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Background: Immunotherapy has emerged as an important technique for treating a
variety of cancers. The dynamic interplay between tumor cells and invading lymphocytes in
the tumor microenvironment is responsible for the good response to immunotherapy
(TME). Pyroptosis, or inflammation-induced cell death, is closely linked to a number of
cancers. However, in papillary renal cell carcinoma (KIRP), the association between
pyroptosis and clinical prognosis, immune cell infiltration, and immunotherapy impact
remains unknown.

Methods: We carefully investigated the link between pyroptosis and tumor growth,
prognosis, and immune cell infiltration by evaluating 52 pyroptosis-related genes. The
PRG score was utilized to measure a single tumor patient’s pyroptosis pattern. After that,
we looked at how well these values predicted prognoses and therapy responses in KIRP.

Results: We discovered that PRG differences between subgroups were linked to clinical
and pathological aspects, prognosis, and TME in two separate genetic subtypes. After
that, a PRG score for estimating overall survival (OS) was developed, and its predictive
potential in KIRP patients was confirmed. As a result, we developed a very precise
nomogram to improve the PRG score’s clinical usefulness. A low PRG score, which is
determined by mutation load and immune activation, suggests a good chance of survival.
Furthermore, the PRG score was linked to chemotherapeutic drug sensitivity in a
substantial way.

Conclusions: The possible functions of PRGs in the TME, clinical and pathological
characteristics, and prognosis were established in our thorough investigation of PRGs
in KIRP. These results might help us better understand PRGs in KIRP and offer a new
avenue for prognostic evaluation and the development of more effective immunotherapy
treatments.
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BACKGROUND

Renal cell carcinoma (RCC) is a broad term that refers to a variety
of malignancies. Each kind has different histologic characteristics,
a distinct genetic profile, and a varied clinical history and
response to treatment (Moch et al., 2016). Papillary renal cell
carcinoma (KIRP) is the second most frequent RCC subtype,
accounting for 10–15% of patients (Akhtar et al., 2019). Papillary
renal cell carcinoma is divided into two categories based on their
histological characteristics (Mendhiratta et al., 2021). When
compared to non-papillary RCC subtypes, KIRP often present
as homogenous, solid masses with relative hypovascularity
(Vikram et al., 2009; Tordjman et al., 2020). Targeted therapy
for KIRP has previously failed due to a lack of understanding of
the molecular underpinnings of these cancers (Williamson,
2021). It is hoped that, as we get a better understanding of the
etiology of the pathogenesis of KIRP, effective targeted
therapeutics will emerge in due course.

Pyroptosis, defined as a programmed cell death caused by
the Gasdermin family, is accompanied by inflammatory and
immunological responses (Xia et al., 2019; Meng et al., 2021;
Wu et al., 2021). Pyroptosis and cancer have a complicated
interaction; pyroptosis can prevent tumor incidence and
progression while simultaneously acting as a factor
promoting inflammation to generate a milieu conducive to
tumorigenesis (Wu et al., 2021; Xiang et al., 2021). The
fundamental cause of pyroptosis is the stimulation of
inflammasome, which occurs through the caspase
inflammasome pathways (Zheng and Li, 2020; Song et al.,
2021). The importance of pyroptosis in the TME is becoming
clearer, while the molecular basis of pyroptosis in the KIRP
immune microenvironment is yet unknown.

Employing computational techniques, this work analyzed
the mRNA transcription of pyroptosis-related genes (PRGs) in
detail and created a complete picture of the tumoral immune
landscape. To begin with, patients with KIRP were divided into
two distinct subgroups based on their PRG transcription levels.
On the basis of differentially expressed genes (DEGs), patients
were then divided into three gene subgroups. Additionally, we
developed a grading scale to estimate overall survival (OS) and
to define the immunological landscape of KIRP, which
effectively predicted clinical outcomes and immunotherapy
responsiveness.

MATERIALS AND METHODS

KIRP Data Source and Preprocessing
The TCGA platform was used to obtain the transcriptome RNA
sequences and clinical data for 471 KIRP samples. The Gene
Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/)
platform was used to collect the GEO cohort (GSE2748) KIRP
samples. Incomplete clinical information was deleted from
samples, and FPKM values in TCGA-KIRP were transformed
to Transcripts Per Kilobase Million (TPM) values and utilized for
copy number variation (CNV) analysis (Zhao et al., 2021). The
transcriptome RNA sequences from the TCGA-KIRP and

GSE2748 datasets were combined after correction. R software
version 4.1.1 was used to process the raw data.

Unsupervised Clustering Analysis of PRGs
First and foremost, PRGs were identified from published literature
(Man and Kanneganti, 2015; Wang and Yin, 2017; Karki and
Kanneganti, 2019). The transcription of 52 PRGs was utilized to
identify distinct pyroptosis types and to identify patients for further
research using an unsupervised clustering approach. To do the
aforementioned study, we utilized the R package
“ConsensuClusterPlus” and 1,000 repeats to ensure clustering
stability (Wilkerson and Hayes, 2010). Our best guess for how
many clusters there should be was arrived at by using the consensus
clustering method. Gene set variation analysis (GSVA) was
performed on the MSigDB hallmark gene set in order to
investigate the variations in PRGs that occur throughout cellular
mechanisms. Furthermore, the Kaplan–Meier curves generated by
the R packages “survival” and “survminer” were used to investigate
the differences in overall survival across subtypes.

Relationship Between Molecular
Subgroups and TME in KIRP
We utilized the ESTIMATE method to assess each patient’s
immunological and stromal scores. KIRP samples’ fractions of 22
different kinds of human immune cells were also determined using
the CIBERSORT technique (Chen et al., 2018). To evaluate the
degree of immune cell infiltration in the TME of KIRP, a single-
sample gene set enrichment analysis (ssGSEA) approach was utilized
in conjunction with the other techniques (Subramanian et al., 2005).

Identification of DEGs in Various PRG
Clusters
We utilized the R package “limma” to compare DEGs between PRG
clusters (Ritchie et al., 2015). The Gene Ontology (GO) enrichment
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses were carried out using the “clusterProfiler” program (Gene
Ontology Consortium, 2015; Kanehisa et al., 2017).

Generation of PRG Score
To objectively measure pyroptosis in individual KIRP patients, a
score system was developed. The following is the procedure for
developing the scoring system: The DEGs found in various
pyroptosis clusters were first standardized across all samples, and
then the overlap genes were retrieved. Then, for each gene, we ran a
univariate Cox regression analysis. For the following phase of the
investigation, a list of genes with a high prognosis was created. The
following formula was used to determine pyroptosis scores using
principal component analysis (PCA):
PRG Score = Σ (Expi * Coefi)

The Creation and Testing of a Nomogram
Grading System
The clinical characteristics and risk score from the independent
prognostic study were used to generate a nomogram using the
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“rms” program (Park, 2018). In the nomogram scoring approach,
a score was given to each variable, and the total score was derived
by adding the scores from all variables in each sample. With the

help of nomogram calibration plots, it was possible to see the
relationship between surviving events and their virtually observed
consequences.

FIGURE 1 |Genetic and transcriptional variation of PRGs in KIRP. (A) The number of genetic mutations found in KIRP patients. The PRGs’mutation frequency was
indicated by the number on the right. Each column represents one of the 39 TCGA samples in which the PRGs had at least one genetic change. (B) On the
chromosomes, the position of the PRGs CNV changes. (C) The PRGs’ CNV mutation frequency. The frequency of modification was displayed in the column. The
frequency of amplification is shown by a red dot, whereas the frequency of deletion is indicated by a green dot. (D) PRGs differential expression study in normal and
KIRP tissues. *p < 0.05; **p < 0.01; ***p < 0.001.
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AnalyzingDrug Susceptibility andMutations
The mutation annotation file from the TCGA was developed
using the “maftools” R package to determine the genetic
alterations of KIRP patients in various categories
(Mayakonda et al., 2018). For each patient with KIRP in the
two groups, we estimated the tumor mutation burden (TMB)
value. Using the “pRRophetic” software, we estimated the semi-
inhibitory concentration (IC50) values of medications
frequently used to treat KIRP in patients to see if there were
any variations in their therapeutic effects (Geeleher et al.,
2014).

RESULTS

Genetic and Transcriptional Variation of
PRGs in KIRP
We began by looking at their CNV and mutation frequency in
TCGA-KIRP. PRG mutations were found in 39 of 281 TCGA-
KIRP samples, accounting for 13.88 percent of the total. The
top four PRGs with the greatest mutation frequencies were
TP53 (2%), NLRP1 (1%), NLRP7 (1%), and SCAF11 (1%)
(Figure 1A). Further investigating the predictive impact of
PRGs, we discovered that most PRGs, such as TP53, GZMB,
AIM2, CHMP7, and GSDMC, were substantially linked with
the overall prognosis of KIRP patients. Figure 1B depicts the 39
PRG positions on the chromosomal CNV alterations. CNV
change was widespread in the 52 PRGs that exhibited mostly
copy number amplification, such as CHMP6 and PJVK,
whereas CASP9, CASP4, CASP5, CASP1, and IL18 showed
considerable copy number decrease (Figure 1C). The levels of
PRGs in KIRP patients and renal tissues were examined to see
whether the genetic variants mentioned above had an influence
on PRG transcription in KIRP patients (Figure 1D).
According to our results, variations in CNV may be major
factors driving changes in PRG regulator expression. CNV-
amplified PRG transcription was considerably greater in KIRP
compared to normal renal tissue (e. g., CHMP6 and PJVK) and
vice versa (e. g., CHMP3, CHMP7, ELANE, CASP9, NLRP2,
and TIRAP). This study found considerable PRG inherited
heterogeneity and variance in KIRP patients, indicating that
PRG transcription imbalances were important in the onset and
development of KIRP.

Construction of Pyroptosis Subtypes in
KIRP
The patients from two suitable KIRP cohorts (TCGA-KIRP and
GSE2748) were included in our study for additional analysis in
order to thoroughly recognize the PRG expression levels
implicated in carcinogenesis. We created a pyroptosis network
map to demonstrate the interactions of PRGs in KIRP patients
and their relationship to prognosis in these patients (Figure 2A).
We employed a consensus clustering technique to identify
patients according to the transcript level of the 52 PRGs to
learn more about their expression features in KIRP. Our
findings indicated that k = 2 was the best choice for

categorizing the whole patients into subgroup A (n = 177) and
subgroup B (n = 146) (Figures 2B,C). According to the results of
the PCA analysis, the PRG expression patterns of the two
subgroups were considerably different (Figure 2D). In
addition, comparing the clinicopathological characteristics of
various KIRP subtypes revealed substantial disparities in PRG
transcription and clinical features (Figure 2E). Cluster A had the
highest level of expression for PRGs.

Following that, we used GSVA enrichment to investigate the
biologic effects of several PRG groups. There was significant
enrichment of immune cell activation pathways in PRG cluster
A, including T cell and B cell receptor signaling pathways
(Figure 3A). Then, we employed ssGSEA to compare
immune cell infiltration in the tumor microenvironment
amongst distinct PRG clusters. Surprisingly, we found a
considerable variation in immune cell concentration amongst
PRG clusters, with cluster A was considerably enriched in
immune cells (Figure 3B).

PRG Signature Generation
We utilized the “limma” R package to explore 2461 PRG
phenotype-associated DEGs, which were designated as PRG
signature genes, to learn more about the probable biologic
activities of distinct PRG clusters. Surprisingly, it was shown
that DEGs are greatly overrepresented in immune-related
pathways. DEGs were found to be concentrated in
biological processes of BP related to T cell activation and
leukocyte cell-cell adhesion. DEGs were considerably
enriched in cytokine receptor binding, cytokine binding,
and immune receptor activity throughout MF processes
(Figure 4A). Additionally, DEGs were considerably
enriched in immune-related pathways in KEGG pathway
enrichment analyses: cytokine-cytokine receptor interaction,
Human T-cell leukemia virus infection, and chemokine
signaling pathway (Figure 4B).

Following that, we used univariate Cox analysis to screen for
prognostically related DEGs, yielding 659 genes related to
survival time. We employed unsupervised cluster analysis to
separate the KIRP patients into three gene groups based on the
genes that were chosen for inclusion (Figures 5A,B). The
survival research showed that patients in subgroup C had the
highest overall survival rate, while those in subgroup A had the
lowest OS (Figure 5C). In gene cluster A, all PRGs were found
to be overexpressed (Figure 5D). This revealed that greater
PRG expression might be related to a worse prognosis in KIRP
patients. Furthermore, the heatmap revealed that these
prognostically associated DEGs were common in subgroup
A, which confirmed the findings of the previous study
(Figure 5E).

Generation of PRG the Signatures Scoring
System
We established the PRG score, a scoring method that evaluates
the pyroptosis types of each KIRP patient, to further examine the
activities of pyroptosis in KIRP. In order to begin, we separate the
patients into two groups: those who will be trained and those who
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will be tested. LASSO and multivariate Cox analyses were
performed on prognostic DEGs associated with pyroptosis
subtypes to further select the best prognostic features (Figures

6A,B). In order to depict variations in the characteristics of
specific patients, an alluvial diagram was employed
(Figure 6C). Between subgroups, we identified a statistically

FIGURE 2 | Unsupervised cluster analysis divided KIRP patients into subclusters. (A) Interactions of PRGs in KIRP. (B) The cumulative distribution function (CDF)
for consensus clustering. (C) Heatmap of the consensus matrix identifying two clusters and their correlation area. (D) Principal component analysis (PCA) between the
two subtypes. (E) PRG heatmap in KIRP between two distinct subtypes.
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significant variance in PRG score. Additionally, both gene cluster
A (Figure 6D) and PRG cluster A had a high PRG score
(Figure 6E). On the basis of the median PRG score, patients
were split into high and low-risk categories. When the PRG score
is increased, the survival duration reduces, and the recurrence
rate rises, as shown by the risk distribution chart for the PRG
score (Figures 6F,G). Furthermore, we discovered substantial
disparities in the expression of PRGs between risk categories
(Figure 6H).

Survival Prediction and Nomogram
In all sets (p < 0.001, Figure 7A), training sets (p = 0.008,
Figure 7B), and testing sets (p < 0.001, Figure 7C), those with

low scores had considerably better OS than subjects with
elevated scores, according to the K–M curves. In all sets,
AUC values of 0.948, 0.809, and 0.820 were used to reflect
the 1-, 3-, and 5-year survival rates of the PRG score
(Figure 7D). Similarly, the AUC in the training set was
0.967, 0.707, and 0.713 (Figure 7E), and in the test set, they
were 0.936, 0.916, and 0.959 (Figure 7F). According to this, the
PRG score may accurately predict the clinical outcome with
KIRP patients. Because the PRG score’s clinical utility in
evaluating OS in patients of KIRP is unsatisfactory, a
nomogram integrating the PRG score and clinical
characteristics was developed to predict survival rates
(Figure 7H). The calibration chart revealed that the PRG

FIGURE 3 | Analysis of GSVA enrichment and TME immune cell infiltration. (A) The functional pathways of two PRG subgroups were identified using GSVA
enrichment. (B) Immune cell infiltration levels differ between PRG subgroups.
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score performed well, with a good match between the projected
and actual survival rates (Figure 7G).

Assessment of TME Between the Two
Groups
The CIBERSORT technique was utilized to determine the
association between the PRG score and immune cell
abundance. The PRG score was favorably connected with
B cells and dendritic cells resting, macrophages M1, and
other cells, as indicated in the scatter diagrams, and
negatively correlated with macrophages M0, macrophages

M2 (Figure 8A–L). Additionally, we examined the
relationship between the genes and the number of
immune cells in the body. We discovered that the 13
genes were highly linked with the majority of immune
cells, especially GBP1 and macrophages M1, KCNJ5 and
macrophages M2 (Figure 8M).

Analyses of Gene Mutation and Drug
Sensitivity
Then, in the TCGA-KIRP cohort, we looked at how the
distribution of somatic mutations differed across two PRG

FIGURE 4 | Functional enrichment analysis among two pyroptosis subtypes. (A) Enrichment of GO functions. (B) The KEGG pathway.
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score groups. As it turned out, the mutation rates between the
two groups varied significantly (64.18 percent and 59.44
percent). TTN, MUC16, MET, KMT2C, KIAA1109,
SETD2, USH2A, MUC4, KMT2D, and WDFY3 were the
remarkable mutant genes in the various risk groups
(Figures 9A,B). TTN, MUC16, and MET mutations were

more common in patients with lower PRG scores than in
those with higher PRG values. KMT2C and KIAA1109, on the
other hand, have the exact opposite mutation levels. KMT2C
and KIAA1109 exhibited a greater frequency of missense
mutations and a lower rate of frame-shift mutations in
patients with high PRG score. We next chose

FIGURE 5 | Classification of genetic subgroups. (A) Changes in the area under the CDF curve. (B) The K = 3 consensus clustering matrix. (C) Survival curves for
subgroups A, B, and C. (D) PRG expression between gene clusters. (E) Heatmap of genes based on unsupervised clustering techniques.
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chemotherapeutic medications that are presently used to
treat KIRP to assess the sensitivities of individuals in
distinct risk categories to these treatments. We discovered
individuals with high PRG scores had lower IC50 values with
A-443654 (specific inhibitor of Akt), ATRA (all-trans
retinoic acid), AZD-2281 (olaparib), AZD8055 (mTOR
inhibitor), and BI-D1870 (RSK inhibitor). However, the
IC50 values of chemotherapeutics like AZD6244 (MEK
inhibitor selumetinib) and BMS-708163 (gamma secretase
inhibitor) were much lower in individuals with a lower PRG
score. The findings suggested that PRGs were linked to
medication sensitivity (Figure 9C–N). While most of the

ideas about how to diagnose and treat cancer have come from
research on clear cell RCC, the unique characteristics of KIRP
may have significance for illnesses.

DISCUSSION

KIRP is a heterogeneous subtype of RCC that differs from clear
cell RCC in terms of clinicopathologic and molecular
characteristics (Chen et al., 2019). When compared to clear
cell RCC, KIRP is less likely to develop distant metastases upon
diagnosis (Murugan et al., 2021). Because the majority of

FIGURE 6 |Generation of the PRG signature scoring system. (A–B) LASSO regression analysis and partial likelihood deviance on prognostic genes. (C) An alluvial
plot illustrating the link between the pyroptosis cluster, the gene cluster, and the pyroptosis score. (D) The PRG score in different genecluster subgroups. (E) The
distribution of PRG scores in various PRGcluster subgroups. (F–G) The ranked dot plot depicts the distribution of PRG scores, whereas the scatter plot depicts the
survival state. (H) Variations in PRG expression across risk categories.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8716029

Zhang et al. Pyroptosis-Related Genes in KIRP

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


current knowledge about how to diagnose and treat renal
tumors is derived from studies on clear cell RCC, the
unique characteristics of KIRP may be critical to the illness
(Mendhiratta et al., 2021; Yamamoto et al., 2021). For
advanced KIRP, there is currently no agreed-upon
treatment regimen, which poses a huge challenge for
clinicians (Courthod et al., 2015). Molecularly targeted
therapy and immunotherapy are also being tested in this
subtype, and the results so far are favorable (Tachibana
et al., 2021). KIRP has a better prognosis in the early stages
than clear cell malignancies, but the situation changes
drastically after the cancer has spread to distant sites (Zhao
and Eyzaguirre, 2019). Pyroptosis has been linked to the
emergence and progression of cancers in a growing body of
data (Liu et al., 2021; Zhang et al., 2021; Zhou et al., 2021).
Pyroptosis has been found to slow the development of tumors
in multiple cancers (Sharma et al., 2019; Chen et al., 2020;
Fenini et al., 2020). Pyroptosis can activate the immune
system, inhibit tumor cell proliferation by altering the TME,

and even kill malignant cells (Fu and Song, 2021; Sun et al.,
2021; Wei et al., 2021). We don’t know how it affects the KIRP
microenvironment or immune function just yet.

Using the TCGA–KIRP and GSE2748 cohorts, we first
investigated the genetic variants and expression of PRGs.
However, even while PRGs had a low mutation rate, the
majority of KIRP patients’ genes were dysregulated and were
linked with a poor prognosis. Second, based on 52 PRGs, we
found two unique molecular subtypes. The TME’s properties
changed greatly across the two subtypes. The KIRP subtypes were
also distinguished by a high level of immunological activation,
which included the T cell and the B cell receptor signaling
pathway. Differences in mRNA transcriptome across
pyroptosis subtypes were also shown to be strongly connected
to PRGs and immune-associated molecular mechanisms. Third,
we employed unsupervised cluster analysis to separate the KIRP
patients into three gene groups based on the genes that were
chosen for inclusion. Therefore, our results imply that PRGs may
be useful in predicting the clinical prognosis and therapeutic

FIGURE 7 | Survival prediction and nomogram. (A–C) Kaplan-Meier analysis of the OS between the groups in the overall, training, testing, sets. (D–F) ROC curves
to estimate the sensitivity and specificity of 1-, 3-, and 5-year survival based on the PRG score in the overall, training, testing sets. (G) Calibration plots for nomograms to
predict OS at 1-, 3- and 5-year. (H) Nomogram for predicting the 1-, 3-, and 5-year OS of KIRP patients.
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responsiveness of KIRP patients. Fourth, we developed a reliable
and accurate predicted score and established the predictive
power. Transcript levels of the score-containing genes were
also evaluated in KIRP patients. On the basis of the median
PRG score, patients were split into high and low-risk categories.
When the PRG score is increased, the survival duration reduces
and the recurrence rate rises. Finally, by combining the score and
clinical features, we created a quantitative nomogram that
increased performance and made the PRG score easier to use.
The prognostic model may be used to stratify the prognosis of
patients, which will aid in better identifying the pathogenesis of

KIRP and will bring innovation for targeted therapeutics. KIRP
patients may benefit from the development of a prognostic model
that can be used to stratify their prognosis. It will also assist in the
better recognition of the pathogenesis of KIRP and the
development of novel targeted therapeutics.

Despite recent breakthroughs in immunotherapy, KIRP
patients’ outcomes remain heterogeneous, underlining the
importance of TME in carcinogenesis and therapy. The cells
of the TME participate in a variety of immune activations,
including the pro-survival inflammatory response organized by
malignancies (Seager et al., 2017). Additionally, evidence

FIGURE 8 | TME comparison between the two subgroups. (A–L) The relationship between PRG score and immune cell type. (M) The relationship between the
abundance of 22 immune cells and the abundance of 13 genes.
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demonstrates that the TME has a major influence on tumor
growth, progression, and treatment resistance (Hinshaw and
Shevde, 2019). In the current research, the subtype B defined
by immunological inhibition was shown to be linked with a

greater PRG score, while the subtype A marked by immune
activation was found to be associated with a decreased score. The
features of the tumor microenvironment, as well as the
abundance of various tumor-infiltrating immune cells, were

FIGURE 9 | Analyses of gene mutation and drug sensitivity. (A–B) The waterfall plot of gene mutation characteristics generated with different scores. (C–N)
Correlations between PRG score and drug sensitivity.
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found to vary considerably across the twomolecular subtypes and
distinct PRG scores. According to the findings of this research,
PRGs play a significant role in the development of KIRP. It has
been shown that subtype A and a lower PRG score are associated
with greater infiltration of different activated T lymphocytes,
suggesting that they play a beneficial role in the formation of
KIRP. The presence of regulatory cells, which limit the immune
response to tumors, has been linked with a bad prognosis (Tanaka
and Sakaguchi, 2017). This is consistent with our findings that
patients with subgroup B and elevated scores had more Tregs in
the TME than those in the low-risk category.

Advanced KIRP treatment options have progressed
significantly during the 1980s and 1990s, from cytokine and
cytotoxic chemotherapy to genetic targeted treatments and
immune checkpoint inhibitors at present (Ronnen et al.,
2006). Despite biological differences, the early use of VEGF
and mTOR inhibitors in KIRP was primarily supported by
data from medical trials examining their effectiveness in clear
cell RCC patients. Over the last several years, over a dozen studies
have been conducted to specifically target KIRP, either on its own
or in comprehensive experiments incorporating different renal
tumors. Encouragingly, a series of cohort studies have revealed
that these treatments are efficacious in treating KIRP (Motzer
et al., 2002; Gore et al., 2009). In an attempt to elucidate the
molecular basis of KIRP in the population, a comprehensive
genomic analysis was performed on patients with advanced KIRP
(D’Avella et al., 2020). The most frequently found mutations in
individuals with type 1 illness were MET (33%), CKDN2A/B
(18%), and EGFR (18%). CDKN2A/B (18%) and MET (18%)
mutations were the most prevalent type 2 mutations. This work
emphasizes the role of MET mutations in KIRP and another
possible CDKN2A mutation for further investigation. CDK4/6
inhibitors are now licensed for the treatment of metastatic breast
cancer and may be used in KIRP in the future. Whereas the best
order of systemic medications is uncertain, limited therapeutic
evidence shows that first-line VEGF therapy is associated with
superior results when compared to mTOR inhibitors.
Additionally, the ESPN study found no difference in survival
time between everolimus and sunitinib as first-line therapy
(Tannir et al., 2016). Due to the poor effectiveness of currently
available therapies for hereditary papillary renal cell carcinoma, it
is critical to understand how MET inhibitors affect it.

Cabozantinib (Choueiri et al., 2016; Prisciandaro et al., 2019)
and crizotinib (Schöffski et al., 2017), both of which are c-MET
tyrosine kinase inhibitors, are two further targeted treatments
with potential effectiveness. The objective response rate was 25.4
percent in a sample of 118 KIRP with an 11-month median
follow-up, and the median duration of response was not attained,
indicating potential anticancer activity in a tumor that had
previously been deemed resistant to immunotherapy
(McDermott et al., 2021). Combining immunotherapy with
specific medicines like MET inhibitors is now being tested in
clinical studies. Only p53 deletion, which has been substantially
linked with poor survival, has demonstrated an association with
clinical outcomes at the molecular level (Leroy et al., 2002; Perret
et al., 2008; Ricketts et al., 2018). Mutations in the TP53 gene,
CDKN2A gene, PBRM1 gene, and the hypermethylation genomic
cluster are related to survival in KIRP (Pitra et al., 2019).

CONCLUSION

Our thorough examination of PRGs revealed a complex
regulatory system via which they influence TME, clinical and
pathological characteristics, and prognosis. Apart from this, we
also looked at how PRGs may help with immunotherapy as well
as other forms of targeted therapy. The findings underscore the
essential therapeutic implications of PRGs and provide novel
strategies for targeting immunotherapy therapies for KIRP
patients.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

CZ wrote the paper. RH edited the paper. XX made the images
out. All authors contributed to the article and approved the
submitted version.

REFERENCES

Akhtar, M., Al-Bozom, I. A., and Al Hussain, T. (2019). Papillary Renal Cell
Carcinoma (PRCC): An Update. Adv. Anat. Pathol. 26, 124–132. doi:10.1097/
pap.0000000000000220

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A.
(2018). Profiling Tumor Infiltrating Immune Cells with CIBERSORT.
Methods Mol. Biol. (Clifton, N.J.) 1711, 243–259. doi:10.1007/978-1-
4939-7493-1_12

Chen, Q., Cheng, L., and Li, Q. (2019). The Molecular Characterization and
Therapeutic Strategies of Papillary Renal Cell Carcinoma. Expert Rev.
anticancer Ther. 19, 169–175. doi:10.1080/14737140.2019.1548939

Chen, Z., He, M., Chen, J., Li, C., and Zhang, Q. (2020). Long Non-coding RNA
SNHG7 I-nhibits NLRP3-dependent P-yroptosis by T-argeting the miR-34a/

SIRT1 axis in L-iver C-ancer. Oncol. Lett. 20, 893–901. doi:10.3892/ol.2020.
11635

Choueiri, T. K., Escudier, B., Powles, T., Tannir, N. M., Mainwaring, P. N., Rini, B.
I., et al. (2016). Cabozantinib versus Everolimus in Advanced Renal Cell
Carcinoma (METEOR): Final Results from a Randomised, Open-Label,
Phase 3 Trial. Lancet Oncol. 17, 917–927. doi:10.1016/s1470-2045(16)30107-3

Courthod, G., Tucci, M., Di Maio, M., and Scagliotti, G. V. (2015). Papillary Renal
Cell Carcinoma: A Review of the Current Therapeutic Landscape. Crit. Rev.
oncology/hematology 96, 100–112. doi:10.1016/j.critrevonc.2015.05.008

D’Avella, C., Abbosh, P., Pal, S. K., and Geynisman, D. M. (2020). Mutations in
Renal Cell Carcinoma. Urol. Oncol. Semin. Original Invest. 38, 763–773. doi:10.
1016/j.urolonc.2018.10.027

Fenini, G., Karakaya, T., Hennig, P., Di Filippo, M., and Beer, H.-D. (2020). The
NLRP1 Inflammasome in Human Skin and beyond. Ijms 21, 4788. doi:10.3390/
ijms21134788

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 87160213

Zhang et al. Pyroptosis-Related Genes in KIRP

https://doi.org/10.1097/pap.0000000000000220
https://doi.org/10.1097/pap.0000000000000220
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1080/14737140.2019.1548939
https://doi.org/10.3892/ol.2020.11635
https://doi.org/10.3892/ol.2020.11635
https://doi.org/10.1016/s1470-2045(16)30107-3
https://doi.org/10.1016/j.critrevonc.2015.05.008
https://doi.org/10.1016/j.urolonc.2018.10.027
https://doi.org/10.1016/j.urolonc.2018.10.027
https://doi.org/10.3390/ijms21134788
https://doi.org/10.3390/ijms21134788
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Fu, X.-W., and Song, C.-Q. (2021). Identification and Validation of Pyroptosis-
Related Gene Signature to Predict Prognosis and Reveal Immune Infiltration in
Hepatocellular Carcinoma. Front. Cel Dev. Biol. 9, 748039. doi:10.3389/fcell.
2021.748039

Geeleher, P., Cox, N., and Huang, R. S. (2014). pRRophetic: an R Package for
Prediction of Clinical Chemotherapeutic Response from Tumor
Gene Expression Levels. PloS one 9, e107468. doi:10.1371/journal.pone.
0107468

Gene Ontology Consortium (2015). Gene Ontology Consortium: Going Forward.
Nucleic Acids Res. 43, D1049–D1056. doi:10.1093/nar/gku1179

Gore, M. E., Szczylik, C., Porta, C., Bracarda, S., Bjarnason, G. A., Oudard, S., et al.
(2009). Safety and Efficacy of Sunitinib for Metastatic Renal-Cell Carcinoma: an
Expanded-Access Trial. The Lancet OncologyOncology 10, 757–763. doi:10.
1016/s1470-2045(09)70162-7

Hinshaw, D. C., and Shevde, L. A. (2019). The Tumor Microenvironment Innately
Modulates Cancer Progression. Cancer Res. 79, 4557–4566. doi:10.1158/0008-
5472.Can-18-3962

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017).
KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs. Nucleic
Acids Res. 45, D353–d361. doi:10.1093/nar/gkw1092

Karki, R., and Kanneganti, T.-D. (2019). Diverging Inflammasome Signals in
Tumorigenesis and Potential Targeting. Nat. Rev. Cancer 19, 197–214. doi:10.
1038/s41568-019-0123-y

Leroy, X., Zini, L., Leteurtre, E., Zerimech, F., Porchet, N., Aubert, J.-P., et al.
(2002). Morphologic Subtyping of Papillary Renal Cell Carcinoma: Correlation
with Prognosis and Differential Expression of MUC1 between the Two
Subtypes. Mod. Pathol. 15, 1126–1130. doi:10.1097/01.Mp.0000036346.
88874.25

Liu, D., Yang, X., and Wu, X. (2021). Tumor Immune Microenvironment
Characterization Identifies Prognosis and Immunotherapy-Related Gene
Signatures in Melanoma. Front. Immunol. 12, 663495. doi:10.3389/fimmu.
2021.663495

Man, S. M., and Kanneganti, T.-D. (2015). Regulation of Inflammasome
Activation. Immunol. Rev. 265, 6–21. doi:10.1111/imr.12296

Mayakonda, A., Lin, D.-C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and Comprehensive Analysis of Somatic Variants in Cancer.
Genome Res. 28, 1747–1756. doi:10.1101/gr.239244.118

McDermott, D. F., Lee, J.-L., Bjarnason, G. A., Larkin, J. M. G., Gafanov, R. A.,
Kochenderfer, M. D., et al. (2021). Open-Label, Single-Arm Phase II Study of
Pembrolizumab Monotherapy as First-Line Therapy in Patients with Advanced
Clear Cell Renal Cell Carcinoma. Jco 39, 1020–1028. doi:10.1200/jco.20.02363

Mendhiratta, N., Muraki, P., Sisk, A. E., Jr., and Shuch, B. (2021). Papillary Renal
Cell Carcinoma: Review. Urol. Oncol. Semin. Original Invest. 39, 327–337.
doi:10.1016/j.urolonc.2021.04.013

Meng, J., Huang, X., Qiu, Y., Zheng, X., Huang, J., Wen, Z., et al. (2021). Pyroptosis-
related Gene Mediated Modification Patterns and Immune Cell Infiltration
Landscapes in Cutaneous Melanoma to Aid Immunotherapy. Aging 13,
24379–24401. doi:10.18632/aging.203687

Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E., and Ulbright, T. M.
(2016). The 2016 WHO Classification of Tumours of the Urinary System and
Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol.
70, 93–105. doi:10.1016/j.eururo.2016.02.029

Motzer, R. J., Bacik, J., Mariani, T., Russo, P., Mazumdar, M., and Reuter, V. (2002).
Treatment Outcome and Survival Associated with Metastatic Renal Cell
Carcinoma of non-clear-cell Histology. Jco 20, 2376–2381. doi:10.1200/jco.
2002.11.123

Murugan, P., Jia, L., Dinatale, R. G., Assel, M., Benfante, N., Al-Ahmadie, H.
A., et al. (2021). Papillary Renal Cell Carcinoma: a Single Institutional
Study of 199 Cases Addressing Classification, Clinicopathologic and
Molecular Features, and Treatment Outcome. Mod. Pathol. 23. doi:10.
1038/s41379-021-00990-9

Park, S. Y. (2018). Nomogram: An Analogue Tool to Deliver Digital Knowledge.
J. Thorac. Cardiovasc. Surg. 155, 1793. doi:10.1016/j.jtcvs.2017.12.107

Perret, A. G., Clemencon, A., Li, G., Tostain, J., and Peoc’h, M. (2008). Differential
Expression of Prognostic Markers in Histological Subtypes of Papillary Renal
Cell Carcinoma. BJU Int. 102, 183–187. doi:10.1111/j.1464-410X.2008.07605.x

Pitra, T., Pivovarcikova, K., Alaghehbandan, R., and Hes, O. (2019). Chromosomal
Numerical Aberration Pattern in Papillary Renal Cell Carcinoma: Review

Article. Ann. Diagn. Pathol. 40, 189–199. doi:10.1016/j.anndiagpath.2017.
11.004

Prisciandaro, M., Ratta, R., Massari, F., Fornarini, G., Caponnetto, S., Iacovelli, R.,
et al. (2019). Safety and Efficacy of Cabozantinib for Metastatic Nonclear Renal
Cell Carcinoma. Am. J. Clin. Oncol. 42, 42–45. doi:10.1097/coc.
0000000000000478

Ricketts, C. J., De Cubas, A. A., Fan, H., Smith, C. C., Lang, M., Reznik, E., et al.
(2018). The Cancer Genome Atlas Comprehensive Molecular Characterization
of Renal Cell Carcinoma. Cell Rep 23, 3698–4326.e315. doi:10.1016/j.celrep.
2018.03.07510.1016/j.celrep.2018.06.032

Ritchie, M. E., Phipson, B.,Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). Limma
powers Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res. 43, e47. doi:10.1093/nar/gkv007

Ronnen, E. A., Kondagunta, G. V., Ishill, N., Spodek, L., Russo, P., Reuter, V., et al.
(2006). Treatment Outcome for Metastatic Papillary Renal Cell Carcinoma
Patients. Cancer 107, 2617–2621. doi:10.1002/cncr.22340

Schöffski, P., Wozniak, A., Escudier, B., Rutkowski, P., Anthoney, A., Bauer, S.,
et al. (2017). Crizotinib Achieves Long-Lasting Disease Control in Advanced
Papillary Renal-Cell Carcinoma Type 1 Patients with MET Mutations or
Amplification. EORTC 90101 CREATE Trial. Eur. J. Cancer 87, 147–163.
doi:10.1016/j.ejca.2017.10.014

Seager, R. J., Hajal, C., Spill, F., Kamm, R. D., and Zaman, M. H. (2017). Dynamic
Interplay between Tumour, Stroma and Immune System Can Drive or Prevent
Tumour Progression. Converg. Sci. Phys. Oncol. 3, 034002. doi:10.1088/2057-
1739/aa7e86

Sharma, B. R., Karki, R., and Kanneganti, T. D. (2019). Role of AIM2
Inflammasome in Inflammatory Diseases, Cancer and Infection. Eur.
J. Immunol. 49, 1998–2011. doi:10.1002/eji.201848070

Song, W., Ren, J., Xiang, R., Kong, C., and Fu, T. (2021). Identification of
Pyroptosis-Related Subtypes, the Development of a Prognosis Model, and
Characterization of Tumor Microenvironment Infiltration in Colorectal
Cancer. Oncoimmunology 10, 1987636. doi:10.1080/2162402x.2021.1987636

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene Set Enrichment Analysis: a Knowledge-Based
Approach for Interpreting Genome-wide Expression Profiles. Proc. Natl.
Acad. Sci. U.S.A. 102, 15545–15550. doi:10.1073/pnas.0506580102

Sun, Z., Jing, C., Guo, X., Zhang, M., Kong, F., Wang, Z., et al. (2021).
Comprehensive Analysis of the Immune Infiltrates of Pyroptosis in Kidney
Renal Clear Cell Carcinoma. Front. Oncol. 11, 716854. doi:10.3389/fonc.2021.
716854

Tachibana, H., Kondo, T., Ishihara, H., Fukuda, H., Yoshida, K., Takagi, T., et al.
(2021). Modest Efficacy of Nivolumab Plus Ipilimumab in Patients with
Papillary Renal Cell Carcinoma. Jpn. J. Clin. Oncol. 51, 646–653. doi:10.
1093/jjco/hyaa229(2021)

Tanaka, A., and Sakaguchi, S. (2017). Regulatory T Cells in Cancer
Immunotherapy. Cell Res 27, 109–118. doi:10.1038/cr.2016.151

Tannir, N. M., Jonasch, E., Albiges, L., Altinmakas, E., Ng, C. S., Matin, S. F., et al.
(2016). Everolimus versus Sunitinib Prospective Evaluation in Metastatic Non-
Clear Cell Renal Cell Carcinoma (ESPN): A Randomized Multicenter Phase 2
Trial. Eur. Urol. 69, 866–874. doi:10.1016/j.eururo.2015.10.049

Tordjman, M., Dbjay, J., Chamouni, A., Morini, A., Timsit, M. O., Mejean, A., et al.
(2020). Clear Cell Papillary Renal Cell Carcinoma: A Recent Entity with
Distinct Imaging Patterns. Am. J. Roentgenology 214, 579–587. doi:10.2214/
ajr.19.21681

Vikram, R., Ng, C. S., Tamboli, P., Tannir, N. M., Jonasch, E., Matin, S. F., et al.
(2009). Papillary Renal Cell Carcinoma: Radiologic-Pathologic Correlation and
Spectrum of Disease. RadioGraphics 29, 741–754. doi:10.1148/rg.293085190

Wang, B., and Yin, Q. (2017). AIM2 Inflammasome Activation and Regulation: A
Structural Perspective. J. Struct. Biol. 200, 279–282. doi:10.1016/j.jsb.2017.
08.001

Wei, R., Li, S., Yu, G., Guan, X., Liu, H., Quan, J., et al. (2021). Deciphering the
Pyroptosis-Related Prognostic Signature and Immune Cell Infiltration
Characteristics of Colon Cancer. Front. Genet. 12, 755384. doi:10.3389/
fgene.2021.755384

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: a Class
Discovery Tool with Confidence Assessments and Item Tracking.
Bioinformatics (Oxford, England) 26, 1572–1573. doi:10.1093/bioinformatics/
btq170

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 87160214

Zhang et al. Pyroptosis-Related Genes in KIRP

https://doi.org/10.3389/fcell.2021.748039
https://doi.org/10.3389/fcell.2021.748039
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1016/s1470-2045(09)70162-7
https://doi.org/10.1016/s1470-2045(09)70162-7
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1038/s41568-019-0123-y
https://doi.org/10.1038/s41568-019-0123-y
https://doi.org/10.1097/01.Mp.0000036346.88874.25
https://doi.org/10.1097/01.Mp.0000036346.88874.25
https://doi.org/10.3389/fimmu.2021.663495
https://doi.org/10.3389/fimmu.2021.663495
https://doi.org/10.1111/imr.12296
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1200/jco.20.02363
https://doi.org/10.1016/j.urolonc.2021.04.013
https://doi.org/10.18632/aging.203687
https://doi.org/10.1016/j.eururo.2016.02.029
https://doi.org/10.1200/jco.2002.11.123
https://doi.org/10.1200/jco.2002.11.123
https://doi.org/10.1038/s41379-021-00990-9
https://doi.org/10.1038/s41379-021-00990-9
https://doi.org/10.1016/j.jtcvs.2017.12.107
https://doi.org/10.1111/j.1464-410X.2008.07605.x
https://doi.org/10.1016/j.anndiagpath.2017.11.004
https://doi.org/10.1016/j.anndiagpath.2017.11.004
https://doi.org/10.1097/coc.0000000000000478
https://doi.org/10.1097/coc.0000000000000478
https://doi.org/10.1016/j.celrep.2018.03.07510.1016/j.celrep.2018.06.032
https://doi.org/10.1016/j.celrep.2018.03.07510.1016/j.celrep.2018.06.032
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1002/cncr.22340
https://doi.org/10.1016/j.ejca.2017.10.014
https://doi.org/10.1088/2057-1739/aa7e86
https://doi.org/10.1088/2057-1739/aa7e86
https://doi.org/10.1002/eji.201848070
https://doi.org/10.1080/2162402x.2021.1987636
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.3389/fonc.2021.716854
https://doi.org/10.3389/fonc.2021.716854
https://doi.org/10.1093/jjco/hyaa229(2021)
https://doi.org/10.1093/jjco/hyaa229(2021)
https://doi.org/10.1038/cr.2016.151
https://doi.org/10.1016/j.eururo.2015.10.049
https://doi.org/10.2214/ajr.19.21681
https://doi.org/10.2214/ajr.19.21681
https://doi.org/10.1148/rg.293085190
https://doi.org/10.1016/j.jsb.2017.08.001
https://doi.org/10.1016/j.jsb.2017.08.001
https://doi.org/10.3389/fgene.2021.755384
https://doi.org/10.3389/fgene.2021.755384
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/bioinformatics/btq170
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Williamson, S. R. (2021). Clear Cell Papillary Renal Cell Carcinoma: an Update
after 15 Years. Pathology 53, 109–119. doi:10.1016/j.pathol.2020.10.002

Wu, J., Zhu, Y., Luo, M., and Li, L. (2021). Comprehensive Analysis of Pyroptosis-
Related Genes and Tumor Microenvironment Infiltration Characterization in
Breast Cancer. Front. Immunol. 12, 748221. doi:10.3389/fimmu.2021.748221

Xia, X., Wang, X., Cheng, Z., Qin, W., Lei, L., Jiang, J., et al. (2019). The Role of
Pyroptosis in Cancer: Pro-cancer or Pro-"host"? Cell Death Dis 10, 650. doi:10.
1038/s41419-019-1883-8

Xiang, R., Ge, Y., Song, W., Ren, J., Kong, C., and Fu, T. (2021). Pyroptosis Patterns
Characterized by Distinct Tumor Microenvironment Infiltration Landscapes in
Gastric Cancer. Genes 12, 1535. doi:10.3390/genes12101535

Yamamoto, T., Gulanbar, A., Hayashi, K., Kohno, A., Komai, Y., Yonese, J., et al.
(2021). Is Hypervascular Papillary Renal Cell Carcinoma Present? Abdom.
Radiol. (N Y) 46, 1687–1693. doi:10.1007/s00261-020-02809-8

Zhang, Y., He, R., Lei, X., Mao, L., Jiang, P., Ni, C., et al. (2021). A Novel Pyroptosis-
Related Signature for Predicting Prognosis and Indicating Immune
Microenvironment Features in Osteosarcoma. Front. Genet. 12, 780780.
doi:10.3389/fgene.2021.780780

Zhao, J., and Eyzaguirre, E. (2019) Clear Cell Papillary Renal Cell Carcinoma. 143,
1154–1158. doi:doi:10.5858/arpa.2018-0121-RS

Zhao, Y., Li, M-C., Konaté, M. M., Chen, L., Das, B., Karlovich, C., et al. (2021).
TPM, FPKM, or Normalized Counts? A Comparative Study of Quantification
Measures for the Analysis of RNA-Seq Data from the NCI Patient-Derived
Models Repository. J. translational Med. 19, 269. doi:10.1186/s12967-021-
02936-w

Zheng, Z., and Li, G. (2020). Mechanisms and Therapeutic Regulation of
Pyroptosis in Inflammatory Diseases and Cancer. Ijms 21, 1456. doi:10.
3390/ijms21041456

Zhou, S., Sun, Y., Chen, T., Wang, J., He, J., Lyu, J., et al. (2021). The Landscape of
the Tumor Microenvironment in Skin Cutaneous Melanoma Reveals a
Prognostic and Immunotherapeutically Relevant Gene Signature. Front. Cel
Dev. Biol. 9, 739594. doi:10.3389/fcell.2021.739594

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Huang and Xi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 87160215

Zhang et al. Pyroptosis-Related Genes in KIRP

https://doi.org/10.1016/j.pathol.2020.10.002
https://doi.org/10.3389/fimmu.2021.748221
https://doi.org/10.1038/s41419-019-1883-8
https://doi.org/10.1038/s41419-019-1883-8
https://doi.org/10.3390/genes12101535
https://doi.org/10.1007/s00261-020-02809-8
https://doi.org/10.3389/fgene.2021.780780
https://doi.org/10.5858/arpa.2018-0121-RS
https://doi.org/10.1186/s12967-021-02936-w
https://doi.org/10.1186/s12967-021-02936-w
https://doi.org/10.3390/ijms21041456
https://doi.org/10.3390/ijms21041456
https://doi.org/10.3389/fcell.2021.739594
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Comprehensive Analysis of Pyroptosis-Related Genes and Tumor Microenvironment Infiltration Characterization in Papillary Re ...
	Background
	Materials and Methods
	KIRP Data Source and Preprocessing
	Unsupervised Clustering Analysis of PRGs
	Relationship Between Molecular Subgroups and TME in KIRP
	Identification of DEGs in Various PRG Clusters
	Generation of PRG Score
	The Creation and Testing of a Nomogram Grading System
	Analyzing Drug Susceptibility and Mutations

	Results
	Genetic and Transcriptional Variation of PRGs in KIRP
	Construction of Pyroptosis Subtypes in KIRP
	PRG Signature Generation
	Generation of PRG the Signatures Scoring System
	Survival Prediction and Nomogram
	Assessment of TME Between the Two Groups
	Analyses of Gene Mutation and Drug Sensitivity

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	References


