraining greatly improved the performance of MolE, achieving top
results on 7 of the 22 tasks. MolE-FE results also improved (from 4 to 6
top results) when adding supervised pretraining. Interestingly, vanilla
MTM was the worst performer of the three strategies. Two possible
reasons for this are: 1) it seems to be an easier pretraining task due to
the small vocabulary size (207 tokens) compared to predicting atom
environments (~140,000 tokens) and 2) MolE and MolE-FE indirectly
include the vanilla MTM task since they need to predict the identity of
the masked atom in order to select the correct atom environment of
radius 2.

Effect of auxiliary tasks. We also investigated the addition of the
following auxiliary tasks during self-supervised pretraining as a way of
possibly learning more meaningful chemical representations: learning
the partition coefficient (logP) or learning a binary fingerprint of the
molecule. For logP, we add both an additional token (referred to as an
aggregation token) to the input and a prediction head to its encoded
output andminimize the error of the logP prediction at the same time
as the masked-token task (Fig. 1a). We calculate logP using RDKit29.

Table 1 | Comparisonbetween thebestmodels reported in the TherapeuticDataCommons (TDC) leaderboard (as of September
2023) and finetuned MolE

Best in TDC Leaderboard (Septem-
ber 2023)

Best in TDC Leaderboard (June 2024) MolE

Dataset Metric Size Current best model Result Current best model Result Result

Absorption Caco2 MAE 906 BaseBoosting 0.285 ±0.005 MapLight 0.276 ±0.005 0.329±0.008

HIA AUROC 578 RFStacker 0.988 ±0.002 MapLight +GNN 0.989 ±0.001 0.984 ±0.005

Pgp AUROC 1212 ZairaChem 0.935 ±0.006 MapLight +GNN 0.938±0.002 0.93 ±0.005

Bioavailability AUROC 640 SimGCN 0.748±0.033 SimGCN 0.748±0.033 0.64±0.046

Lipophilicity MAE 4200 Chemprop-RDKit 0.467 ± 0.006 Chemprop-RDKit 0.467± 0.006 0.406 ±0.009

Solubility MAE 9982 Chemprop-RDKit 0.762 ± 0.020 Chemprop-RDKit 0.761 ± 0.025 0.776 ±0.019

Distribution BBB AUROC 1975 Lantern RADR 0.962 ±0.003 CFA 0.920±0.006 0.903 ±0.003

PPBR MAE 1797 Chemprop 7.811 ± 0.163 MapLight +GNN 7.526±0.106 7.229±0.168

VDss Spearman 1130 Basic ML 0.627± 0.010 MapLight +GNN 0.713± 0.007 0.644 ±0.013

Metabolism CYP2D6 inhibition AUPRC 13,130 Chemprop-RDKit 0.672 ± 0.008 MapLight +GNN 0.790±0.001 0.679±0.006

CYP3A4 inhibition AUPRC 12,328 ZairaChem 0.875 ±0.002 MapLight +GNN 0.916 ± 0.000 0.876±0.002

CYP2C9 inhibition AUPRC 12,092 ZairaChem 0.786±0.004 MapLight +GNN 0.859 ±0.001 0.782± 0.001

CYP2D6 substrate AUPRC 664 ZairaChem 0.685±0.029 ContextPred 0.736 ±0.024 0.692 ±0.017

CYP3A4 substrate AUROC 667 CNN (DeepPurpose) 0.662 ±0.031 CFA 0.667± 0.019 0.692 ±0.019

CYP2C9 substrate AUPRC 666 ZairaChem 0.441 ± 0.033 ZairaChem 0.441 ± 0.033 0.409±0.014

Excretion Half life Spearman 667 Euclia ML model 0.547 ± 0.032 CFA 0.576 ±0.025 0.578 ±0.032

Clearance microsome Spearman 1102 RFStacker 0.625 ±0.002 MapLight +GNN 0.630±0.010 0.632 ±0.008

Clearance hepatocyte Spearman 1020 Basic ML 0.440±0.003 CFA 0.536 ±0.020 0.456±0.027

Toxicity hERG AUROC 648 SimGCN 0.874 ±0.014 MapLight +GNN 0.880±0.002 0.835 ±0.018

Ames AUROC 7255 ZairaChem 0.871 ± 0.002 ZairaChem 0.871 ± 0.002 0.834 ±0.015

DILI AUROC 475 ZairaChem 0.925 ±0.005 ZairaChem 0.925±0.005 0.852±0.022

LD50 MAE 7385 BaseBoosting KyQVZ6b2 0.552 ±0.009 BaseBoosting KyQVZ6b2 0.552 ±0.009 0.602±0.016

MolE shows state-of-the-art results in 10 of the 22 tasks in TDC (bold and underlined values). This table shows the mean and standard deviation of 5 independent training runs.
MAE Mean Absolute Error, AUROC Area Under the Receiver Operating Characteristic Curve, AUPRC Area Under the Precision-Recall Curve.

Table 2 | Number of tasks on which various MolE ablations
achievebest performance on the Therapeutic Data Commons
(TDC) leaderboard (c. September 2023) for 22 ADMET
(absorption, distribution, metabolism, excretion and toxi-
city) tasks

Pretraining Self-
supervised
label

No
auxiliary
loss

logP as
auxiliary
loss

FP as
auxiliary
loss

None – 0 – –

Only supervised – 2 – –

Only self-supervised
(~1.2 Million)

AtomEnvs 2 2 2

FunctionalEnvs 4 2 3

Self-supervised (~1.2
Million) + Supervised

AtomEnvs 7 7 2

FunctionalEnvs 6 4 6

Only self-supervised
(~842 Million)

AtomEnvs 1 – 3

Self-supervised (842
Million) + Supervised

AtomEnvs 6 – 10

See Supplementary Information for detailed results.
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Table 2 and Supplementary Table S3 show results for both MolE and
MolE-FE trained with logP as auxiliary loss. In general, only a marginal
decrease of performance was observed for the self-supervised version
of MolE-FE, which in this case is the best performer in only 2 tasks
instead of 4. Interestingly, using this auxiliary loss did not change the
performance of MolE with either pretraining strategy.

For fingerprint learning, we framed this as a multitask binary
classification problem where the task is to decide whether each atom
environment of radius 2 in the vocabulary is present in themolecule or
not. In this way, we force themodel to aggregate the information of all
atom environments in the molecule in a single vector that can be used
as a starting point for downstream tasks. As can be seen in Table 2 and
Supplementary Table S4, this auxiliary task again resulted in equal or
lower performance for both environments and both pretraining stra-
tegies. Our hypothesis is that fingerprint learning is a very complex
task due to the numerous outputs and requires a larger number of
training examples before providing any benefit.

Effect of data size. In our ongoing exploration, we also analyzed the
influence of extending pretraining to significantly larger datasets:
two datasets randomly sampled from ZINC with 10 and 100 million
molecules each and the full ZINC dataset containing ~842 million
molecules. This was motivated by the fact that larger training sets
tend to improve model generalization. For clarity, we have included
the results of this extended pretraining in Supplementary Fig. S3
and Supplementary Tables S5 and S6. Note that performance
improvements with larger training sets were significant, improving
model performance across many tasks. The performance of MolE
was particularly impressive when trained on full ZINC, showing
improvements in 10 tasks, outpacing the previously top-performing
models referenced in the TDC leaderboard (c. September 2023).
These results emphasize the benefits realized from pretraining on
larger and more diverse datasets, giving the model a more com-
prehensive understanding of chemistry. As a matter of fact, the
model was exposed to approximately 60 million different Bemis-
Murcko scaffolds when trained on the full ZINC20, with the most
recurrent ones being the pyridine, cyclohexane, and thiophene
rings (found in 2.3, 1.6 and 0.99 million substances respectively)33.
Nonetheless, considering that chemical diversity is a difficult con-
cept tomeasure, the effect of diversity falls outside the scope of this
current study. There were a few tasks where the performance did
not significantly improve or even slightly decreased. Such instances
might be attributed to factors such as the complexity of the task, the
nature of the chemical structures involved, or other limitations. A
deeper analysis is necessary to understand these specific cases, but
the overall results suggest that increasing the amount of pretraining
data substantially improves model performance.

MolE embeddings are ameaningful representation ofmolecular
graphs
An important feature of MolE is its ability to generate meaningful
molecular embeddings. In order to demonstrate this, we subjected the
molecular embeddings to both intrinsic and extrinsic tests39. The
intrinsic evaluation measures the quality of the embeddings inde-
pendent of its predictive functionality. This test largely concentrates
on assessing the topological or functional relationships between
molecular embeddings, similar to how syntactic or semantic relation-
ships are assessed in awordembedding, and can be considered amore
generalized evaluation of the ability of embeddings to capture struc-
tural attributes ofmolecules. In contrast, the extrinsic analysis inspects
the efficacy of the embeddings in downstream tasks, making this
assessment more computationally demanding yet meaningful for
particular tasks, though less interpretable. Since there is no single
evaluation that thoroughly examines model embeddings, it is recom-
mended to employ multiple metrics39.

In this study, we employed an intrinsic test centered around
similarity, specifically neighbors variation40. For this, we compute the
molecular embeddings of ~79 K compounds from the GuacaMol test
set. For each compound embedding, we located the k-nearest neigh-
bors (where k is 5, 10, 15, 25, 50, 100) using cosine similarity. Then, we
established theoverlapof k-nearest neighbors to those identifiedusing
Morgan fingerprints (radius 2)6,28 or RDKitFP29 combined with Tani-
moto similarity, a widely recognized method for evaluating chemical
similarity3. The distribution of neighborhood overlap across all mole-
cules is shown in Fig. 2 as boxplots. Overall, observations indicate that
closer neighborhoods (i.e., k = 5, 10) are more conserved and the
overlap decreases when considering more distant neighbors. More-
over, MolE embeddings have a limited overlap with Morgan finger-
prints, conserving amedian of approximately 20% of neighbors for the
5 or 10 nearest neighbors, a number that decreases for more distant
neighbors. This number is considerably lower when compared to the
existing overlap between the two baselines, Morgan and RDKitFP,
sharing a median of around 40% neighbors at k = 5. A similar com-
parison was conducted using MolE embeddings of the model solely
pretrained using the self-supervised approach. Notably, these
embeddings demonstrate a substantial overlap with Morgan finger-
prints, sharing a median of roughly 60% of neighbors at k = 5, sur-
passing the overlap between Morgan and RDKitFP. The similar
behavior ofMolE self-supervised embeddings andMorgan fingerprints
canbeattributed to the fact thatboth arebasedon atomenvironments
of radius 2, and also reaffirms the success of the self-supervised
approach in learning chemical information. Altogether, these results
demonstrate that embeddings do capture information about the
chemical structure, and this remains true regardless of their perfor-
mance in prediction tasks.

The extrinsic evaluation of molecular embeddings was executed
using the TDC tasks described above. In this case, MolE embeddings
are being used as input features for training an XGBoost model. This
procedure does not update the embeddings, allowing a proper eva-
luation of their quality for the particular prediction task. The outcome
of this evaluation isdetailed in SupplementaryTable S7,where thebest
performers in 12 of the 22 tasks were models trained with MolE
embeddings, as opposed to those trained using embeddings from the
self-supervised-only MolE, Morgan fingerprints (radius 2) or RDKitFP.
It is noteworthy that XGBoost trained with MolE embeddings also
outperformed TDC leaderboard models for the hepatocyte clearance
regression task. These results imply that the supervised pretraining
makes MolE embeddings more biologically significant, and may par-
tially explain the discrepancy between these embeddings and Morgan
or RDKitFP fingerprints in the intrinsic evaluation, since the latter only
contain information regarding the molecular structure.

Figure 2b offers a UMAP representation of MolE embedding
space. Each point represents the embedding of an atom environment
present in the ~79K compounds from the GuacaMol test set. For sim-
plicity, we are just showcasing the atom environments centered
around a heteroatom. The selected examples show cases where dif-
ferent subgraphs, anticipated to have similar biological impacts (like
bioisosteres), are positioned closely in the embedding space. Overall,
it is crucial to note that results found in this section demonstrate that
MolE (self-supervised only) embeddings capture chemical information
similar to Morgan fingerprints, and that MolE embeddings contain a
degree of biological information that enhances their performance in
TDC benchmark tasks. However, one should not interpret these find-
ings as suggesting that these embeddings will provide a superior
molecular representation across all possible tasks, whether for simi-
larity search or predictive capabilities.

Discussion
In this paper we report MolE, which uses a transformer with disen-
tangled attention (i.e., DeBERTa) to predict chemical and biological
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properties directly from molecular graphs. The specific contributions
in this paper are:

• We showed that transformers with disentangled attention can
directly be usedonmolecular graphswhen they are represented by
atomenvironments of radius 0 and relative positional embeddings.

• We proposed a self-supervised approach for molecular graphs in
which the task is to learn atom environments of radius greater
than 0 from atom environments of radius 0, which only include
information about a single atom and all bonds attached to it.

• Byusing a two-steppretraining approach– self-supervised learning
followedby supervised learning –wewere able to trainmodels that
performedbetter thanpreviously reportedapproacheson 10of the
22 tasks included in theTherapeuticDataCommons leaderboard as
of September 2023 and in 5 of the 22 tasks by June 2024 (Table 1).

We hypothesize that learning atom environments forces the
model to aggregate the local chemical groups that will be used for
prediction. Learning an embedding of atom environments and how to
aggregate them into a molecular embedding can help to solve some
problems of classical fingerprints such as sparsity and clashes when
using bit vectors. Interestingly, this self-supervision approach is not
limited to transformers since it can easily be used to pretrainGNN. The
effect of data diversity during the self-supervision is still to be deter-
mined since we only used drug-like molecules. Nonetheless we expect
that larger and more diverse datasets can only improve current per-
formance of the model. Overall we consider this work as an initial step
towards a foundation model for chemical property prediction.

Methods
Datasets
The self-supervised pretraining was done using ~842millionmolecules
from ZINC2033 and ExCAPE-DB34 and validated on set of ~44 million

molecules. For ablation studies, the self-supervised pretraining was
done using the GuacaMol35 training set containing ~1.2 million com-
pounds and the GuacaMol35 test set of 79K molecules for validation. It
is worth mentioning that onlymolecules with nomore than 100 heavy
atoms were used, and we removed from the training set all molecules
included in TDC test sets to avoid information leakage. All remaining
SMILES were transformed into molecular graphs using RDKit from
which distance matrices and atom environments were calculated
(radius 0 to be used as input and radius 2 as labels). Atomenvironment
identifiers were aggregated into two vocabularies, one used for input
and one for labels. The input vocabulary consists of 207 tokens cor-
responding to all atom environments of radius 0 present in the 1.2
million molecules in GuacaMol, plus the ~880 million molecules in
ZINC2033. Similarly the vocabulary used for labels contains ~141K atom
environments or ~114K functional atom environments (Table 3). These
were selected taking the 90K most frequent atom environments or
functional environments from GuacaMol training set plus the 90K
most frequent form ZINC20 and removing those that appear in less
than 3 molecules.

The supervised pretraining was done using ~456,000 molecules
with activity data on 1310 readouts from ChEMBL41 which was curated
following the protocol proposed by Mayr et al.42 and which was used

Fig. 2 | Results from evaluating MolE embeddings. a Evaluation of molecular
embeddingson a neighbor variation test. These boxplots represent thedistribution
of neighborhood overlap across all molecules (n = 79,568) for different molecular
encodings. The closer the overlap is to 1, the more k-nearest neighbors are shared
between the two encoding methods. Morgan fingerprints of radius 2 show high
neighborhood overlap with embeddings from MolE pretrained solely on the self-

supervised task. The centerline of the boxplot represents the median; the bounds
of thebox represent thefirst and thirdquartile and thewhiskers the 1.5 interquartile
rage (IQR). b U-map representation of the MolE atomic embeddings for environ-
ments centered on heteroatoms. It is interesting to see that different subgraphs
with similar biological effects (e.g. bioisosteres) lay close in the embedding space.

Table 3 | Summary of tasks and input/output vocabularies
used for supervised and self-supervised pretraining
approaches

Self-supervised pretraining Supervised
pretraining

Label type Input (Radius 0) Output (Radius 2) Molecules Tasks

Atom Envs 207 ~141K ~456K 1310

Functional Envs 207 ~114K ~456K 1310

Article https://doi.org/10.1038/s41467-024-53751-y

Nature Communications |         (2024) 15:9431 6

www.nature.com/naturecommunications


for pretraining by Hu et al.22. An important difference with the
approach of Hu et al.22 is that we did not use the complete dataset for
supervised pretraining, but insteadwe removed ~9900molecules that
were present in the test sets of the TDC benchmark. This avoids
information leakage since in some cases the overlap between the TDC
test sets and the dataset used for supervised pretraining could reach
more than 80% of themolecules (Supplementary Table S8). Removing
these compounds frompretraining stagesmakesMolEmodels suitable
to be fairly benchmarked in TDC.

Training
MolE uses the DeBERTa26 base configuration (12 transformer layers
with 12 attention heads each) with a prediction head connected to the
output of an aggregation token composed of a two-layer MLP with
GELU43 and dropout44 layers in between (Supplementary Fig. S4). Self-
supervised pretrainingwas carried out for 420,000 steps using a batch
size of 512 molecules distributed across 8 GPUs (making an effective
batch size of 4096compounds). Learning ratewas linearly increased to
2 × 10−4 during the first 10,000 steps, followed by a linear decaying
learning rate schedule. Supervised approach was pretrainied for
60,000 steps using a batch size of 512molecules in a singleGPU. In this
case we used a learning rate of 5 × 10−6 with the same schedule as the
self-supervised training. Gradient norms were clipped at 1.0 and no
weight decay was used.

For finetuning, only the weights of the prediction head were
randomly initialized.Models were trained for 100 epochs using a batch
size of 32 molecules. The model was evaluated on the validation set
every 5 epochs and only the weights from the best-performing model
according to these validation metrics were retained for further eva-
luation in the test set. We ran hyperparameter optimization to find the
best learning rate (1e−5, 8e−6, 5e−6, 3e−6, 1e−6, 5e−7) anddropout rate
(0, 0.1, 0.15 in the prediction head) with a 5-fold cross validation using
the folds provided in theTDCbenchmarkdatasets. During training, the
learning rate was linearly increased during the first 10% of the training
steps, and then kept constant after that.

Benchmark
MolEmodels were evaluated using the ADMET benchmark group from
the Therapeutic Data Commons (TDC)27. This benchmark provides
datasets that have been previously standardized and divided into
training and test sets (80%/20% using scaffold splitting) to fairly eval-
uate molecular property prediction models. It is composed of 22 dif-
ferent classification and regression tasks for properties relevant to
drug discovery. For example, cell permeability (Caco-2), Human
Intestinal Absorption (HIA), and p-glycoprotein inhibition (Pgp),
together with other physicochemical properties, can give a good
estimate of how much of the drug will be absorbed by the body.
Properties like volume of distribution (VDss), the plasma protein
binding rate (PPBR), and the Blood-Brain Barrier (BBB) give us an idea
of how thedrugwill bedistributed across thebody. Knowingwhether a
molecule inhibits or is substrate for a particular cytochrome (CYP)
isoform indicates possible biotransformations that can affect the time
the drug remains in the body, which is measured by half-life and
clearance rate. Finally, knowing whether a molecule is cardiotoxic

(hERG), genotoxic (Ames), or hepatotoxic (DILI) is of great importance
to get a safe drug into the clinic.More information about each of these
tasks is listed in Table 1.

TDC maintains a leaderboard of the performance of different
models on these tasks. These models provide a standard for perfor-
mance comparisonpurposes since theyuse different architectures and
encoding strategies, e.g., pre-calculated descriptors such asMorganor
RDKit 2D fingerprints29, CNNs trained using SMILES, and different
variations of graph-based approaches such as NeuralFP17, GCNs45,
AttentiveFP46, and others. It also includes models pretrained with dif-
ferent strategies e.g., AttrMasking and ContextPred22.

XGBoost models
XGBoost models were used to evaluate the quality of molecular
embeddings in extrinsic prediction tasks. For each model, hyper-
parameter search was performed using Bayesian optimization across
the values listed in Table 4. This process finds the set of hyperpara-
meters that minimizes the error during cross validation. For this, a
gaussian process model was used as an optimizer and updated for 120
iterations. A final model was trained with the best hyperparameters
and then evaluation on the test splits provided by TDC.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study is completely public
and available in the following links: • ZINC: https://zinc.docking.org/ •
GuacaMol: https://figshare.com/projects/GuacaMol/56639 • Ther-
apeutic Data Commons (TDC): https://tdcommons.ai/ Source data are
provided with this paper.

Code availability
The code to use the model reported in this study is be available under
the Attribution-NonCommercial 4.0 International License (CC-BY-NC
4.0) in https://github.com/recursionpharma/mole_public47,48.
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