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Computational STAT3 activity 
inference reveals its roles 
in the pancreatic tumor 
microenvironment
Evelien Schaafsma1, Yiwei Yuan   1, Yanding Zhao1 & Chao Cheng2,3,4*

Transcription factor (TF) STAT3 contributes to pancreatic cancer progression through its regulatory 
roles in both tumor cells and the tumor microenvironment (TME). In this study, we performed a 
systematic analysis of all TFs in patient-derived gene expression datasets and confirmed STAT3 as a 
critical regulator in the pancreatic TME. Importantly, we developed a novel framework that is based on 
TF target gene expression to distinguish between environmental- and tumor-specific STAT3 activities in 
gene expression studies. Using this framework, our results novelly showed that compartment-specific 
STAT3 activities, but not STAT3 mRNA, have prognostications towards clinical values within pancreatic 
cancer datasets. In addition, high TME-derived STAT3 activity correlates with an immunosuppressive 
TME in pancreatic cancer, characterized by CD4 T cell and monocyte infiltration and high copy number 
variation burden. Where environmental-STAT3 seemed to play a dominant role at primary pancreatic 
sites, tumor-specific STAT3 seemed dominant at metastatic sites where its high activity persisted. In 
conclusion, by combining compartment-specific inference with other tumor characteristics, including 
copy number variation and immune-related gene expression, we demonstrate our method’s utility as a 
tool to generate novel hypotheses about TFs in tumor biology.

Pancreatic cancer accounts for 3.2% of new cases but 7.5% of cancer deaths in the United States according to the 
2019 Cancer statistics, estimated by the American Cancer Society1. The overall five-year survival rate of pancreatic 
cancer after diagnosis is approximately 9%, making it the cancer type with the worst prognosis1. Such a decimal 
survival rate is caused by many different factors, including a high proportion of late stage tumors at the time of 
diagnosis, poor resectability, and minimal durable response rates to conventional chemo- and/or radiotherapy2.

Recently, T-cell infiltration in the tumor environment has also been identified as a prognostic factor3–6. To 
therapeutically modify the immune milieu of cancer tissues, immune checkpoint blockade therapies have been 
used. Such therapies have experienced progress in the treatment of melanoma and lung cancer7–9, but have had 
lackluster success in treating pancreatic cancer7,10,11. This is likely due to the highly immunosuppressive environ-
ment of pancreatic cancer, which is characterized by extensive fibrosis and chronic inflammation12–14.

Several components that contribute to this immunosuppressive environment have been identified, including 
transcription factor (TF) STAT315. STAT3 is activated by a variety of extracellular stimuli, including interleukin 
(IL) −616, IL-10, and epidermal growth factor (EGF); it can also be activated by intracellular stimuli, such as SRC 
and ABL17. Its role in pancreatic cancer is complex due to the diversity of cells that express STAT3. For example, 
STAT3 activity inhibits the chemotaxis and activation of cytotoxic CD8 T cells in solid tumors18,19, mediates the 
differentiation of suppressive T regulatory (Treg) cells and enhances the expression of immune checkpoints CTLA-
420 and PD-L121,22. STAT3 is also active in and required for the presence of suppressive myeloid cells, including 
the prevalent myeloid-derived suppressor cell (MDSC) population23 and profibrotic M2 macrophages24,25. In 
addition, cancer-associated fibroblasts (CAFs) use STAT3 activity to secrete cytokines that recruit additional 
immune cells and promote STAT3 activity in other cell types in the TME26–28. In turn, STAT3 is also active in 
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tumor cells29,30. Importantly, STAT3 is required for the evolution of pancreatic neoplasia into pancreatic cancer in 
the presence of KRAS mutations31–33.

The aforementioned insights into the role of STAT3 in pancreatic cancer have mostly come from in vitro stud-
ies and animal models, which bear a resemblance to patient tumors but cannot fully recapitulate all pancreatic 
cancer features. In addition, the use of patient-based tissue arrays or immunohistochemistry often preclude the 
use of large sample sizes. Since TF expression generally does not correlate with activity34,35, the use of larger-scale 
patient-derived gene expression studies to investigate STAT3 has been limited. Models for TF activity inference 
from gene expression studies have been proposed36–39, but current models do not support a distinction between 
TME-derived and tumor-derived TF activity signals. Since STAT3 is active in several cell types in the TME as well 
as in tumor cells, being able to make a distinction between TME- and tumor-specific STAT3 activity is crucial. 
Therefore, we sought to develop a method that can distinguish between TF activities in the tumor and TME 
compartment to better characterize the multifaceted role of STAT3 in pancreatic cancer using a collection of gene 
expression datasets.

Our framework relies on the expression pattern of TF target genes to create compartment-specific TF pro-
files that can be used for TF activity inference. After validating STAT3 as a TME-expressed TF, we show that 
STAT3 activity is prognostic, whereas STAT3 mRNA is not. We also show that biological insights can be obtained 
utilizing TME- and tumor-specific STAT3 activity inferences. For example, environmental-STAT3 plays dom-
inant roles in establishing or maintaining an immunosuppressive TME and is associated with tumor intrinsic 
and extrinsic factors, such as immune infiltration and copy number variation (CNV) burden. In addition, while 
environmental-STAT3 is most influential at the primary site, tumor-derived STAT3 seems to be dominant at 
metastatic sites where its activity persists. Thus, using our approach, we can distinguish between tumor- and 
TME-specific TF activity to obtain more insights into the role of TFs in disease using gene expression datasets.

Results
Overview of this study.  In this study, we developed a novel method that infers compartment-specific 
TF activity in gene expression datasets. We first performed a systematic analysis to investigate the differential 
expression of all human TFs; our analysis included 1164 human TFs expressed in pancreatic cancer and con-
firmed STAT3 as one of the TFs being more highly expressed in the tumor microenvironment than in cancer 
cells (Fig. 1A). Given the fact that the  expression level of TFs might not accurately reflect their molecular func-
tions, we applied a computational method to infer the regulatory activity of STAT3 in a sample-specific manner. 
Specifically, we defined tumor- and environmental-specific STAT3 target genes identified from ChIP-seq exper-
iments, and then calculated compartment-specific STAT3 activities based on the relative expression levels of its 
target genes (Fig. 1B). Finally, we utilized the compartment-specific STAT3 activities to evaluate the role of STAT3 
in prognosis, immune infiltration, and metastasis in pancreatic cancer (Fig. 1C).

Systematic identification of TME-associated transcription factors.  We systematically investigated 
the expression patterns of TFs in pancreatic cancer - whether they were more specifically expressed in tumor cells 
or in microenvironmental non-tumor cells (Fig. 1A). Since no compartment-specific gene expression datasets 
are available, it is impossible to make direct comparisons. We thus applied indirect comparisons based on the 
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Figure 1.  Workflow of analysis. (A) Cartoon representing the heterogeneity of tumor samples. Biopsies from 
different patients are confounded by varying percentages of non-tumor cells, which affects gene expression 
measurements, whereas tumor cell lines represent pure tumor gene expression. Tumor-specific genes will 
correlate positively with purity and are lower expressed in tumor samples compared to cell lines. However, 
environment-specific genes are negatively correlated with purity and will be expressed higher in tumor samples. 
(B) Overview of the identification and generation of STAT3 signatures. STAT3 targets were identified from 
ChIP-seq data and genes were stratified into tumor- and environmental-specific based on their correlation 
with tumor purity. Tumor- and environmental-specific weight profiles were used to infer compartment-specific 
STAT3 activity in gene expression datasets. (C) The importance of T- and E-STAT3 activities were evaluated by 
survival analysis, immune infiltration, genomic characteristics, and the relationship with metastasis.

https://doi.org/10.1038/s41598-019-54791-x


3Scientific Reports |         (2019) 9:18257  | https://doi.org/10.1038/s41598-019-54791-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

correlation between TF expression levels and tumor purity across pancreatic cancer samples and compared this 
to pancreatic cancer cell lines, representing pure cancer cells. First, we calculated the correlation between tumor 
purity and the expression of all 1164 TFs expressed in the TCGA Pancreatic ductal adenocarcinoma (PAAD) 
dataset. TFs showing positive correlations with purity have higher expression levels in tumor cells and are thus 
tumor-specific, whereas TFs with negative correlations have higher expression levels in the microenvironment 
and we thus considered those as environmental-specific. We observed 5 TFs that were positively correlated with 
tumor purity, exhibiting a Spearman Correlation Coefficient (SCC) greater than 0.5. Meanwhile, 84 TFs were 
negatively correlated with pancreatic cancer purity, having a SCC less than −0.5 (Fig. 2A).

Second, we compared the expression of TFs between pancreatic tumor tissues and cell lines. Specifically, we 
compared the expression ranks of TFs in TCGA pancreatic cancer samples with their ranks in pancreatic cell 
lines using the Student’s t-test. Pancreatic tumor samples are mixed tissues with both tumor and non-tumor cells, 
whereas cancer cell lines contain merely tumor cells. As such, TFs with a high and low t-statistic (tumor samples 
versus cell lines) are TME- and tumor-specific, respectively. At the significance level of p < 0.001, we identified 
zero tumor-specific TFs and 35 TME-specific TFs (Fig. 2A). Combining these two analyses, the expression of 35 
TFs could be detected in the TME of pancreatic cancer (Suppl Table 4). In particular, STAT3 was identified as one 
of the TFs with higher expression levels in TME than in pancreatic cancer cells.

Systematic analysis confirmed the regulatory roles of STAT3 in the TME of pancreatic cancer. We fur-
ther evaluated STAT3 expression in tumor samples compared to normal pancreatic tissue and observed sig-
nificant up-regulation of STAT3 expression in pancreatic cancer (p = 2E-7, Fig. 2B), consistent with previous 
reports29–31,40. To corroborate the negative correlation between STAT3 expression and tumor purity observed 
in the TCGA dataset (Fig. S1A), we further examined three additional datasets and observed identical negative 
trends (Figs. 2C,D and S1B). Lastly, we observed that STAT3 target genes were more highly expressed in primary 
pancreatic cancer tissue, compared to pancreatic cancer cell lines (Fig. 2E). This indicated that STAT3 activity, 
rather than just STAT3 mRNA, might be altered in the TME of pancreatic cancer. Nevertheless, the difference 
between STAT3 target gene expression between pancreatic tumor tissue and cell lines was not substantial, which 
suggests that some targets might be mainly regulated by STAT3 in tumor cells, while others are mainly regulated 
in non-tumor cells. This motivated us to further distinguish the regulatory activity of STAT3 in the tumor and 
TME compartment.

Figure 2.  TME STAT3 expression can be detected in pancreatic cancer gene expression studies. (A) T-score 
(tumor vs. cell line) vs. tumor purity correlation (Spearman) for all 1164 TFs expressed in the TCGA PAAD 
dataset. Red TF indicates STAT3. (B) Box plot depicting STAT3 expression in normal pancreatic (N) and 
pancreatic cancer (T) tissue in the GSE15471 dataset. STAT3 expression vs. tumor purity in (C) the GSE28735 
dataset and (D) the GSE15471 dataset. (E) Box plot of ranked expression of STAT3 targets in pancreatic cancer 
tissue (T) and pancreatic cancer cell lines. (C) All p-values were calculated using a two-tailed Wilcoxon test. All 
correlation coefficients represent the Spearman Correlation Coefficient (SCC).
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Inferring tumor- and environment-specific STAT3 activity.  To more precisely characterize the reg-
ulatory roles of STAT3 in tumor and TME cells, we devised a method to infer compartment-specific STAT3 
activity, since previous studies have shown that the regulatory activities of TFs, rather than their mRNA expres-
sion levels, more correctly reflect their functions41. We extended a previously established algorithm that infers 
TF activity from high-confidence TF target genes42. To this end, we identified a total of 386 STAT3 target genes 
that were significantly bound by STAT3 (p < 1E-5) according to STAT3 ChIP-seq data (Fig. 3A). Based on their 
correlation with tumor purity, we divided these targets into a tumor-specific (121 positively correlated genes) 
and an environmental-specific (171 negatively correlated genes) target gene set, and 94 non-specific target genes 
(Fig. 3B). Since the STAT family shares a number of target genes, we confirmed that the identified set of STAT3 
target genes was almost exclusively specific to STAT3, although some overlap existed between STAT1 and STAT3 
in the environmental-specific genes (Fig. S2A). Gene Set Enrichment Analysis (GSEA) of STAT3 target genes 
showed that tumor-specific genes were enriched in DNA replication and RNA transcription, showing enrich-
ment in for example “packaging of telomers”, “meiotic synapsis” and “RNA pol I promoter opening” (Fig. S2B, 
Supp Table 5). Environmental-specific genes seemed enriched for immune genes and showed enrichments 

Figure 3.  Tumor- and TME-specific STAT3 activities can be inferred by distinct profiles. (A) Defining tumor- 
and environment-specific STAT3 targets by combining ChIP-seq data and correlation of genes with tumor 
purity. Horizontal dotted line indicates binding affinities smaller than p < 5E-10. (B) Venn diagram of STAT3 
target genes positively (red) and negatively (blue) correlated with tumor purity. G-STAT3 targets encompass 
all genes in the Venn diagram. (C) G-STAT3 activity vs. tumor purity (SCC = 0.004, P > 0.05). (D) T-STAT3 
activity vs. tumor purity (SCC = −0.26, P = 5E-4). (E) E-STAT3 activity vs. tumor purity (SCC = 0.08, P > 0.05). 
Box plots comparing normal pancreatic (N) and pancreatic tumor (T) tissue in the GSE15471 dataset using  
(F) G-STAT3 activity, (G) T-STAT3 activity, and (H) E-STAT3 activity (two-sided Wilcoxon test).
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in “TNF targets”, “IFN gamma response” and “FOXP3 targets” (Fig. S2C, Supp Table 5). We then used these 
compartment-specific target gene sets to infer the activity of tumor-specific (T-STAT3), environment-specific 
(E-STAT3), and general (G-STAT3) STAT3 activities in a sample-specific manner utilizing the BASE algorithm36. 
During this calculation, we adjusted STAT3 activity inference scores for tumor purity (see methods). The logic 
behind this adjustment is that a tumor with high tumor purity does not necessarily have to display high T-STAT3 
activity. Without a purity adjustment, this patient would likely receive a high T-STAT3 score just because of high 
purity, not because of high T-STAT3 activity. Thus, each sample received three scores based on the expression of 
selected STAT3 target genes.

To show that the inferred compartment-specific STAT3 scores indeed reflected regulatory activities in tumor 
cells or the TME, rather than capturing tumor purity, we examined their correlation with tumor purity. As shown, 
correlating the inferred STAT3 activities with tumor purity revealed that STAT3 activity inferences did not reflect 
tumor purity. On the contrary, although G-STAT3 activity had no correlation with purity (SCC = 0.004, p > 0.05, 
Fig. 3C), T-STAT3 seemed to be negatively correlated with tumor purity (SCC = −0.26, p = 5E-4, Fig. 3D), 
whereas E-STAT3 did not show a significant correlation (SCC = 0.08, P > 0.05, Fig. 3E). To further validate our 
STAT3 inferences, we compared normal pancreatic to pancreatic tumor tissue, expecting that only tumor tissue 
should show high STAT3 activities. Indeed, we were able to distinguish between normal pancreatic and pancre-
atic tumor tissue using G-STAT3 activity (Fig. 3F) but were able to more specifically infer STAT3 activity using 
T- and E-STAT3 (Fig. 3G,H). Assuredly, T-STAT3 activity was not detected in normal pancreatic tissue, whereas 
tumor tissue, as expected, showed high activity levels (P = 1E-14, Fig. 3G). These findings were also confirmed 
in an independent dataset (Fig. S2D–F). Thus, these results indicated that we can distinguish between tumor and 
environmental STAT3 activities using our novel approach.

Activity but not expression of STAT3 is associated with patient survival.  After being able to dif-
ferentiate between tumor- and TME-specific STAT3 activity, we next evaluated if this distinction has prognostic 
relevance. Previous studies have shown that elevated STAT3 activity is correlated with poor prognosis in pan-
creatic cancer29,43. By stratifying samples into STAT3 activity-high (STAT3 activity score > 0) and -low (STAT3 
activity score < 0) groups, we indeed confirmed that high STAT3 activities conferred poor prognosis, irrespective 
of tumor compartment (Fig. 4A–C). However, no distinction in survival probability was observed using STAT3 
mRNA as an indicator of survival (p > 0.05, log-rank test) (Fig. 4D). These results were confirmed in independent 
datasets (Fig. S3). As pancreatic cancer survival is associated with other attributable risk factors, such as stage, age 
and gender44, we evaluated the prognostic efficacy of STAT3 compared to the prognostic value of these clinical 
variables. T- and E-STAT3 were the only factors significantly associated with prognosis (Fig. 4E). T-STAT3 was 
the most significant prognostic factor and conveyed a hazard ratio of 1.9 (p = 0.01, multivariate Cox regression).

Figure 4.  STAT3 activities are prognostic in pancreatic cancer. Kaplan-Meier plot depicting the survival 
probability over time for samples with high (red) and low (blue) STAT3 activity, (A) G-STAT3 activity, (B) 
T-STAT3 activity, (C) E-STAT3 activity. (D) Kaplan-Meier plot depicting the survival probability over time for 
samples with high (red) and low (blue) STAT3 expression. (E) Forest plots showing the hazard ratios of STAT3 
activities and clinical variables. (F) Distribution of T- and E-STAT3 scores. (G) Kaplan-Meier plot comparing 
survival probabilities of T-STAT3-Hi/E-STAT3-Hi (n = 47, T-STAT3-Hi/E-STAT3-Lo (n = 28), T-STAT3-Lo/E-
STAT3-Hi (n = 25), and T-STAT3-Lo/E-STAT3-Lo (n = 42). All figures are based on the TCGA PAAD dataset.
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We next evaluated if the combination of T- and E-STAT3 activities added prognostic value compared 
to single STAT3 activities. The distribution of T- and E-STAT3 scores was fairly equal in the TCGA dataset 
(Fig. 4F), which provided us with enough power to reliably compare the survival probabilities of four groups: 
T-STAT3-Hi/E-STAT3-Hi (n = 47, T-STAT3-Hi/E-STAT3-Lo (n = 28), T-STAT3-Lo/E-STAT3-Hi (n = 25), and 
T-STAT3-Lo/E-STAT3-Lo (n = 42). We found that the combination of high T-and E-STAT3 activities was asso-
ciated with poor survival, whereas the combination of low T- and E-STAT3 activities conferred the best survival 
(Fig. 4G) (p = 1E-3), which was also confirmed in independent datasets (Fig. S4). Thus, these results indicated 
that combination of compartment-specific STAT3 activities can serve as prognostic marker in pancreatic cancer.

E-STAT3 activity is associated with a specific TME composition.  Based on the previously recognized 
coordination between STAT3 activity in cells of the TME and tumor cells, we were curious if we could assess this 
interaction with our compartment-specific framework. To investigate this, we first we attempted to uncover the 
source of E-STAT3 activity. Since STAT3 can be active in CAFs26–28 and in immune cells15, we assessed whether 
E-STAT3 signals were more associated with the stromal compartment or the immune compartment. We inferred 
the levels of immune and stromal involvement using the ESTIMATE algorithm45 and then used conditional cor-
relations to assess if E-STAT3 activity was more associated with the stromal or the immune compartment. We 
consistently observed that E-STAT3 was positively correlated with immune scores when adjusted for by stro-
mal scores (GSE15471: SCC = 0.59, p = 9E-5; GSE28735: SCC = 0.40, p = 0.007; TCGA: SCC = 0.15, p = 0.04), 
whereas stromal scores were negatively correlated with E-STAT3 when adjusted for by immune scores (ICGC: 
SCC = −0.34, p = 8E-9; GSE57492: SCC = −0.42, p = 0.007; GSE15471: SCC = −0.48,: p = 0.026; GSE28735: 
SCC = −0.32, p = 0.03; TCGA: SCC = −0.20, p = 0.007). This indicated that E-STAT3 activity likely originated 
from tumor-infiltrating immune cells.

To further elucidate which immune cells are associated with E-STAT3 activity, we examined the correlation 
between immune infiltration and STAT3 activity (Fig. 5A). Specifically, we applied a computational method 
to calculate the infiltration level of six immune cell subtypes in pancreatic tumor samples46. We found that T- 
and E-STAT3 activity were both most strongly associated with the monocyte profile (T-STAT3: SCC = 0.50, 
P < 2E-16; E-STAT3: SCC = 0.48, P = 2E-11), whereas E-STAT3 activity was also positively correlated with CD4 
T cells (SCC = 0.37, P = 4E-7) and negatively correlated with naïve B cells (SCC = −0.30, p = 7E-5) (Fig. 5A). 
Since a variety of CD4 T cell subtypes exists, we investigated if we could further narrow down which CD4 T cell 
subset was associated with E-STAT3. Using CD4 T cell marker genes from a previous publication47, we found that 
both activated CD4 T cells and Th2-polarized CD4 T cells were the only significantly associated CD4 subtypes 
across independent datasets (Fig. S4E,F). Thus, this indicated a relation between T- and E-STAT3 activities with 
monocyte infiltration, but only an association with other immune cells and E-STAT3 activity.

To investigate these relations in more detail, we stratified samples into the aforementioned STAT3 groups 
(T-STAT3-Hi/E-STAT3-Hi, T-STAT3-Hi/E-STAT3-Lo, T-STAT3-Lo/E-STAT3-Hi, and T-STAT3-Lo/ 
E-STAT3-Lo). Three consistent patterns were observed across pancreatic cancer datasets. First, a T-STAT3-dominant  
pattern was observed for monocyte infiltration, where monocytes were enriched in T-STAT3 high samples, irre-
spective of E-STAT3 activity (Figs. 5B and S5A). Second, we observed an E-STAT3-dominant pattern in which 
CD4 T cells were high in E-STAT3 high samples, irrespective of T-STAT3 (Figs. 5B and S5A,B). Lastly, naïve B 
cells, CD8 T cells, and NK cells were enriched in E-STAT3 low samples, irrespective of T-STAT3 activity (Figs. 5B 
and S5A,B). The reproducibility of these patterns across datasets suggests that this was not a dataset-specific 
observation, but a generalizable pancreatic cancer characteristic. In addition, two of the patterns seemed to be 
dominated by E-STAT3, indicating a dominant role for E-STAT3 in initiating or maintaining an exclusive TME, 
in which the presence of high E-STAT3 precludes the presence of anti-tumor immune cells, such as CD8 T and 
NK cells.

We next evaluated whether tumor intrinsic characteristics were associated with T- and/or E-STAT3 activity. 
Previously, several studies have defined pancreatic cancer subtypes48,49. We thus evaluated if T-and E-STAT3 
scores were associated with any of the identified subtypes. T-STAT3 activity was highly enriched in the squa-
mous subtype reported by Bailey et al.48 and in the quasi-mesenchymal subtype reported by Collisson et al.49 
(Fig. S6A). E-STAT3 was decreased in the ADEX subtype reported by Bailey et al.48 and exocrine subtype reported 
by Collisson et al.49 (Fig. S6A). Next, tumor mutation burden did not differ between STAT3 groups (data not 
shown), an E-STAT3-dominant pattern was again observed for CNV burden and homologous recombination 
(HR) deficiency, which were significantly elevated in E-STAT3 high samples, irrespective of T-STAT3 activity 
(Fig. 5C). CNV burden is known to be correlated with immune evasion, where high CNV burden is predictive of 
higher levels of immune evasion50, which is in line with our findings of lower CD8 T, and NK cells in high CNV 
burden groups. In addition, proliferation scores were highest in T-and E-STAT3 high samples (Fig. 5C), implying 
that the coordination between T- and E-STAT3 provides some growth advantages to tumor cells compared to 
other STAT3 groups. In conclusion, these results show that E-STAT3 is associated with intrinsic and extrinsic 
tumor characteristics in pancreatic cancer.

Differential STAT3 activity between primary and metastatic pancreatic cancer.  Several reports 
have indicated a role for STAT3 in promoting metastasis and invasion29–31,40,51. Additionally, since most pancreatic 
cancer patients are identified at an advanced stage, we were interested in the role of STAT3 during metastasis. We 
obtained a dataset that included gene expression data from pancreatic cancer lesions at several metastatic sites52. 
Similar to our earlier findings, STAT3 expression was inversely correlated with tumor purity at the primary site 
(Fig. S6B) and was also negatively correlated at metastatic lesions from liver, whereas it was trending to be signif-
icant in lung and lymph node (Fig. S6C–E). This suggested to us that TME-specific STAT3 activity might play a 
role at metastatic sites as well.
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To follow up, we inferred G-, T-, and E-STAT3 activity in samples of liver, lymph node, and lung metastases. 
Compared to corresponding normal tissue, G-STAT3 activity was again significantly increased at the primary 
pancreatic cancer site, but also in liver metastases (Fig. 6A). However, the deconvolution of G-STAT3 into T- and 
E-STAT3 activities revealed that only T-STAT3 activity, but not E-STAT3 activity, was significantly increased 
in metastatic liver tissue and also in lymph node metastases (Fig. 6B). Metastatic lung tissue seemed to be an 
exception, since no difference in T-STAT3 activity was observed between normal and tumor tissue. A potential 
explanation is the relatively high basal STAT3 expression level in normal lung tissue compared to other tissues 
(Fig. S7). None of the metastatic sites showed a significant difference between E-STAT3 activity in normal and 
tumor tissue (Fig. 6C), indicating that E-STAT3 might not be essential at metastatic lesions. However, these 
results indicated that T-STAT3 seemed to play a major role in pancreatic cancer metastasis as two out of three 
metastatic sites showed an increase in T-STAT3 activity compared to normal tissue.

Discussion
STAT3 contributes in several ways to the distinctive immunosuppressive pancreatic TME through its activity 
in several cell types, including immune and tumors cells. In this study, we developed a framework to assess 
STAT3 activity in the TME and tumor cell compartment. We found that STAT3 activities have prognostic fea-
tures, high T- or E-STAT3 activity conferring poor prognosis, but STAT3 mRNA does not. We also observed 
different requirements for STAT3 in the primary tumor and at metastatic sites, E-STAT3 being more dominant 
in pancreatic lesions and T-STAT3 seeming to be more important at metastatic lesion. Collectively, we show that 

Figure 5.  E-STAT3 activity is associated with a specific TME composition. (A) SCC of STAT3 activity and 
immune infiltration scores in TCGA. (B) Boxplots showing the infiltration of several immune cell types in four 
STAT3 groups in the GSE57495 dataset (two-sided Wilcoxon test). (C) Boxplots showing HR deficiency, CNV 
burden and proliferation scores in four STAT3 groups in TCGA, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 1E-3 (two-sided 
Wilcoxon test).
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our framework can be utilized to obtain biological insights and that the distinction between E- and T-STAT3 is 
crucial when investigating STAT3 in pancreatic cancer.

We identified four STAT3 groups (T-STAT3-high/E-STAT3-high, T-STAT3-high/E-STAT3-low, 
T-STAT3-low/E-STAT3-high, and T-STAT3low/E-STAT3-low) with distinct tumor characteristics. By assessing 
intrinsic and extrinsic tumor characteristics of these groups, we observed three STAT3 patterns: a T-STAT3 dom-
inant pattern, a E-STAT3 dominant pattern, and an E-STAT3 depleted pattern. Whereas the T-STAT3 dominant 
pattern was only associated with high monocyte infiltration, the E-STAT3 dominant pattern was characterized by 
high CD4 T cell infiltration, high CNV burden, and high HR deficiency burden. The E-STAT3-depleted pattern 
was associated with elevated B, CD8 T, and NK cell infiltration. Since these patterns were observed across data-
sets, this suggests a general pancreatic cancer characteristic which could be utilized to identify high-risk patients, 
i.e. patients with high T- and E-STAT3 activities.

T-STAT3-high/E-STAT3-high samples had worst prognosis and the highest proliferation scores. It is likely 
that the combination of high E- and T-STAT3 activities confers tumor growth advantages compared to other 
STAT3 groups. This group seemed to have an immunosuppressive environment, characterized by the infiltration 
of monocytes and CD4 T cells, absense of cytotoxic immune cells, and relatively high CNV burden. Intriguingly, 
a macrophage–tumor cell feedback mechanism has been described in ovarian cancer, in which STAT3 activity in 
either macrophages or tumor cells can activate STAT3 activity in the other cell type24. A similar mechanism might 
be present in a subset of pancreatic cancer patients with high T- and E-STAT3 activities. Although this hypothesis 
might not be sufficient to explain the extremely poor prognosis in this group of patients, it does point to a specific 
tumor composition in which T- and E-STAT3 are coordinated to provide tumor cells with a proliferation advan-
tage compared to patients that do not display high T- and E-STAT3 activity.

The origin of E-STAT3 activity cannot be determined exactly, but we hypothesize that a combination of CD4 
T cells, specifically Th2-polarized CD4 T cells, and myeloid cells contributes to the E-STAT3 signal. First, CD4 
T cells and monocytes are most highly correlated with E-STAT3 activity. Second, Th2 cells and myeloid cells are 
abundant in the pancreatic TME in certain patients14,53–55. Lastly, both Th2 cells and myeloid cells have been 
shown to propagate pancreatic cancer growth. Myeloid cells are immunosuppressive and secrete cytokines that 
prevent the activation of tumor-eliminating immune cells53,56, which is consistent with our observations of low 
CD8 T and NK cell infiltration in E-STAT3 high samples, but not in E-STAT3 low samples. Although CD4 Th2 
cells are commonly involved in parasitic responses and allergy, their role in pancreatic cancer seems to be the 
exacerbation of fibrosis and prevention of collagen clearance54,55. However, experimental validation is necessary 
to confirm E-STAT3 activity in these cell types.

A better understanding of STAT3 activities is essential in identifying new therapeutic avenues. Due to the 
previous notion that STAT3 is aberrantly activated in tumor-infiltrating immune cells, STAT3 pathway inhibition 
has been suggested in immunotherapy combinations57. Co-targeting IL-6, which is major factor in activating 
STAT3, and PD-L1 was shown to inhibit growth in a murine model of pancreatic cancer58. Identifying which 
immune cells are major contributors to STAT3 activity might identify additional drugs that inhibit these cell 
types. In addition, clinical trials have recently been initiated to test the efficacy of STAT3 pathway inhibitors in 
pancreatic cancer (Clinical Trial Identifiers NCT02767557, NCT02983578). Although no preliminary results are 
available yet, inhibitors of IL-6 and the IL-6 receptor have been proven to be effective in preclinical models of 
KRAS-driven pancreatic cancer59. Thus, further stratifying the involvement of TFs in pancreatic cancer might 
reveal new treatment strategies.

Although we believe that our results add valuable insights into the role STAT3 in pancreatic cancer, we note 
a few limitations present in this study. First, our framework of TF inference relies on TF target genes, which 
indicates that if two TFs share a large number of common targets, the inferred TF activities will be correlated. 
The family of STAT TFs has a number of shared target genes and we cannot exclude the possibility that some 

Figure 6.  T-STAT3 activity persists, but E-STAT3 activity is unaltered at metastatic sites. (A) G-STAT3, (B) 
T-STAT3, (C) and E-STAT3 activities in primary pancreatic, metastatic liver, metastatic lymph node, and 
metastatic lung lesions (T) and corresponding normal (N) tissue. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 1E-3 (two-sided 
Wilcoxon test).
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of these shared target genes might have affected STAT3 activity by being transcribed by another STAT TF. 
Second, our STAT3 target profiles are in part based on pancreatic cancer cell lines, which might not fully reflect 
pancreatic cancer cells within a tumor environment. Third, even though we have narrowed down tumor and 
environment-specific genes using a tumor purity, we cannot exclude the possibility that genes specific to the 
tumor are expressed in the TME and vice versa.

In conclusion, we have shown that we can distinguish between tumor and environmental STAT3 activity in 
gene expression studies and that this distinction leads to biological and clinical insights. Our analysis provides a 
framework by which to study tumor- and TME-specific TF activity levels and can be expanded to other TFs and 
cancer types.

Materials and Methods
Pancreatic cancer datasets.  RNAseq data for Pancreatic Ductal Adenocarcinoma (PAAD), generated by 
The Cancer Genome Atlas (TCGA) were downloaded though FireBrowse in June 2015 (level 3, RNAseqV2). 
Absolute expression values were log10 transformed. A number of samples was excluded based on previous 
reports indicating that some samples do not represent pancreatic cancer60,61, resulting in the inclusion of 150 
patient samples (see Suppl Table 1 for exclusion criteria). HR deficiency and proliferation scores were down-
loaded as a supplemental file from prior work62. Five independent pancreatic cancer datasets were used in this 
study. Four pancreatic cancer microarray datasets were obtained from Gene Expression Omnibus (GEO) under 
accession numbers GSE1547163, GSE5749564, GSE7172952, GSE2873565. These datasets were provided as nor-
malized expression at the probeset level, in which some genes might be represented by multiple probesets. We 
converted probeset expression into gene expression values. Specifically, for one-channel arrays, we selected the 
probeset with the highest hybridization intensity across all samples to represent gene expression. For two-channel 
arrays, the average expression values of all probesets were calculated to represent gene expression. Datasets from 
one-channel arrays were further median normalized for each gene to transform intensities into relative expression 
values. The last RNAseq pancreatic cancer dataset was obtained from the ICGC project at ww.dcc.icgc.org and 
only primary tumor specimens classified as pancreatic ductal carcinoma were included (Suppl Table 1).

Forty-four pancreatic cancer cell lines were used to compare tumor gene expression to primary pancreatic 
cancer gene expression (Suppl Table 2). Cell line datasets were obtained from the Broad Institute Cancer Cell Line 
Encyclopedia (CCLE).

STAT3 activity profile generation.  First, we defined STAT3 consensus target genes based on ChIP-sep 
data from the Encyclopedia of DNA Elements (ENCODE) project by using a computational method called Target 
Identification from Profiles (TIP)42. This algorithm calculates p-values that indicate the binding probability of 
genes by STAT3, smaller p-values indicating higher probability of binding. We used log-transformed p-values 
to represent STAT3-target gene binding affinities. A total of 386 high-affinity STAT3 target genes were identified 
above an affinity threshold of 0.5 (i.e., p < 10E-5). Second, we divided these targets into a tumor-specific and 
an environmental-specific target gene set, based on their positive and negative correlation with pancreatic can-
cer tumor purity, respectively. This resulted in 121 tumor- and 171 environmental-specific genes and 94 genes 
that did not show compartment-specificity. Third, three STAT3 profiles were created based on these groups; 
general-STAT3 (G-STAT3) containing all 386 STAT3 target genes, tumor STAT3 (T-STAT3) containing 121 genes, 
and environmental STAT3 (E-STAT3) containing 171 genes (Suppl Table 3). Target genes for STAT1, STAT2 and 
STAT5a were calculated in an identical manner. Overlap between the different STAT profiles (Fig. S2A) were dis-
played using the R “venn” package. The weight of each gene was based on STAT3-target gene binding affinities as 
calculated by TIP, genes with high affinity receiving higher weights than genes with lower affinity. Last, we defined 
compartment-specific reference gene sets in order to adjust the inferred STAT3 activities for tumor purity. These 
reference gene sets included genes correlated with tumor purity (absolute value of SCC > 0.1) but did not reach 
the affinity threshold of 0.5. We have provided gene-level annotations and additional information for each of the 
386 identified STAT3 target genes in Suppl. Table 6.

Compartment-specific STAT3 activity inference.  STAT3 activity scores were calculated by the (Binding 
Associated with Sorted Expression) BASE algorithm36,66. Each of the three STAT3 signatures was inputted into 
BASE along with a patient gene expression matrix. If the gene expression dataset was a one channel microarray 
and RNAseq dataset, we median normalized the data before inputted it into BASE. The BASE algorithm calcu-
lated STAT3 activity scores for each patient sample by ranking genes in descending order based on gene expres-
sion values. Two cumulative distributions were then generated by a foreground (f) and background (b) function. 
These functions are given by:
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where the weight w represents the affinity of STAT3 targets as determined by ChIP-seq, g is the expression value 
of gene j in the patient expression profile. The maximal deviation between these two distributions represents 
the preliminary STAT3 activity score. This score is adjusted for by 1000 iterations of random patient expression 
profiles. The resulting score constituted the STAT3 activity score, where a higher score represented greater STAT3 
activity and lower scores lower activity.
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In order to obtain compartment-specific scores, we adjusted T- and E-STAT3 activities for purity. We utilized 
all genes in the gene expression datasets to calculate G-STAT3 activity since this inference should be minimally 
affected by tumor purity. To calculate T-STAT3 activity scores, we only selected tumor-specific STAT3 target 
genes (T-STAT3) and reference genes (SCC > 0.1) from the gene expression dataset and used this as the patient 
gene expression input for BASE; to calculate E-STAT3 activity scores, we only selected microenvironment-specific 
STAT3 target genes (E-STAT3) and reference genes (SCC < −0.1). Since neither STAT3 target genes or reference 
genes are overlapped, the resulting sample-specificT-STAT3 and E-STAT3 activities are inherently independent 
of each other.

Gene Set Enrichment Analysis.  Gene Set Enrichment Analysis (GSEA) was performed on ranked STAT3 
profiles using the GSEA software (version 3.0) provided by the Broad Institute, available at http://software.broa-
dinstitute.org/gsea/index.jsp. All pathways in the C2 database (version 6.2) were used for this analysis.

Calculation of tumor purity and infiltration scores.  Tumor purity scores of pancreatic cancer samples 
obtained from TCGA were obtained from: http://bioinformatics.mdanderson.org/estimate/ (December, 2017), 
while tumor purity scores for other datasets were calculated using the R “estimate” package45. The infiltration of 
tumor and stromal cells were also calculated based on the R “estimate” package. Immune infiltration scores of 
specific immune cell types were calculated using our established framework described in46. In short, immune 
cell-specific weight profiles and a patient gene expression dataset were inputted into BASE to infer the infiltration 
of selected immune cells; naïve B cells, memory B cells, CD4 T cells, CD8 T cells, NK cells, and monocytes.

Copy number variation and total mutation burden.  Genomic features of the TCGA PAAD dataset 
were calculated based on MAF files and DNA-sequencing profiles, downloaded from FireBrowse (gdac.broadin-
stitute.org/). Copy number variation data provided by TCGA was used to calculate total copy number variation 
(CNV) burden for each sample, which represented the deviation of total copy number compared to normal (no 
copy number alterations). For each DNA fragment, its copy number was divided by two to account for diploidy, 
log2 transformed and multiplied by the size of the DNA fragment to take into account the magnitude of copy 
number alteration. The CNV scores for all fragments were then summed and scaled by the length of the entire 
genome to generate the final CNV burden score. This can be represented by:

CNV burden
log C s

N
2( /2)i

n
i i1= ∑ ∗=

where Ci and si represent the copy number and the size DNA segments i in a sample, n is the total number of seg-
ments in the genome and N is the size of the human genome. Tumor mutation burden (TMB) was represented by 
the number of non-silent mutations in a given PAAD sample.

Survival analysis and forest plots.  The efficacy of patient-specific STAT3 activity scores in predicting 
overall survival were verified by Cox proportional hazards models using the “coxph” function from the R “sur-
vival” package. Using zero as a cutoff for STAT3 activity, patients were stratified into STAT3-high and STAT3-low 
groups. Cumulative incidence and the proportion of survival was calculated by log-rank tests using the R “sur-
vival” package. Kaplan-Meier curves were generated using the “survfit” function. The statistics calculated to pres-
ent the difference between survival curves were generated by the “survdiff ” function. Forest plots were generated 
by multivariate Cox regression using the “coxph” function. Variables included in this multivariate analysis were 
T-STAT3 activity, E-STAT3 activity, gender, age and tumor stage. Unless indicated otherwise, all correlations were 
performed using Spearman correlation. Conditional correlations were calculated using the “pcor.test” function 
from the R “ppcor” package. R version 3.4.1 was used for all analyses.

Data and code availability
All data used in this study are publicly available and sources are provided in Supplementary Table 1. R code to 
generate figures and results are provided in a supplementary folder for GSE57495. Using this example, figures for 
the additional datasets used in this study can be obtained in a similar manner.
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