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Clopidogrel as a donor probe and thioenol
derivatives as flexible promoieties for enabling
H2S biomedicine
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Fatima Z. Alshbool4, Fadi T. Khasawneh4, Jiang Zhou 5, Dafang Zhong3 & Bin Geng2

Hydrogen sulfide has emerged as a critical endogenous signaling transmitter and a potentially

versatile therapeutic agent. The key challenges in this field include the lack of approved

hydrogen sulfide-releasing probes for in human exploration and the lack of controllable

hydrogen sulfide promoieties that can be flexibly installed for therapeutics development. Here

we report the identification of the widely used antithrombotic drug clopidogrel as a clinical

hydrogen sulfide donor. Clopidogrel is metabolized in patients to form a circulating meta-

bolite that contains a thioenol substructure, which is found to undergo spontaneous degra-

dation to release hydrogen sulfide. Model studies demonstrate that thioenol derivatives are a

class of controllable promoieties that can be conveniently installed on a minimal structure of

ketone with an α-hydrogen. These results can provide chemical tools for advancing hydrogen

sulfide biomedical research as well as developing hydrogen sulfide-releasing drugs.
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Known as a stinky and noxious gas, hydrogen sulfide (H2S)
has emerged as an important gasotransmitter that mediates
a myriad of physiological and pathological processes in

human bodies1–4. The chemical biology of H2S are conveyed by
three categories of reactions: (1) binding to the metal centers of
proteins, (2) modulation of free radicals, and (3) modification of
protein cysteines to persulfides4. Since the original discovery was
unveiled in 1996, great effort has been made to explore the
mechanisms of H2S regulation, yet many details remain unclear.
One major challenge is that the H2S homeostasis in the human
body is hard to alter for biomedical exploration. This is because
H2S is produced from the natural substrates L-cysteine or L-
homocysteine under a stringent enzymatic system5–8. Although
some plant-derived substances such as polysulfides in garlic have
been found to release H2S, dietary intake represents a limited
route for pharmacological intervention9–11 So far, all H2S-
donating agents have been examined only in preclinical or early
clinical studies, and in human exploration awaits the first donor
probe to be approved12–14.

The versatile roles of H2S in biological regulations have made it
a potentially potent therapeutic agent for treating many human
diseases15–17. This drug discovery direction has attracted
increasing attention in recent years, and H2S-releasing derivatives
of simple organic compounds or known drugs (i.e., vehicle
molecules) are under rapid development for augmenting the
intriguing H2S pharmacology under pathological states. In order
to manifest the therapeutic benefits and mitigate the potential
toxicities of H2S, an ideal donor needs to be activated in a
selective manner in response to certain stimuli for controlling the
gasotransmitter level under deleterious threshold, in a way similar
to the enzyme-mediated endogenous production5–8. Although
many synthetic donors have been reported, most of them
undergo spontaneous hydrolysis to release H2S in an uncontrol-
lable manner, which compromises their therapeutic potentials. In
recent years, H2S promoieties such as acylated N–S18–20 and S–S
derivatives21,22, caged-carbonyl sulfides23–28, and
iminothioethers29,30 have been reported, and they require more
specific bioactivation, e.g., thiol attack, for the H2S release.
However, the chemical complexity of these precursors limits their
versatility in assembly with different vehicle molecules. To
develop diversified H2S donors of controllable release, precursors
that can be selectively activated, conveniently synthesized and
flexibly installed on a wide spectrum of chemical scaffolds are
highly desired31.

Herein, we report our recent discovery of a hidden H2S-
releasing pathway in clopidogrel (CPG) bioactivation, which
establishes this widely used antithrombotic drug to be a H2S-
donating agent in clinic. Spawning from the H2S-releasing
thioenol substructure in CPG bioactivation, a strategy is for-
mulated to derivatize the thioenol tautomer of thioketone into

H2S promoieties, which can be assembled onto a minimal vehicle
structure of ketone with an α-hydrogen (enolizable ketone).
Model studies demonstrate that masked thioenols are a class of
H2S donors with high installation flexibility and bioactivation
selectivity.

Results
Identification of CPG as a clinical H2S donor. The discovery
stems from our recent bioactivation studies of CPG. Since being
launched in 1997, the prevalent CPG treatment has been asso-
ciated with unpredictable clinical outcomes including high
intersubject variability32,33. CPG is an antithrombotic prodrug,
and its thiophene moiety undergoes extensive metabolism
including cytochrome P450s (CYPs)-catalyzed oxidation and
paraoxonase-1 (PON-1)-catalyzed hydrolysis in patients’ liver to
form the thiol-containing active metabolite M13 (H3 and H4)
and its endo isomer M15 (Fig. 1)34–41. In clinic, upon oral
administration, plasma samples are treated with derivatization
reagent 3′-methoxyphenacyl bromide (MP-Br), and the three
circulating thiol metabolites, i.e., M13-H3, M13-H4 and M15, are
measured by LC-MS/MS as their stabilized phenacyl derivatives
(Fig. 1). Although H4, not H3, has demonstrated antiplatelet
activity in vitro34,36, its metabolic activation has shown only
partial correlation with the observed clinical outcomes, which
implicates that CPG might form additional active
metabolites40,42,43. On the other hand, although PON-1 was
found to be involved in M15 formation and has shown to be a
genetic determinant of CPG responsiveness in certain patient
populations44–46, M15 has been considered as an inactive circu-
lating metabolite. This remains a vigorously debated controversy
in CPG clinical pharmacology.

The obscure roles of these circulating CPG metabolites can be
attributable to the lack of synthetic standards for pharmacological
evaluations. In an effort of identifying additional active
metabolites of CPG to unravel its clinical puzzle, we have
chemically synthesized M15 in its disulfide form, M15-DS (Fig. 2).
The disulfide was prepared from a reflux reaction of synthetic M2
in methanol and toluene (1/4, v/v) at 100 °C followed by a
selective hydrolysis (Fig. 2)47. M2 is the stable bioactivation
intermediate and can be synthesized conveniently48. It has an α,β-
unsaturated thiolactone structure, in which the carbonyl func-
tional group is conjugated with a double bond and stabilized by a
S-atom. The thioester carbonyl group in M2 is not active for
nucleophilic attack until after a heat-promoted double-bond
isomerization takes place in the five-member ring (M2 to M2’).
This exo-to-endo migration not only cancels the double-bond
conjugation with the carbonyl group but also switches the S-atom
to a good leaving group in a thioenol form. Upon a nucleophilic
attack by MeOH, the thioenol (M15-OMe) formed from M2’ can
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quickly be oxidized by air to its disulfide form (M15-OMe-DS),
and 1H/13C/DEPT135 NMR studies have confirmed the endo
double-bond structure (Supplementary Fig. 1 and Supplementary
Fig. 5). Upon treatment with concentrated HCl at room
temperature, M15-OMe-DS undergoes selective methyl ester
hydrolysis to yield M15-DS (Fig. 2).

M15-DS was found to be stable, and can be quickly converted
to M15 in physiological buffer upon disulfide cleavage by
bioreductive agents such as tris(2-carboxyethyl)phosphine
(TCEP) (Fig. 3a). The formed M15 was trapped by MP-Br, and
this synthetic M15-MP was confirmed to be identical to its
clinical reference under LC-MS/MS studies (Fig. 1b and
Supplementary Fig. 2). In physiological buffer, upon reductive
release, M15 has been found to undergo spontaneous hydrolysis
to release H2S and form a desulfurized product M18 (Fig. 3c),
possibly through an equilibrium with the thioketone tautomer
followed by hydrolysis (Fig. 1a). The H2S released from M15 was
detected by traditional methylene blue method49, and the results
have demonstrated stoichiometric release of H2S (Fig. 3d). These
in vitro studies support that the major circulating metabolite of
CPG, M15, is a facile H2S donor. This H2S release pathway was
then tested in vivo in mice. Upon intraperitoneal administration
of M15-DS or CPG itself, the exogenous H2S released from the

dosages has been trapped by fluorescent probe Mito-HS and
imaged by laser-scanning confocal microscopy (Fig. 3e)50,51; the
H2S-released product of M15, M18, has been detected in the
corresponding mouse plasma samples by UPLC-MS/MS (Fig. 3f).
To test if H2S is released from M15 in human bodies, we
conducted studies on pooled plasma samples collected from six
healthy Chinese volunteers, 1 h after they took CPG (300 mg).
The collected plasma samples were treated with standard clinical
monitoring procedures including derivatization by MP-Br. Under
UPLC-MS/MS analyses, in addition to M15-MP, the desulfurized
metabolite M18, has also been detected (Fig. 4a, b). The ketone
substructure in M18 was found to undergo further bioreduction
to form a secondary alcohol metabolite, M18H, which is also a
major circulating metabolite detected in the human plasma
samples (Fig. 4a, c). The detected metabolites have shown to be
identical to the synthetic standards (Fig. 4 and Supplementary
Fig. 3). These human studies support that CPG is a clinical H2S
donor.

As a potent regulator in cardiovascular systems, H2S and its
donors have demonstrated various protective effects including
antithrombosis and vasodilation in vitro and in animal
studies52–56. Although M15 has long been detected as a
circulating metabolite, the chemical stabilization in clinical
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monitoring together with the lack of synthetic standard have
covered its H2S release pathway and therapeutic potentials. In
clinical monitoring, the stabilized M15 has been found to be at
similar level to the derivatized M13-H3 or M13-H4 despite of
spontaneous degradation and lower detection response under
target ion scan of m/z 504 to m/z 155 (the MS/MS of M15 is
dominated by m/z 212, which yields from a retro-Diels-Alder
fragmentation associated with the endo structure)36–40, the
pharmacokinetics of H2S released from M15 is expected to be
close to that of M13-H3 or M13-H4, which shows a Cmax of
20–40 nM with a Tmax of 1–2 h followed by an oral dose40–43.
Given the high potency of H2S and its low endogenous
concentration in human body (mostly in the nanomolar range)
4,12,57–59, the exogenous gasotransmitter released from CPG
might contribute to therapeutic effects complimentary to the
antiplatelet pathway of active metabolite M13-H4. Although the
clinical relevance of the M15–H2S pathway to CPG therapy
remains to be fully established and is beyond the focus of this
manuscript, the observation that PON-1, the enzyme that
catalyzes M15 formation (it might not be the only enzyme), is
a genetic determinant of CPG responsiveness in certain patient
populations44–46, suggests that this pathway might be clinically
important. The chemical standards of M15-DS, M15-MP, M18,
and M18H yielded from our organic synthesis research can aid

future clinical investigation on this topic. Identification of H2S as
the degradation product of M15 establishes CPG to be a
serendipitous H2S donor that has already been widely used in
clinic for over 20 years. In contrast, all rationally designed H2S
donors are under either preclinical or early clinical studies
seeking human use approval. Although it has been reported that
some sulfhydryl-containing substances, including clinical agent
zofenoprilat60, might serve as substrates alternative to L-cysteine
or L-homocysteine for the enzymatic production of H2S, to our
knowledge, CPG is the only one among approved drugs that
releases H2S in a way irrelevant to the stringent endogenous
pathways. Given that CPG has already been used in large
populations as an overall safe medication, it can serve as a clinical
donor probe for human studies of H2S signaling and regulation.
In addition, the 20-year clinical treatment of CPG has already
generated a large body of human data, which can be re-visited
towards this objective.

Model studies of masked thioenols as H2S donors. The pathway
of thiophene conversion to H2S via thiolactone and thioenol
intermediates in CPG metabolism represents an interesting
insight in organic chemistry, and can provide inspiration to
many research areas including developing alternative H2S-
donating agents. Proposed in Fig. 3a, the thioketone tautomer
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of thioenol metabolite M15 is a facile H2S precursor. Although
its close variations such as thioamide and thioxo thioester have
long been known to undergo spontaneous hydrolysis to release
H2S15–17, thioketones themselves have rarely been included as
H2S promoieties in recent scientific reviews and discussions.
Inspired by the thioenol chemistry discovered with M15, a
strategy was formulated to develop controllable H2S donors from
the minimal precursor thioketo through masking its thioenol
tautomer. For proof of concept, model studies were designed
and conducted.

As shown in Fig. 5a, model vehicle compound (1) for H2S
precursor assembly was designed as an aliphatic ketone fragment,
i.e., 2-butanthion-4-yl, fused on a typical pharmaceutical building
block, i.e., p-dimethylaminophenyl. The model ketone 1 was
conveniently prepared in two steps and then sulfurized by
Lawesson’s reagent to yield the corresponding thioketone 2. The
thioenol tautomer of the thioketone model compound was
derivatized by acetyl or benzoic anhydride to model donor 3 or 4,
respectively. In physiological buffer, both 3 and 4 have shown to
be stable (Supplementary Fig. 4). Upon addition of L-glutathione
(GSH), both 3 and 4 undergo deacylation to recover the thioenol
structure, which tautomerizes quickly to thioketone 2 and then
undergoes fast hydrolysis to recover the model vehicle compound
1 (Fig. 5b, c). In addition to GSH, model donors can also be
activated by L-cysteine (Cys) and possibly other nucleophiles

under physiological conditions. The H2S released from model
donor activation by thiols at physiological concentrations has
been detected in vitro by the methylene blue method (Fig. 5d) and
in mice by the fluorescent image probe Mito-HS (Fig. 5e). The
H2S-released metabolites have also been detected from the
corresponding mouse plasma samples (Fig. 5f, g). It is noteworthy
that model donor 3 and 4 have demonstrated different rates of
thiol activation, i.e., 3 > 4 (Fig. 5d), which supports that the acyl
moieties of the masked thioenol derivatives might provide
tunability to H2S release rate and thiol activation specificity.

The model studies demonstrate that the H2S promoieties of
masked thioenols can be conveniently installed on a mini-
mal vehicle structure of ketone with an α-hydrogen (enolizable
ketone), and the preparation sequence can be fully reversed upon
bioactivation, leading to triggered H2S release and vehicle
recovery, without generating much side products or additional
functionalities. Since this minimal structure of enolizable ketone
is widely present in clinical drugs or their metabolites (e.g.
donepezil), benign substances (e.g. curcumin) and intrinsic
biomolecules (e.g. testosterone), a large pool of vehicle structures
are available for developing diversified H2S donors. It is
interesting to note that in the CPG metabolism studies of human
subjects, upon H2S release from the thioenol metabolite M15, the
desulfurized ketone metabolite M18 is quickly reduced to a
secondary alcohol metabolite, M18H (Fig. 4a, c). This supports
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that in addition to the structure of ketone with an α-hydrogen, its
reductive form, secondary alcohol with a β-hydrogen, can also
serve as a minimal vehicle structure for conveniently installing
these H2S promoieties. Given that the structure of secondary
alcohol with a β-hydrogen is even more widely present in clinical
drugs or metabolites, benign substances and intrinsic biomole-
cules, the generality of this methodology can be significantly
expanded. Since the vehicle molecules themselves might have
well-established clinical therapeutic effects and can be fully
recovered concomitant to triggered H2S release, this chemical
strategy can be applied to develop co-drugs of synergistic
pharmacological pathways.

In vivo antithrombosis studies of clinical donor and model
donor. The therapeutic potentials of this class of masked thioenol
donors were confirmed by in vivo studies in a FeCl3 carotid artery
injury-induced thrombosis mouse model61,62. As shown in Fig. 6,
upon tail vein administration of 1 mg/kg, both clinical donor M15
(in its disulfide form of M15-DS) and model donor 4 were found
to significantly prolong the occlusion time of thrombosis, relative
to the negative control of saline, and did so in a manner com-
parable to the positive control of NaHS. These results support
that despite of different thioenol vehicle scaffolds in MD15-DS
and 4, H2S has been released from the exogenous donors in mice,
and the potent effects of H2S can effectively diminish thrombosis
formation and occlusion. The in vivo study result of M15-DS
suggests that the circulating CPG metabolite M15 in patients
might also be pharmacologically active through releasing the
antithrombotic gasotransmitter H2S. Uncovering this pharma-
cological pathway warrants future studies on calibrating the poor
clinical dose–response relationship of the CPG therapy and
designing personalized treatment. The observed in vivo efficacy of
the model donor will stimulate research in taking the flexible
promoiety of masked thioenols to a wide range of vehicle scaf-
folds for developing H2S-donating therapeutics.

Discussion
Thioenol represents an understudied organic structure of great
biomedical potential. In this study, two basic reactivities of
thioenols were demonstrated: reductivity (i.e., oxidation to dis-
ulfide) and nucleophilicity (i.e., acyl and phenacyl protection),
both of which stem from the sulfhydryl group. On the other hand,
the double-bond moiety endows a unique property of thioenol:

tautomerization to the H2S-releasing thioketone form. This tau-
tomerization appears to be fast with the model compound
structure but much slower with the CPG metabolite: upon release
in physiological buffer, thioenol form of the model compounds
(2’, Fig. 5a) was not detected by LC-MS/MS while M15 has shown
appreciable half-life. This might be due to intramolecular stabi-
lizing effects on the thioenol structure (e.g., hydrogen bond for-
mation with the carboxylic acid) in M15. The potential for
stabilizing thioenol substructure and slowing down its tauto-
merization to thioketone could provide another desired tunability
for enhancing the circulating half-life of the thioenol for slow and
sustainable H2S release.

In addition to addressing the two major challenges in H2S
biomedicine, the studies presented here can be extended to other
directions such as: (1) re-examining other S-containing clinical
agents for their potential H2S-releasing metabolic pathways, (2)
repurposing CPG or M15 derivatives as H2S-donating agents to
treat other diseases, and (3) developing the precursors of the
double-bond moiety of thioenol to incorporate additional
bioactivation specificity for targeted H2S delivery. Although full
discussion on these topics are beyond the scope of this manu-
script, future explorations of these directions can be envisioned to
further advance the biomedical research of H2S.

In conclusion, the discovery of the H2S-release pathway in
CPG metabolism not only sheds light on its clinical pharmacol-
ogy but also establishes it as a valuable clinical donor probe for
studying H2S biochemistry in human bodies. Inspired by this
pathway, model studies were conducted and demonstrated that
thioenol derivatives are a class of H2S promoieties that can be
conveniently installed on flexible vehicle molecules containing a
minimal structure of ketone with an α-hydrogen (enolizable
ketone) or its reductive counterpart, i.e., secondary alcohol with a
β-hydrogen. The controllable and tunable bioactivation of H2S
release and neat recovery of the vehicle molecule can pave the
avenue for developing versatile H2S-donating drugs to exploit the
therapeutic advantages of this important gasotransmitter. Sup-
ported by the human metabolism studies and the in vivo
antithrombosis studies in mice, the results reported here can
address the probe and donor challenges in H2S biomedicine,
and can channel a substantial advancement of the research in
this field.

Methods
Chemical synthesis. All commonly used chemicals were purchased from Sigma
Aldrich (Milwaukee, WI) or Fisher Scientific (Pittsburgh, PA) and used without
further purification. THF, acetonitrile, dichloromethane, and toluene were purified
on a PPT Glass Contour 800 L Solvent System (Nashua, NH). Methyl 2-chloro-D-
mandelate was purchased from TCI America (Portland, OR). Clopidogrel endo
metabolite MP derivative (M15-MP) reference was purchased from Toronto
Research Chemicals (Toronto, Ontario, Canada). Compound purification was
achieved by flash column chromatography (SiliaFlash P60 Silica 40–63 µm 60 Å,
Silicycle, Quebec City, Candada) or preparative thin-layer chromatography (Yin-
long HSGF254, Yantai, China) using ethyl acetate and hexanes, or on a semi-
preparative liquid chromatography (LC). The LC purification was performed on a
Perkin Elmer Series 200 system (Waltham, MA). Samples were injected through a
Rheodyne 7725i manual injector (Oak Harbor, WA) equipped with a 2 mL sample
loop. Chromatographic separation was achieved on a Phenomenex Gemini column
(100×21.20, 5.0 µm, Torrance, CA) at 25 °C using mobile phase of H2O (solvent A,
containing 0.1% formic acid) and MeOH (solvent B, containing 0.1% formic acid)
at a flow rate of 8.0 mL/min. The UV detector was set at 254 nm, and the LC eluate
was collected by a Gilson FC203B Fraction Collector (Middleton, WI). The com-
bined factions were concentrated on rotary evaporator before lyophilized on a
Labconco FreeZone 1 Liter Benchtop Freeze Dry System (Kansas City, MO).

1H NMR and 13C NMR spectra were obtained on an Avance III 400 NMR
(Bruker Daltonics, Billerica, MA) at 400 and 100MHz, respectively, at ambient
temperature. Chemical shifts were reported in parts per million (ppm) as
referenced to residual solvent. NMR spectra were processed using MestReNova
(V5.3.1, Escondido, CA). All observed protons are reported as parts per million
(ppm) downfield from tetramethylsilane (TMS) or other internal reference in the
appropriate solvent indicated. Data are reported as follows: chemical shift,
multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, br= broad,
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Fig. 6 In vivo antithrombosis studies. Both the clinical H2S donor and the
model H2S donor demonstrated inhibition to injury-induced thrombosis
occlusion in mice (data is displayed as mean ± S.E.M., n= 5)
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m=multiplet), number of protons, and coupling constants. High-resolution mass
spectral (HRMS) measurements were obtained on an Apex IV Fourier Transform
Ion Cyclotron Resonance mass spectrometer (FT-ICR-MS, Bruker Daltonics,
Billerica, MA) using a standard ESI source. The complete experimental details and
compound characterization data can be found in Supplementary Information
(Supplementary Fig. 1-14 and Supplementary Methods).

LC-MS studies. LC-MS/MS (low resolution) studies were conducted on a Thermo
Surveyor HPLC system tandem a Thermo LCQ ion trap mass spectrometer (Fisher
Scientific, Waltham, MA). Chromatographic separation was achieved on a Shimadzu
TestKit column (50×4.6mm, 5.0 µm, Columbia, MD) or an Agilent Zorbax C18
column (150×4.6mm, 5.0 µm, Santa Clara, CA) at 25 °C using mobile phase of H2O
(solvent A, containing 0.1% formic acid) and MeOH (solvent B, containing 0.1%
formic acid) at a flow rate of 1.0mL/min. The LC eluate was split, and 10% eluate was
injected into the mass spectrometer. MS analysis was conducted using a standard
electrospray ionization (ESI) source operating in positive ionization mode. Source
conditions were 4.5 kV spray voltage, 225 °C heated capillary temperature, 20 V
capillary voltage and sheath gas flow at 40 (arbitrary unit). The MS full scans were
monitored over a mass range of m/z 200 to 900. Product ion (MS/MS) scans were
generated via collision-induced dissociation (CID) with helium using normalized
collision energy of 60% and a precursor ion isolation width of
m/z 2.0. Data was centroid and processed in Qual Browser (Thermo Fisher Scientific).

UPLC-Q/TOF MS (high resolution) studies were conducted on an Acquity
UPLC system (Waters, Milford, MA) tandem a Triple TOF 5600+MS system
(AB Sciex, Concord, Ontario, Canada). Chromatographic separation was achieved
on an Acquity UPLC HSS T3 column (100×2.1 mm, 1.8 µm; Waters). The mobile
phase consisting of H2O (solvent A, containing 5 mM ammonium acetate and
0.05% formic acid) and acetonitrile (solvent B) was delivered at a flow rate of 0.45
mL/min according to the following gradient program: 5% B for 1 min, 5% to 65% B
over 14 min, 65% to 99% B over 1 min, 99% B for 1 min, 99% to 5% B over 1 min.
The temperatures of the column oven and the autosampler temperatures were set
at 45 °C and 4 °C, respectively. MS detection was conducted under positive ESI
mode at a range of m/z 100–1000. The key parameter settings include an ion spray
voltage of 5500 V, a declustering potential of 60 V, an ion source heater
temperature of 550 °C, a curtain gas pressure of 40 psi and ion source gas pressure
of 60 psi. The collision energy for the TOF MS scans was 10 eV. For product ion
scans, the collision energy was 35 eV with a spread of 10 eV. The acquisition of the
MS/MS spectra was facilitated by information-dependent acquisition (IDA)
including a real-time multiple mass defect filter.

In vitro assay of H2S release. Donor compounds (M15-DS, 3 and 4) at different
concentrations were incubated in capped flasks in the presence of corresponding
activation agents (TCEP 1mM for M15-DS; GSH 1 or 5mM or L-cysteine 100 μM for
3 and 4) at 37 °C. The total volume of each incubation is 1mL. Inside the capped
flasks were placed trapping wells containing 0.5mL of 1% zinc acetate as a trapping
solution and filter papers of 2.0×2.5 cm to increase the air/liquid contact surface. After
1 h, the trapping solution including the filter paper was taken out and treated by
standard procedures to convert the trapped H2S to methylene blue. The absorbance of
the resulting assay solution was measured at 670 nm on a Model 680 plate reader
(Bio-Rad, Hercules, CA) or a PowerWave HT plate reader (BioTek, Winooski, VT).
Standard curve of H2S detection was obtained with NaHS or Na2S49.

In vivo detection of H2S release and desulfurized metabolites in mice. Male
C57BL/6 mice of 8 weeks old were used in the present study. The care and use of all
animals used to generate data for this protocol was reviewed and approved by the
Peking University Institutional Animal Care and Use Committee. Animals were
housed in a temperature-controlled animal facility with a 12-h light/dark cycle,
with water and rodent chow provided ad libitum. On the day of experiment, the
animals were administered, utilizing intraperitoneal (IP) route, with saline (normal
control), 26.36 mg/kg aspirin (negative reference), 5.6 mg/kg NaHS (positive
reference), 13.18 mg/kg CPG (hydrogen sulfate salt, clinical donor), 13.18 mg/kg
M15-DS (clinical donor), and 13.18 mg/kg 3 (model donor) by lavage. After 30
min, the animals were anesthetized using isoflurane, and blood samples were
collected from angular artery. The animals were then sacrificed by cervical dis-
location, and frozen liver slice samples were prepared for imaging and detection of
H2S. Liver slices (8 μm) were incubated with H2S imaging probe Mito-HS at a
concentration of 10 μM for 1 h in dark before imaged on an A1R confocal laser-
scanning microscope (Nikon Instruments, Melville, NY) with an objective lens
(×60). LysoTracker Red and MitoTracker Red were used for staining lysosome and
mitochondria, respectively. Emission was collected at 500–550 nm (excited at 488
nm) for green channel. LysoTracker Red and MitoTracker Red were collected at
570–620 nm (excited at 561 nm)50,51. For detecting the desulfurized metabolites,
the drawn blood from each group of dour animals was pooled and centrifuged at
2000 × g for 5 min at 4 °C to prepare the plasma samples. For 320 µL of the pooled
plasma sample, 640 µL of acetonitrile was added. The mixture was vortexed for 1
min and centrifuged at 11,000 × g for 5 min. The supernatant was evaporated to
dryness and then reconstituted by 100 µL of acetonitrile and water (20:80, v/v). An
aliquot of 7 µL of the resulting solution was injected to UPLC-Q/TOF MS for
metabolite profiling and analysis.

In vivo antithrombosis studies in mice. Male C57BL/6 mice of 16 weeks old
were used in the present study. The care and use of all animals used to generate
data for this protocol was reviewed and approved by the Institutional Animal
Care and Use Committee at the University of Texas at El Paso. All animals were
housed in a temperature-controlled animal facility with a 12-h light/dark cycle,
with water and rodent chow provided ad libitum. On the day of experiment, the
animals were administered, utilizing intravenous (IV) tail vein route, with
vehicle (saline), 1 mg/kg M15-DS (clinical donor), 1 mg/kg 4 (model donor), or
1 mg/kg NaHS (positive reference), 1 h before the occlusion time was measured.
The baseline carotid artery blood flow of each animal was measured with
Transonic micro-flow probe (0.5 mm, Transonic Systems Inc., Ithaca, NY) after
the left carotid arteries were exposed and cleaned. Upon stabilization of blood
flow, ferric chloride (FeCl3, 7.5%) was applied to a filter paper disc of 1-mm
diameter, which was immediately placed on top of the artery. After 3 min, the
filter paper was removed, saline solution was placed in the wound, and the flow
of carotid artery blood was monitored for 45 min or until it holds at zero for 2
min (stable occlusion). For the purpose of statistical analysis, 15 min was con-
sidered as the occlusion cut-off time61,62.

Human plasma sample preparation. The human samples are obtained from a
phase I clinical study (CTR20150346, Centre for Drug Evaluation, China Food and
Drug Administration), which was approved by the Ethics Committee of Zhong-
shan Hospital affiliated to Fudan University (Shanghai, China). All volunteers have
provided written informed consent, and the study was performed according to the
principles of the Declaration of Helsinki and Good Clinical Practice. The human
plasma samples were collected from six healthy Chinese subjects at 1 h after a
single oral administration of 300 mg CPG. In this study, a 1.5 mL aliquot of each
blood sample was drawn into an EDTA tube pretreated with a 15 µL of 3’-meth-
oxyphenacyl bromide (MP-Br) solution (500 mM in acetonitrile) to immediately
derivatize the thiol metabolites of CPG. After standing at room temperature for
10 min, the plasma samples were separated by centrifugation for 5 min at 2000 × g
and stored at −70 °C. Equal volumes (50 µL) from the human plasma samples
collected from the six subjects were pooled. For 50 µL of the pooled plasma sample,
150 µL of acetonitrile was added. The mixture was vortexed for 1 min and cen-
trifuged at 11,000 × g for 5 min. The supernatant was evaporated to dryness and
then reconstituted by 100 µL of acetonitrile and water (20:80, v/v). An aliquot of 7
µL of the resulting solution was injected to UPLC-Q/TOF MS for metabolite
profiling and analysis.

Data availability
The authors declare that the data supporting the findings of this study are available
within the article and its Supplementary Information files, and all data are available from
the authors on reasonable request.
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