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Streptococcus uberis infection can cause serious inflammation and damage tomammary

epithelial cells and tissues that can be significantly alleviated by taurine. Autophagy

plays an important role in regulating immunity and clearing invasive pathogens and

may be regulated by taurine. However, the relationships between taurine, autophagy,

and S. uberis infection remain unclear. Herein, we demonstrate that taurine augments

PTEN activity and inhibits Akt/mTOR signaling, which decreases phosphorylation of

ULK1 and ATG13 by mTOR and activates autophagy. Activating autophagy accelerates

the degradation of intracellular S. uberis, reduces intracellular bacterial load, inhibits

over-activation of the NF-κB pathway, and alleviates the inflammation and damage

caused by S. uberis infection. This study increases our understanding of the mechanism

through which taurine regulates autophagy and is the first to demonstrate the role of

autophagy in S. uberis infected MAC-T cells. Our study also provides a theoretical

basis for employing nutritional elements (taurine) to regulate innate immunity and control

S. uberis infection. It also provides theoretical support for the development of prophylactic

strategies for this important pathogen.
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INTRODUCTION

More than 150 different pathogens can cause mammary gland infection. Bacteria are the most
common cause of mastitis (1). Antibiotics and vaccination are the primary therapeutic and
prevention strategies for bovine mastitis; both can partially reduce the incidence of mammary
infection and improve milk production and quality. Unfortunately, the development of a variety
of drug resistance bacterial mechanisms along with the plasticity of pathogens can produce
drug-resistant strains and diversified antigens enabling pathogens to resist drugs and camouflage
them from the immune system (2–5). These mechanisms are especially common for intracellular
pathogens. Therefore, developing effective methods to prevent and treat bovine mastitis is an
urgent need.
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Our recent studies have found that increasing local immunity
reduces the risk of infection that is critical in preventing
bovine mastitis. Mammary epithelial cells (MECs) are a major
component of the mammary gland and are responsible for
milk production. Although they are not bona fide immune
cells, MECs have immune functions (1, 6). MECs are abundant,
and their combined efforts appear to be important in host
defense. Streptococcus uberis is an important pathogen that causes
environmental bovine mastitis through complex pathogenic
mechanisms that result in inflammation and damage to MECs
and associated tissues (7). Previous studies in our lab have
demonstrated that MECs may internalize S. uberis, thus
empowering the bacteria to avoid elimination by drugs and host,
responses. This results in severe inflammation and damage to
mammary tissue (7, 8). Taurine, the most abundant free amino
acid in most animal tissues, plays an important role in regulating
immunity (9). It can alleviate inflammatory injury, inhibit NF-κB
signaling following S. uberis infection, and decrease the number
of intracellular bacteria (1, 10–13). The underlying mechanism
by which this occurs is unknown.

Autophagy is a highly conserved self-digestion process
that plays a crucial role in maintaining cellular homeostasis
in response to nutrient depletion or other stresses, such
as accumulation of damaged organelles, unneeded protein
aggregation, and invading microbes (14). Autophagy may have
varying effects on different pathogens and hosts. For instance, it
has emerged as an innate immune response pathway that targets
intracellular pathogens to restrict their replication in the cytosol
(15). As an example, Mycobacterium tuberculosis, Shigella, and
Listeria can be degraded by autophagy (16, 17). Conversely, the
replication of some pathogens relies on autophagy in host cells.
Brucella for example selectively co-opts autophagy initiation
complexes that convert Brucella-containing vacuoles (BCV) into
a compartment with autophagic features (aBCV) to subvert host
clearance and facilitate bacterial replication in the endoplasmic
reticulum, promoting infection (18). These findings indicate that
autophagy is a “double-edged sword” that is advantageous or
harmful to the host depending on the pathogen, host species,
and other conditions. There are no reports on the role of
autophagy in S. uberis infected MECs. It has been reported that
various pathways participate in the regulation of autophagy,
such as RAF1 (RAF proto-oncogene serine/threonine-protein
kinase)/MEK1/2 (dual specificity mitogen-activated protein
kinase 1,2)/ERK1/2 (mitogen-activated protein kinase), PI3K
(phosphatidylinositol 3-kinase)/Akt (protein kinase B)/mTOR

Abbreviations: S. uberis, Streptococcus uberis; MECs, mammary epithelial cells;

Baf-A1, bafilomycin A1; VOTH, VO-ohpic trihydrate; siRNA, small interfering

RNA; Rapa, rapamycin; 3-MA, 3-methyladenine; LC3,microtubule-related protein

1 light chain 3; p62/SQSTM1, sequestosome-1; ULK1, unc-51-like kinase 1;

ATG13, autophagy-related protein 13; ATG5, autophagy related protein 5; PI3K,

phosphoinositide 3-kinase; PTEN, phosphatase activity of tensin homolog deleted

on chromosome 10; Akt/PKB, protein kinase B; mTOR, mammalian target

of rapamycin; 4EBP1, eukaryotic initiation factor 4E-binding protein 1; S6K,

ribosomal protein S6 kinase; PIP3, phosphatidylinositol 3,4,5-trisphosphate; PIP2,

phosphatidylinositol 4,5-bisphosphate; NAGase, N-acetyl-β-D-glucosaminidase;

LDH, lactic dehydrogenase; IKK, inhibitor of nuclear factor kappa-B kinase; IκB,

inhibitor of nuclear factor kappa-B kinase; NF-κB, nuclear factor kappa B; TEM,

transmission electron microscopy.

(mammalian target of rapamycin), and AMPK (adenosine 5′-
monophosphate (AMP)-activated protein kinase)/ULK1 (unc-
51-like kinase 1) (19, 20). In particular, the PI3K/Akt/mTOR
pathway plays an important role in regulating autophagy and
has emerged as a critical pathway in coordinating inflammatory
responses (21–24). Additionally, the PI3K/Akt/mTOR pathway
is closely related to the phosphoinositides (PIs) (25, 26).
Previous research in our laboratory have demonstrated that
S. uberis induces inflammatory responses in EpH4-Ev cells
mainly through TLR2, but the role of TLR4 cannot be
ignored. Inhibition of PI3K/Akt/mTOR signaling can alleviate
S. uberis-induced inflammation in MECs (7). Besides, Taurine
plays an important role in regulating PIs/Ca2+ signaling (10).
However, the precise relationship between taurine, TLRs, and
mTOR signaling is unclear.

Based on published reports and preliminary research from
our laboratory, we hypothesize that taurine regulates autophagy
through mTOR signaling and autophagy plays an important
role in host anti-S. uberis infection. In this study, the bovine
mammary epithelial cell line MAC-T, S. uberis 0140J, and taurine
were used to investigate the mechanism(s) of taurine regulation
of autophagy in alleviation of S. uberis induced injury in MECs.
The results of this study provide novel ideas and theoretical
support for the prevention and control of mastitis.

MATERIALS AND METHODS

Bacterial Strains, Cell Lines, Bacteria and
Cell Culture, and Treatment
The bovine mammary epithelial cell line MAC-T was a generous
gift of Dr. Loor (University of Illinois at Urbana-Champaign,
Champaign, IL, USA). S. uberis 0140 J was purchased from
the American Type Culture Collection (Manassas, VA, USA).
Bacteria were inoculated into Todd-Hewitt broth (THB)
supplemented with 2% fetal bovine serum (FBS; Gibco, USA) in
an orbital shaker and grown to mid-log phase (OD600 of 0.5).
MAC-T cells were incubated in DMEMwith 10 % FBS and plated
at 80 % confluence into 6-well-plates, and then treated according
to the different test conditions.

Total Protein Extraction and Western Blot
Cells were washed twice in 2mL ice-cold PBS and harvested
with a rubber policeman after being lysed on ice for 20min
in lysis buffer (Beyotime, Shanghai, China). Equal amounts of
total protein were solubilized by sodium dodecyl sulfate (SDS)
sample buffer (Beyotime, Shanghai, China), separated by SDS-
polyacrylamide gel electrophoresis (SDS-PAGE), and transferred
to a polyvinylidene difluoride membrane (Millipore, Bedford,
MA, USA). Membranes were incubated with corresponding
polyclonal and secondary antibodies. Signal was detected with a
Super ECL Reagent substrate (Hai Gene, Harbin, China). Source
and product number of antibody: LC3B (Abcam, ab48394),
SQSTM1/p62 (Abcam, ab101266), Beclin 1 (Bioworld, AP0769),
p-ULK1 (Affinity Biosciences, AF4387), ULK1 (Proteintech,
20986-1-AP), p-ATG13 (Bioworld, BZ40743), ATG13 (Bioworld,
bs6045), ATG5 (Proteintech, 10181-2-AP), p-PI3K (CST, 4228),
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PI3K (CST, 4249), p-PTEN (CST, 9554), PTEN (CST, 9188), p-
Akt (CST, 13038), Akt (CST, 4691), p-mTOR (Abcam, ab84400),
mTOR (CST, 2972S), p-p70 S6K (CST, 9205), p70 S6K (CST,
2708), p-4E-BP1 (CST, 2855), 4E-BP1 (CST, 9644), GAPDH
(Bioworld, AP0066), HRP-linked antibody (anti-rabbit IgG, CST,
7074), Goat Anti-Rabbit (Alexa Fluor R©488) (Abcam, ab150077),
goat anti-rabbit (Alexa Fluor R©647) (Abcam, ab150079).

TNF-α, IL-1β, IL-6, PIP2, and PIP3 ELISA
TNF-α, IL-1β, and IL-6 in MAC-T cells were measured by
ELISA kits according to the manufacturer’s instructions (Rigor
Bioscience, Beijing, China). PIP2, IP3 in cells were detected by
commercial ELISA kits (Jianglaibio, Shanghai, China). Briefly,
prepared standards and enzyme labeled antibodies were reacted
for 60min at 37◦C. Plates were washed five times. Chromogen
solutions A and B were added and incubated for 10min at 37◦C.
Stop solution was added, and OD measured at 450 nm within
10min. TNF-α, IL-1β, and IL-6 were expressed as ng/g of protein
and PIP2, IP3 were expressed as ng/mg of protein. Qualitative
differences or similarities between the control and experimental
groups were consistent throughout the study.

Transfection and Inhibitor Treatment of
MAC-T Cells
Cells were transfected with 10 ng/µL mCherry-EGFP-LC3
plasmid for 24 h using Lipofectamine 3000 reagent (Thermo,
USA) or 20 nmol·L−1 siRNA (siTauT, siPAT1, or siATG5) for
48 h using riboFECTTM CP (RiboBio, Guangzhou, China)
according to the manufacturers’ instructions. siTauT and siPAT1
processing was according to procedures established by our
lab (10). The sequences of siRNA were designed and listed as
follows: siTauT (SLC6A6): GGATAGCCAGTTTGTGGAA;
siPAT1 (SLC36A1): CCAATGGGACCACCAACAA; and
siATG5: GATATGGTTTGAATATGAA. Inhibitors treatment:
50 nmol·L−1 Bafilomycin A1 (Baf-A1, inhibitor of H+-ATPase,
Sellect Chemicals, USA) for 1 h; 2 µmol·L−1 VOTH (VO-Ohpic
trihydrate, inhibitor of PTEN, Sellect Chemicals, USA) for 24 h;
5 mmol·L−1 3-Methyladenine (3-MA, inhibitor of autophagy,
Sellect Chemicals, USA) for 24 h; 100 nmol·L−1 Rapamycin
(Rapa, inhibitor of mTOR, Sellect Chemicals, USA) for 2 h.

Immunofluorescence
Cells were washed with PBS and fixed for 15min in 4%
paraformaldehyde. Cells were then permeabilized with 0.5%
PBST for 20min and then blocked in PBS containing 5% goat
serum (Bioworld, Nanjing, China) for 2 h, followed by incubation
with primary antibodies diluted in goat serum-PBS overnight.
The cells were washed with PBS and incubated with secondary
antibodies diluted in goat serum-PBS for 2 h. The cells were
counterstained with DAPI (Solarbio, Beijing, China) for 10min
and washed 5 times in PBS (5min each). The cells were then
sealed with anti-fluorescence quenching agent and observed
under a laser scanning confocal microscope. All steps were
performed at room temperature.

Transmission Electron Microscopy
Cells were treated and harvested by trypsinization, washed
three times with PBS, fixed with a buffer containing 2.5%
glutaraldehyde for 24 h, and then refixed in 1% osmium tetroxide
for 2 h. The cells were then dehydrated in a graded ethanol series,
washed with propylene oxide, and embedded in embedding
medium. The samples were sectioned on a ultramicrotome
at 90 nm thickness. The ultrathin sections were stained with
uranyl acetate and lead citrate. Images were obtained using a
transmission electron microscope (FEI T12, FEI, USA) at 80 kv.

Viable Bacteria Count
Viable bacteria were enumerated as colony-forming units (CFU)
on THB agar medium. Cells were washed with PBS and added
to 100µg/mL gentamicin to kill extracellular bacteria. Harvested
cells were lysed in sterile tri-distilled water and the supernatant
was collected by centrifugation at 1,000 rpm for 10min. The
CFUs of the supernatant was counted by the plate count method
after incubation for 12 h at 37◦C.

Statistical Analysis
All data are expressed as means ± standard error of the mean
(SEM). Experiments were performed in triplicate. Statistical
procedures were computed using SPSS17.0 statistical software
(SPSS Inc., Chicago, IL, USA), and P-values for significance were
calculated with one-way analysis. Statistically significant results
are indicated with ∗ or #(P < 0.05).

RESULTS

Taurine Activates Autophagy in MAC-T
Cells by Promoting LC3B-II Processing and
Autophagosome Formation
To examine whether taurine regulates autophagy, MAC-
T cells were incubated with 50 nmol·L−1 bafilomycin A1
(Baf-A1), a lysosome inhibitor that blocks degradation of
both autophagosomes and LC3B-II, for 1 h before treatment
with different concentrations of taurine. LC3B- II and p62
(sequestosome 1) levels were determined, and Beclin 1 proteins
assayed (Supplementary Figures 1A,B). Treatment with 50–
90 mmol·L−1 taurine significantly increased LC3B-II, p62,
and Beclin 1 protein levels; 70 mmol·L−1 taurine had the
most significant effects (P < 0.05). Taurine further increased
LC3B-II, p62, and Beclin 1 accumulation in cells treated with
Baf-A1. These results suggest that taurine does not inhibit
autophagosome degradation, but instead induces autophagic flux
since additional increases of LC3B-II result from treatment with
lysosome inhibitor reflecting the amount of newly produced
autophagosomes. To determine the optimal timing of taurine
regulated autophagy, MAC-T cells were treated with 70
mmol·L−1 taurine for 0.5–24 h (Supplementary Figures 1C,D).
The results demonstrate that taurine activates the classic
autophagic response characterized by the accumulation of LC3B-
II. Treatment for 2–8 h had significant effects, with the maximal
effect occurring at 4 h (P < 0.05). Immunostaining of LC3B
in cells exposed to 70 mmol·L−1 taurine for 4 h have an
accumulation of cells with LC3B puncta, whereas control cells
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FIGURE 1 | Taurine-induced autophagy in MAC-T cells. (A,B) Representative confocal images of LC3B puncta (green) and DAPI (blue) in MAC-T cells incubated with

50 nmol·L−1 Baf-A1 for 1 h before treatment with 70 mmol·L−1 taurine for 4 h. (C) TEM images of autophagosomes in MAC-T cells incubated with 50 nmol·L−1 Baf-A

1 for 1 h before treatment with 70 mmol·L−1 taurine for 4 h. White arrows indicate autophagosomes. (D) Fluorescence images of MAC-T cells expressing

mCherry-EGFP-LC3 untreated (control) or treated with taurine. Green: GFP; Red: RFP(mCherry); Yellow: merge. Scale bar: 50µm. Data are presented as the mean ±

SEM. *P < 0.05 (significantly different) between the indicated groups.

have reduced and diffuse staining (Figures 1A,B). Transmission
electron microscopy on MAC-T cells treated with taurine
confirmed that taurine triggers autophagosome formation. As
shown in Figure 1C, greater autophagosome formation is present
in treated vs. control cells. To analyze autophagic flux in greater
detail, we generated cells expressing mCherry-EGFP-LC3 which
allows for discrimination between early autophagosomes with
dual red and green fluorescence, and autolysosomes with only
red fluorescence (27). Compared with untreated cells, taurine-
treated MAC-T cells have more autophagosomes that gradually
changed from yellow to red, indicating an increased number
of activated autolysosomes (Figure 1D). These results indicate
that taurine increases autophagosome formation and lysosomal

activity, resulting in the induction of autophagic flux in MECs.
MECs treated with 70 mmol·L−1 taurine for 4 h activates
autophagy in MAC-T cells. This concentration and duration was
used for all further experiments.

Taurine Activates Autophagy in an
mTOR-Dependent Manner
mTOR activity was analyzed in cells treated with taurine
for 1–24 h. The results demonstrate that phosphorylation of
mTOR and its major downstream effectors, ribosomal protein
S6 kinase (S6K) and eukaryotic initiation factor 4E-binding
protein 1 (4EBP1), are significantly decreased (P < 0.05;
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FIGURE 2 | Taurine treatment decreases mTOR activity and inhibits phosphorylation of ULK1 and ATG13 in MAC-T cells. (A–D) Immunoblots of total protein from

MAC-T cells treated with 70 mmol·L−1 taurine for different durations. Quantification of the ratio between the total and phosphorylated (p–) proteins, as determined by

densitometric scanning of immunoblots (n = 3). Data are presented as mean ± SEM. (E–G). Cells were incubated with 50 nmol·L−1 Baf-A1 for 1 h, and then treated

with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h or both; all cells were then probed for the total and phosphorylated (p–) proteins shown. Data are

presented as mean ± SEM. *P < 0.05 (significantly different) between the indicated groups; #P < 0.05 (significantly different) between the corresponding negative

control groups.

Figures 2A–D). These data indicate that taurine regulates
autophagy in amTOR-dependent manner. ULK1 and autophagy-
related protein 13 (ATG13) are required for the initiation
and formation of autophagosomes. They are phosphorylated
by mTORC1 and inhibit the ability of ULK1 and ATG13 to
initiate autophagy (28). To investigate whether taurine regulates
autophagy through this mechanism, we used rapamycin (Rapa),
a specific mTOR inhibitor, as a positive control to investigate

the influence of taurine on ULK1 and ATG13 (Figures 2E–G
and Supplementary Figures 2A,B). Cells treated with taurine or
Rapa, or both, have significantly increased LC3B-II levels and
decreased phosphorylation of mTOR, ULK1, ATG13, S6K, and
4EBP1 (P < 0.05). These results indicate that taurine has similar
effects as Rapa on regulating autophagy. Taurine may inhibit
mTOR signaling and decrease phosphorylation of ULK1 and
ATG13 initiating autophagy in MAC-T cells.
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FIGURE 3 | Taurine inhibits the mTOR signaling pathway. (A–D) Representative immunoblots of total protein from MAC-T cells transfected with 20 nmol·L−1 siNC,

siTauT, siPAT1, or both siTauT and siPAT1 for 48 h before treatment with 70 mmol·L−1 taurine for 4 h. Quantification of the ratio between total and phosphorylated (p–)

proteins, as determined by densitometric scanning of immunoblots and normalization to GAPDH (n = 3). Data are presented as mean ± SEM. *P < 0.05 (significantly

different) between the indicated groups.

Taurine Inhibits the PI3K/Akt/mTOR
Signaling Pathway Inducing Autophagy
Evidence suggests that Akt/mTOR signaling regulates cellular
growth, metabolism, migration, differentiation, and autophagy
that are predominantly linked to the lipid phosphatase activity
of the tensin homolog deleted on chromosome 10 (PTEN),
through which PTEN antagonizes the PI3K pathway (29,
30). To investigate the mechanism of taurine regulation of
mTOR signaling, cells were transfected with siTauT and siPAT1
(TauT and PAT1 encode taurine transporters). As shown in
Figures 3A–D and Supplementary Figures 2C–E, cells treated
with taurine have significantly increased LC3B-II, PTEN, and
phosphorylated PTEN (p-PTEN) levels. Simultaneously, there
are decreased Akt, mTOR, and phosphorylated levels of Akt
(p-Akt) and mTOR (p-mTOR). These effects of taurine were
blocked when TauT and PAT1 were silenced (P < 0.05). There
was no significant effect on PI3K activation. Thus, taurine

may regulate PTEN activity inhibiting Akt/mTOR signaling
and activating autophagy in MECs. PTEN is a dual-specificity
phosphatase with protein- and lipid-phosphatase activities.
PTEN counteracts Akt/mTOR signaling by catalyzing the
conversion of phosphatidylinositol 3,4,5-trisphosphate (PIP3)

into phosphatidylinositol 4,5-bisphosphate (PIP2) (30). To
further investigate whether taurine regulates the mTOR pathway
by modulating PTEN activity, MECs were incubated with VO-
Ohpic trihydrate (VOTH), a specific inhibitor of PTEN. As

shown in Figures 4A,B, taurine significantly increases LC3B
puncta compared with controls, while VOTH pretreatment
significantly reduces LC3B puncta (P < 0.05). These results
indicate that taurine activates autophagy through its regulation
of PTEN activity. PIP3 and PIP2 are substrates and products
of PTEN and may be utilized to measure the phosphatase
activity of PTEN (30). To further determine if taurine affected
PTEN activity, PIP2 and PIP3 concentrations were analyzed
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FIGURE 4 | Taurine augments PTEN activity inhibited mTOR signaling and activated autophagy. (A,B) Confocal images of LC3B puncta (red dot) in MAC-T cells

incubated with 2 µmol·L−1 VOTH (VO-OHpic trihydrate) for 24 h before treatment with 70 mmol·L−1 taurine for 4 h. (C) PIP2 and PIP3 concentrations were determined

by ELISA in the same cells. (D–G) Representative immunoblots of total protein from MAC-T cells. Quantification of the ratio between total and phosphorylated (p–)

proteins, as determined by densitometric scanning of immunoblots and normalization to GAPDH (n = 3). Data are presented as mean ± SEM. *P < 0.05 (significantly

different) between the indicated groups.

by ELISA (Figure 4C). The results demonstrate that taurine
significantly increases PIP2 and decreases PIP3, while VOTH
significantly increases PIP3 and decreases PIP2. VOTH inhibits

the effects of taurine (P < 0.05). These data indicate that
taurine increases PTEN activity. To evaluate the interaction
of PTEN with the PI3K/Akt/mTOR signaling pathway, protein
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FIGURE 5 | Taurine alleviates inflammation and injury caused by S. uberis infection. (A) Observations of cellular morphology by inverted microscope. MAC-T cells

were treated with 70 mmol·L−1 taurine for 4 h, and then infected with S. uberis at a multiplicity of infection (MOI) of 10 for different time. Groups: C (untrated), T

(treated with 70 mmol·L−1 taurine for 4 h), S 0.5 h (infected with S. uberis at MOI of 10 for 0.5 h), S 1 h (infected with S. uberis at MOI of 10 for 1 h), S 2 h (infected with

S. uberis at MOI of 10 for 2 h), S 4 h (infected with S. uberis at MOI of 10 for 4 h), S 8 h (infected with S. uberis at MOI of 10 for 8 h), ST 0.5 h (treated with 70 mmol·L−1

taurine for 4 h, then infected with S. uberis at MOI of 10 for 0.5 h), ST 1 h (treated with 70 mmol·L−1 taurine for 4 h, then infected with S. uberis at MOI of 10 for 1 h),

ST 2 h (treated with 70 mmol·L−1 taurine for 4 h, then infected with S. uberis at MOI of 10 for 2 h), ST 4 h (treated with 70 mmol·L−1 taurine for 4 h, then infected with

S. uberis at MOI of 10 for 4 h), ST 8 h (treated with 70 mmol·L−1 taurine for 4 h, then infected with S. uberis at MOI of 10 for 8 h). (B) NAGase activity in supernatant

was determined using commercial kits. (C,D) Representative immunoblots of total protein from MAC-T cells treated with 70 mmol·L−1 taurine for 4 h, or infected with

S. uberis in mid-exponential phase at MOI of 10 for 0.5, 1, 2, and 4 h or both. Quantification of the ratio between the indicated proteins, as determined by

densitometric scanning of immunoblots and normalization to GAPDH (n = 3). (E) NAGase and LDH activities in supernatant were determined using commercial kits.

(Continued)
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FIGURE 5 | MAC-T cells transfected with 20 nmol·L−1 siNC or siATG5 for 48 h were treated with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h, and

infected with S. uberis in mid-exponential phase at MOI of 10 for 4 h. (F) The concentrations of TNF-α, IL-1β, and IL-6 in supernatant were determined by ELISA.

MAC-T cells transfected with 20 nmol·L−1 siNC or siATG5 for 48 h then treated with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h, and then infected with

S. uberis in mid-exponential phase at MOI of 10 for 4 h. (G) The concentrations of TNF-α, IL-1β, and IL-6 in supernatant were determined by ELISA. MAC-T cells

incubated with 5 mmol·L−1 3-MA for 24 h were then treated with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h, and then infected with S. uberis in

mid-exponential phase at MOI of 10 for 4 h. Data are presented as mean ± SEM. *P < 0.05 (significantly different) between the indicated groups; #P < 0.05

(significantly different) between the corresponding negative control groups.

levels of LC3B-II, PTEN, PI3K, Akt, and mTOR, as well as the
phosphorylated levels of PTEN (p-PTEN), PI3K (p-PI3K), Akt
(p-Akt), and mTOR (p-mTOR) were determined by Western
blot (Figures 4D–G). Taurine significantly increases LC3B-II,
PTEN, and phosphorylated PTEN (p-PTEN). In contrast, there
were decreased levels of mTOR protein, phosphorylated Akt
(p-Akt), mTOR (p-mTOR), and its downstream effectors S6K
(p-S6K) and 4EBP1 (p-4EBP1) (P < 0.05). There was no
significant effect on PI3K (P > 0.05). Compared with the taurine
supplemented groups, pretreatment with VOTH prior to taurine
treatment significantly decreases LC3B-II and phosphorylated
PTEN (p-PTEN) and increases PTEN, PI3K, mTOR and
phosphorylated Akt (p-Akt), mTOR (p-mTOR), S6K (p-S6K),
and 4EBP1 (p-4EBP1) (P < 0.05). Thus, taurine increases PTEN
activity, inhibits Akt/mTOR signaling and activates autophagy in
MAC-T cells.

Taurine Activated Autophagy Alleviates
Inflammation and Damage Caused by
S. uberis Infection
To explore the effects of taurine on S. uberis infection, cells
pretreated with taurine were incubated with S. uberis for
different durations. As shown in Figure 5A, cells became
significantly round, shrunken, and detached after 4 and 8 h of
S. uberis infection. These changes were markedly decreased by
taurine pretreatment. NAGase (N-acetyl-β-D-glucosaminidase),
a marker enzyme used to determine the extent of damage to
MECs, was increased in cell culture supernatant 4 and 8 h post-
infection (P < 0.05; Figure 5B). Because the cellular damage was
well advanced following the 8 h challenge, S. uberis infection for
4 h was employed. Compared with control groups, taurine or
S. uberis infection increased LC3B-II and p62 (P < 0.05). Taurine
pretreatment prior to infection with S. uberis further improved
LC3B-II and decreased p62 (P < 0.05; Figures 5C,D). These data
demonstrate that taurine significantly alleviates damage caused
by S. uberis infection. This phenomenon may relate to activation
of autophagy by taurine in MAC-T cells.

S. uberis-infected MECs transfected with siRNA to silence
autophagy related protein 5 (ATG5), a key regulatory gene
for autophagy, or treated with Rapa (autophagy activator) or
taurine were infected by S. uberis. As shown in Figure 5E

and Supplementary Figures 3A,B, LDH (lactic dehydrogenase)
and NAGase, marker enzymes used to determine the extent of
damage to MECs, were increased in cell culture supernatant 4 h
post-challenge (p < 0.05). Both taurine and Rapa pretreatment
significantly decrease the activities of NAGase and LDH in
the S. uberis-challenged groups (P < 0.05). The activities of
NAGase and LDH in supernatant are higher in the siATG5 plus
S. uberis groups compared to the siNC plus S. uberis groups

(P < 0.05). Compared with the control groups, tumor necrosis
factor (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-
6) were also significantly increased in S. uberis groups, while
pretreatment with taurine or Rapa significantly decreased the
concentration of these cytokines (P < 0.05). Compared with
the siNC plus S. uberis groups, the concentration of TNF-α, IL-
1β, and IL-6 were higher in the siATG5 plus S. uberis groups.
Silencing ATG5 lessens the ability of taurine and Rapa to decrease
the concentration of these cytokines after S. uberis infection
(P < 0.05; Figure 5F and Supplementary Figures 3C–E). 3-
Methyladenine (3-MA) is an inhibitor of autophagy. 3-MA
treatment results in similar outcomes to those of siATG5
treatment (Figure 5G and Supplementary Figure 3F). These
data demonstrate that autophagy plays an important role in
S. uberis infection, suggesting taurine and Rapa alleviate S. uberis
inflammation and damage caused by autophagy.

The nuclear factor kappa B (NF-κB) family of transcription
factors plays an essential role in inflammation and innate
immunity (31, 32). To clarify the effect of autophagy on
NF-κB signaling, the protein expression and phosphorylation
status of NF-κB pathway members and autophagy related
proteins were determined by Western blot (Figures 6A–F
and Supplementary Figures 4A–D). MAC-T cells transfected
with siATG5 had significantly decreased ATG5 protein levels,
significantly decreased LC3B-II and decreased autophagy (P <

0.05). Compared with the control groups, S. uberis infection
significantly increases phosphorylated IKK (inhibitor of nuclear
factor kappa-B kinase) (p-IKK), IκB (inhibitor of nuclear
factor kappa-B kinase) (p-IκB), and NF-κB (p-NF-κB), while
pretreatment with taurine or Rapa significantly decreases the
phosphorylation of these proteins (P < 0.05). When autophagy
is inhibited by siATG5 prior to S. uberis infection, the levels of
phosphorylated IKK (p-IKK), IκB (p-IκB), and NF-κB (p-NF-
κB) were further increased, decreasing the ability of taurine or
Rapa to block phosphorylation of these proteins (P< 0.05). These
data further demonstrate that autophagy plays an important role
in S. uberis infection, and that taurine and Rapa inhibition of
the overactivation of inflammatory signaling caused by S. uberis
infection may relate to autophagy activation.

Taurine Accelerates the Degradation of
Intracellular S. uberis by Activating
Autophagy and Reducing the Intracellular
Bacterial Load
Autophagy is a homeostatic process that directly sequesters
cytoplasmic components for degradation. It functions as a
defense mechanism against invading intracellular pathogens
targeting both vacuolar and cytosolic pathogens (33). To
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FIGURE 6 | Taurine and Rapa both activate autophagy, which inhibits S. uberis-induced NF-κB activation. (A–F) Representative immunoblots of total protein from

MAC-T cells transfected with 20 nmol·L−1 siNC or siATG5 for 48 h prior to treatment with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h, and then infected

with S. uberis in mid-exponential phase at MOI of 10 for 0.5 h, 1 h, 2 h, and 4 h. Quantification of the ratio between total and phosphorylated (p–) proteins, as

determined by densitometric scanning of immunoblots and normalization to GAPDH (n = 3). Data are presented as mean ± SEM. *P < 0.05 (significantly different)

between the indicated groups; #P < 0.05 (significantly different) between the corresponding negative control groups.

determine whether degradation of intracellular S. uberis is
mediated by autophagy, we examined the intracellular bacterial
load. As shown in Figures 7A,B, the quantity of viable
bacteria was lower in the taurine or Rapa plus S. uberis
group compared with the S. uberis challenge only group
(P < 0.05). When pretreated with siATG5 or 3-MA to
inhibit autophagy prior to S. uberis challenge, viable bacteria
counts were higher compared to the S. uberis challenge only
groups. Blocking autophagy significantly decreases the ability

of taurine and Rapa to reduce intracellular bacterial load
(P < 0.05). Ultrastructural analysis shows that S. uberis are
viable in the S. uberis only groups, while pretreatment with
taurine or Rapa accelerates the degradation of intracellular
S. uberis as demonstrated by bacterial cell wall damage, blurred
structure, and partial degradation (Figure 7C). These results
further demonstrate that activating autophagy accelerates the
degradation of intracellular S. uberis and reduces intracellular
bacterial load.
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FIGURE 7 | Autophagy reduces intracellular bacteria. (A) Cells of each treatment group were lysed with sterile tri-distilled water after washing with PBS (100 µg·mL−1

gentamicin). Viable bacteria were enumerated as colony-forming units (CFU) on THB agar medium. MAC-T cells transfected with 20 nmol·L−1 siNC or siATG5 for 48 h

were then treated with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h, and then infected with S. uberis in mid-exponential phase at MOI of 10 for 4 h. (B)

MAC-T cells incubated with 5 mmol·L−1 3-MA for 24 h were then treated with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h, and then infected with

S. uberis in mid-exponential phase at MOI of 10 for 4 h. Viable bacteria were enumerated as colony-forming units (CFU) on THB agar medium. (C) S. uberis were

observed by electron microscopy. MAC-T cells treated with 70 mmol·L−1 taurine for 4 h or 100 nmol·L−1 Rapa for 2 h were then infected with S. uberis in

mid-exponential phase at MOI of 10 for 4 h. White arrows indicate S. uberis in MAC-T cells. Data are presented as mean ± SEM. *P < 0.05 (significantly different)

between the indicated groups; #P < 0.05 (significantly different) between the corresponding negative control groups.

DISCUSSION

Taurine is an important multifunctional amino acid reported
to effect autophagy. Bai et al. (34) demonstrated that taurine
protects against As2O3-induced autophagy in juvenile rat livers.
Li et al. (35) showed that taurine inhibits autophagy induced by

perfluorooctane sulfonates (PFOS) in PC12 cells. Other studies
have shown that taurine activates autophagy. Kaneko et al.
(36) demonstrated taurine activates autophagy in adipocytes.
Taurine transporter deficient mice (TauT KO) exhibit decreased
autophagic flux and impaired ATP-dependent 26S β5 proteasome
activity in cardiac cells (37). These discrepant results may
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arise from different experimental conditions and cell types. In
the current study, we show that taurine promotes LC3B-II,
Beclin 1, autophagosome formation, autophagic flux, and other
autophagy markers, demonstrating taurine activated autophagy
in MAC-T cells.

One of the well-known mechanisms for autophagy is the
mTOR pathway (38). mTOR is a serine/threonine protein kinase
that comprises mTORC1 and mTORC2. mTORC1 is a major
negative regulator of autophagy that inhibits this process by
phosphorylating ULK1 and ATG13. Phosphorylation of ULK1
by mTORC1 results in suppression of its catalytic activity, which
inhibits autophagy initiation (39). In a similarmanner, mTORC1-
dependent ATG13 phosphorylation negatively influences its
activity and translocation to autophagy initiation sites (39). In
the experiments described herein, we demonstrate that taurine
and Rapa increase LC3B-II, and decrease phosphorylation of
mTOR, ULK1, and ATG13. Thus, taurine activates autophagy in
an mTOR-dependent manner in MAC-T cells. These data are
consistent with previous studies. For example, Luo et al. (40)
found Rapa activated autophagy via the mTORC1/ULK1/ATG13
signaling pathway in mouse aortic smooth muscle cells.

mTOR activity is regulated by a variety of upstream
proteins. PTEN is a major negative regulator catalyzing PIP3
to PIP2 through its lipid phosphatase activity, inhibiting the
activity of Akt and mTOR (30). PTEN has many domains
with different functions; the C terminal domain contains a
PDZ domain and CK2 phosphorylation sites that play an
important role in regulating protein stability and phosphatase
activity (30). Phosphorylation of PTEN increases its stability
and inhibits its degradation or cleavage by the proteasome
and caspase 3. Patsoukis et al. (41) report that casein kinase
2 (CK2) phosphorylates the C-terminal domain at Ser370,
Ser380, Thr382, Thr383, and Ser385, increasing PTEN stability
and reducing its activity. Phosphorylation at different sites
of PTEN have different effects on its enzymatic activity.
Li et al. (42) showed that RhoA-associated kinase (ROCK)
phosphorylates the C2 domain at Ser229, Thr232, Thr319,
and Thr321, increasing PTEN activity. Al-Khouri et al. (43,
44) found the effects on PTEN stability and activity of C-
terminal domain phosphorylation at Ser385 by casein kinase
1 (CK1) or at Ser380, Thr382, Thr383, and Ser385 by liver
kinase B1 (LKB1) are unclear. In the study described herein,

FIGURE 8 | The mechanism of how taurine relieves S. uberis infection by activating autophagy. From the above results, we infer that taurine enters the cells through

transporters (TauT and PAT 1) to improve PTEN activity, promote the conversion of PIP3 to PIP2, and inhibit PI3K/Akt/mTOR signaling pathway, thereby attenuating

the phosphorylation of ULK1 and ATG13 by mTOR, promoting the formation of ULK1-ATG13-FIP200 complex, and activating autophagy of MAC-T cells. S. uberis is

recognized by both TLR2 and TLR4, internalizes into cells and may be ubiquitinated. Then, it is mediated by related receptor proteins into autophagosomes and fused

with lysosomes to form autolysates. Finally, S. uberis is degraded and eliminated by proteases and hydrolases, which attenuates the stimulation to cells and reduces

the activation of NF-κB, inhibits the secretion of inflammatory factors (such as TNF-α, IL-1β, and IL-6), and alleviates the excessive inflammatory response and

damage caused by S. uberis infection.
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we found that taurine promotes autophagy increased PTEN
protein and phosphorylation levels, and inhibits phosphorylation
of Akt and mTOR, that were decreased by inhibiting taurine-
transportation (siTauT, siPAT1). We conclude that taurine
regulation of Akt/mTOR signaling is related to its effect on PTEN
activity. When PTEN activity is inhibited by VOTH, the ability
of taurine to increase autophagosomes, catalyze PIP3 to PIP2,
and inhibit Akt and mTOR activity are diminished. Thus, we
infer that taurine promotes the activity of PTEN to negatively
regulate Akt/mTOR signaling and activate autophagy in MAC-
T cells. These results are consistent with previous studies. He
et al. (45) showed that taurine exhibits an apoptosis-inducing
effect on human nasopharyngeal carcinoma cells by promoting
PTEN activity inhibiting Akt signaling in vitro. Transcriptional
factor EB (TFEB) is a positive regulatory transcription factor
of autophagy that is phosphorylated by mTOR, which inhibits
its activity (46, 47). Kaneko et al. (36) suggested that taurine
enhances TFEB nuclear translocation through ERK1/2 to activate
autophagy. They reported that taurine inhibits mTOR activity,
whichmay also reduce the inhibitory effect on TFEB by inhibiting
mTOR activity and activating autophagy. In addition, It has been
previously reported that the gut microbiota converts taurine
to sulfide and hydrogen sulfide promotes autophagy through
the PI3K/Akt/mTOR signaling pathway (48, 49). These findings
support our results and indicate that taurine-induced autophagy
is related to PTEN/Akt/mTOR signaling in MAC-T cells.

Numerous studies have revealed that autophagy plays an
important role in infection, immunity, and clearing invasive
pathogens. Zhang et al. (50) found that baicalin alleviated
Mycobacterium tuberculosis-induced inflammation via inducing
autophagy in macrophages. In the current study, taurine
significantly alleviates MAC-T cell damage and morphological
changes caused by S. uberis infection. Pretreatment with
taurine prior to S. uberis infection further activates autophagy
compared with treatment with taurine or infection by S.
uberis alone. Thus, we postulate that autophagy may have an
important role in resisting S. uberis infection in MECs. To
test this, siATG5 or 3-MA were used to inhibit autophagy
in conjunction with Rapa or taurine to activate autophagy
prior to S. uberis infection. These experiments demonstrate
that inhibiting autophagy by siATG5 or 3-MA increases
NAGase activity, LDH pro-inflammatory cytokine production
and activation of NF-κB signaling in response to S. uberis
infection. These levels are reduced when activating autophagy
by Rapa or taurine. Inhibiting autophagy decreases the
ability of Rapa and taurine to alleviate the damage and
inflammation caused by S. uberis infection. We thus confirm
that autophagy plays a positive role in MAC-T cells infected
by S. uberis. Furthermore, activating autophagy by Rapa or
taurine accelerates the degradation of S. uberis, decreases
the number of viable intracellular bacteria and reduces the
stimulation of S. uberis on the immune system, which may
be an underlying mechanism for how taurine alleviates the
inflammation and damage caused by S. uberis. These data are
consistent with previous studies. Nozawa et al. (51) found that
Group A Streptococcus (GAS) was selectively sequestered within

GAS-containing autophagosome-like vacuoles (GcAVs) and was
killed upon the fusion of GcAVs with lysosomes. Tumbarello
et al. (52) demonstrated that Salmonella typhimurium becomes
ubiquitinated, which subsequently triggers the recruitment of
selective autophagy receptors, such as SQSTM1/p62, optineurin,
and NDP52, that targets bacteria and degrades them by
autophagy. Consistent with these data, autophagy has an
important role in alleviating the inflammation and damage
caused by S. uberis.

In summary, taurine inhibits mTOR signaling by activating
PTEN inducing autophagy that accelerates the degradation of
intracellular S. uberis decreasing intracellular bacterial load,
inhibits over-activation of inflammatory responses, and alleviates
the damage caused by S. uberis infection in MAC-T cells
(Figure 8). This study provides a theoretical basis for using
nutritional elements to regulate the body’s innate immunity and
improve the ability to clear S. uberis infection. Thus, it provides a
solid basis for the development of prophylactic strategies for this
important disease.
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