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Abstract: The accuracy of transmission ultrasonic tomography for the detection of brittle damage
in concrete beams can be effectively supported by the graph theory and, in particular, by Dijkstra’s
algorithm. It allows determining real paths of the fastest ultrasonic wave propagation in concrete
containing localized elastically degraded zones at any stage of their evolution. This work confronts this
type of approach with results that can be obtained from non-local isotropic damage mechanics. On this
basis, the authors developed a method of reducing errors in tomographic reconstruction of longitudinal
wave velocity maps which are caused by using the simplifying assumptions of straightness of the
fastest wave propagation paths. The method is based on the appropriate elongation of measured
propagation times of the wave transmitted between opposite sending-receiving transducers if the
actual propagation paths deviate from straight lines. Thanks to this, the mathematical apparatus
used typically in the tomography, in which the straightness of the fastest paths is assumed, can be
still used. The work considers also the aspect of using fictitious wave sending-receiving points in
ultrasonic tomography for which wave propagation times are calculated by interpolation of measured
ones. The considerations are supported by experimental research conducted on laboratory reinforced
concrete (RC) beams in the test of three-point bending and a prefabricated damaged RC beam.

Keywords: non-destructive testing; ultrasonic tomography; graph theory; concrete; damage
mechanics; elastic degradation; damage parameter; internal length; experimental research

1. Introduction

Concrete is one of the most commonly used materials in civil structures. From a scientific and
technical point of view, it is a subject of interest both at the stage of designing a recipe, manufacturing
various types of elements and during its operation. Ensuring safe and long-term use of concrete
structures and elements requires, among other things, appropriate diagnostics. It can use destructive
testing (e.g., by testing the strength of drilled cores [1,2]), semi-destructive testing (e.g., pull-out [1,3],
pull-off [4,5] methods) and non-destructive testing (NDT, e.g., using sclerometer tests [1,3,6], thermal
imaging techniques [7,8], analysis of natural frequencies [9,10], stereological investigations [11], acoustic
emission [12,13], X-ray tomography [12], ground-penetrating radars [7,14,15], ultrasound [1,3,7,15–25]
including ultrasound tomography [15,19–25]). The choice of method depends on the material
characteristics that we want or are able to measure. All three types of tests are widely known, but
especially NDT, thanks to the introduction of a number of modern measurement techniques in the
building industry and intensive research, is becoming more and more popular and reliable. Particularly
interesting in this area are ultrasound techniques which use at their basis typical phenomena associated
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with wave motion physics—e.g., reflection, diffraction, attenuation, change of propagation velocity
depending on changes in stiffness and density of the medium. The simplest method in the case of
concrete structures is an assessment of the velocity of longitudinal waves between selected points
of the tested element—the lower the velocity, the lower the stiffness of concrete and its quality [16].
However, it concerns the average speed measurement on the section between the ultrasonic transducers.
An interesting, practical case of this type of analysis is article [18] where ultrasonic measurements
carried out on a river dam were verified by means of visual inspection of cores taken from it. In the
literature, there are also analyses concerning the change of time and intensity of ultrasound wave
passing through the area of concrete where a single crack builds up [17]. The use of such research,
however, requires in advance knowledge of where such a defect may develop in an element. On the
other hand, tomographic methods are deprived of this type of inconvenience, where only a set of
transceiver converters suitable for concrete is required and external access to the tested element on one
side in a reflective mode (e.g., Reference [21]) or with access on two or more sides in a transmission
mode (e.g., Reference [15,20,22–25]). In the latter view, the state of the material is most often shown
indirectly by means of reconstructed maps of the propagation velocity of a selected type of ultrasound
wave. For the sake of convenience, longitudinal waves are usually selected for this purpose in the
unambiguous interpretation of measurements, as they move the fastest and are not dispersed. It
should be emphasized that very accurate maps of cracks in the concrete structure can be made, on
the other hand, using X-ray tomography [12]; however, currently, due to the cost of the equipment
and the possibility of its use, it is practically impossible to use it directly on real building structures
in field research. It is also worth mentioning at this point that, from the point of view of developing
mathematical foundations for tomography, its beginning dates back to 1917, when Johann Radon
proposed a solution to the problem of reconstruction of the shape of an object on the basis of its
projections [26].

The tomographic imaging concrete elements available in the literature focus mainly on the
identification of defects with much lower acoustic resistance than the surrounding concrete: e.g.,
artificially introduced defects, for research purposes, in the form of inclusions from foamed
polystyrene [21–23], expanded polypropylene [25], prisms from cracked concrete [23] or air-filled
pipes [21], cavities in defectively injected pipes for placing prestressing cables [15], areas strongly
cracked as a result of excessive loads [20,22,24] or freeze-thaw cycles [19]. Therefore, the first goal that
the authors set for themselves in this paper was to carry out an analysis of the extent to which it is
possible to detect brittle defects in concrete beams starting from the early stage of their development,
when microcracks do not yet form defects capable of effective reflection of waves or their significant
slowing down. For this purpose, the methodology of damage mechanics was applied in terms of one
of the most recognized concrete models in this field, formulated by Chaboche [27] and Mazars [28],
and, in the non-local terms, developed by Pijaudier-Cabot [29–31]. Then, depending on the degree
of brittle damage described in a “fuzzy” way by the damage parameter, it is possible to model the
development of a localized decrease in material stiffness and the associated reduction in the speed of
sound waves in concrete. This fact can also be used in the tomographic assessment of concrete [32,33].
For this reason, in order to reliably calculate the distributions of drop in stiffness and changes in the
velocity of the longitudinal wave around the forming crack, the authors of the paper proposed an
effective way of identifying the parameters of a non-local model of brittle damage evolution using
experimental data from [34]. These data were then used in computer simulations of tomographic
identification of this type of defect in various phases of its formation and were confronted with the
results of our own experimental research.

Another important aspect of ultrasound tomography measurements is its accuracy which may
be affected by the diffraction of waves when passing through and around areas of different acoustic
resistance than the rest of the medium. It is commonly assumed in order to significantly simplify
calculations that paths of the fastest wave propagation are rectilinear (e.g., Reference [15,19–24,35])
which is then called rays. This introduces disturbances in tomographic reconstructions when the actual
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paths differ strongly from the geometry assumed so far. The studies available in the literature show that
this assumption does not cause any disturbances in the location of the damaged areas [21–24]. However,
the obtained values of wave propagation velocities on the reconstructed maps differ significantly from
the actual values at high levels of concrete degradation [32,33] or inclusions with significantly different
acoustic resistance from the matrix [25]. In this case, it should be taken into account that according
to the Fermat principle, wave disturbance travels from one point to another such a path that needs
minimum or maximum time, or the same in comparison to other, adjacent paths [36], which determines
the course of its fastest propagation. As stated in Reference [25], the first attempt to consider the
Fermat principle in ultrasound imaging was made by Johnson et al. [37]. They proposed the use of the
ray-tracing technique which in the case of concrete structures was first adopted in works [38,39]. An
alternative to this type of approach is the use of graph theory, in particular Dijkstra’s algorithm [40].
If we apply it in the analyzed issue to a full graph the nodes of which will cover the studied area,
and the weights of the edges will be equal to the time of the wave passing through them, then in
this way we can approximately determine the shape of paths of the fastest sound propagation and
the time needed for the wave to travel along them. The results will be the more accurate the denser
the network of nodes. This very interesting concept, inspired by the works of various authors and
applied to seismic waves, was developed in Moser’s work [41] in 1991 (as in Reference [25]). Extensive
studies in this field with examples of calculations using experimental data from concrete cubes with
inclusions from expanded polypropylene have been presented in Reference [25]. A proposal to use
this methodology in the ultrasonic testing of structural elements was also presented by the authors in
Reference [33,42]. In the light of the quoted information, it can be noted that so far there is no analysis
in the literature concerning this type of problem in the case of tomographic assessment of the damage
evolution described according to the concept of damage mechanics. Therefore, the second aim of this
article was to present in this area appropriate numerical analyses with the use of Dijkstra’s algorithm in
determining shape of the paths of the fastest ultrasound wave propagation. On this basis, the author’s
own method of improving the accuracy of tomographic calculations was formulated because of the
inconsistency of the assumptions with reality in the case of using straight-line rays to approximate the
geometry of the fastest propagation paths. For this purpose, it is proposed to not interfere with the
assumption of straightness of ultrasound pulse pathways but, on the other hand, to properly scale the
measured times of their propagation between the assumed transceiver points elongating them in the
case of rays that pass through elastically degraded areas. The advantage of such an approach is that it
does not complicate well established mathematical methods (e.g., Reference [35,43–46]) which have
been implemented in tomographic imaging techniques.

The paper also raises the practical aspect of conducting such measurements by analyzing in the
light of the presented arguments how the accuracy of results may be affected by the introduction
of the so-called fictitious transceiver points for which the times of propagation of ultrasound waves
are interpolated on the basis of measurements from the real points. In this respect, the authors were
inspired by work [47] where this approach was presented in the study of moisture distribution in walls.
It may significantly reduce the number of points used and the labor intensity in real measurement
situations, which is particularly important in the case where fewer ultrasonic transducers are available.

Due to the scope of studies within the framework of the presented calculation examples and
experiments, the authors limited themselves to the case of concrete beams with elastically degraded
zones perpendicular to the beam axis. All the calculations made in the article were done with the use
of the authors’ computer programs written in the MATLAB software environment.

2. Ultrasonic Transmission Tomography

The considerations presented in the paper concern the case of concrete beams that contain
elastically degraded zones (in the form of grouped micro-cracks or cracks) running across the entire
cross-section—e.g., as a result of simple bending or tension. Therefore, tomographic analyses were
narrowed down to the identification of brittle damage in a flat longitudinal section of beam which will
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also be the plane of symmetry of this element, focusing on the assessment of changes in the speed
of ultrasonic waves due to a local change in the stiffness of the cracked material. For this reason, in
all computational examples and experimental studies presented in the paper, a system of opposite
transmitting/receiving points of ultrasound waves in the transmission mode was used (Figure 1).
Longitudinal waves have been selected as non-dispersive and the fastest of all ultrasonic wave types
for the study. This requires, however, that their length should be small enough in relation to the
dimensions of the cross-section of the element to be effectively generated (practical recommendations
in this respect can be found in, e.g., Reference [48]). On the other hand, it limits the distance between
the intended transmitting/receiving points because of the attenuation of the longitudinal waves and
the angle at which they may propagate from the transmitting point in an effective manner in reception
because of the amplitude distribution. In the latter case, on the basis of individual experiences of
the authors, the angle of inclination of diagonal rays to a bar axis was limited to range from 45◦ to
135◦; in Reference [33], a numerical simulation of the process of propagation of ultrasounds during its
excitation by the transducer was performed where it was shown that the amplitudes of longitudinal
waves are negligible in contrast to transverse waves outside this angular range, which may result in
incorrect and increased propagation time reading.
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Figure 1. Scheme of a cell system, transmitting/receiving points, and rays in a plane area
examined tomographically.

From the mathematical point of view, by indirect visualization of the material structure by means
of maps of distributions of quantities characterizing the propagation of ultrasound waves, it is necessary
to build an appropriate system of equations (e.g., Reference [35]). The plane problem assumes that the
reconstructed image consists of a finite number of plane cells which, in the examined area, is separated
by an orthogonal grid of a step of δ1 × δ2 (Figure 1). The function is searched for in an approximate
way:

f = c−1
L (x, y), (1)

where: cL—longitudinal wave velocity (m/s); x, y—spatial variables (m). For this purpose, it is assumed
that f in each cell takes a constant value of fk where k = 1, 2, . . . , K.

In the problem, the longitudinal wave propagation times between the selected sending (Sm) and
receiving (Rn) points must be given where m = 1, 2, . . . , M; n = 1, 2, . . . , N. It is assumed to simplify
considerations that the fastest propagation path between these points can be modeled as a straight
line, which in tomography is referred to as a ray. The propagation time of tray,i (s) over the i-th ray,
connecting points Sm and Rn, can be calculated from the integral:

tray,i =

∫ Rn

Sm

f (li)dli, (2)

where: li—variable describing the position on the i-th ray (m); i = 1, 2, . . . , I. Considering that averaged
values f are being sought in the cellular areas, we can write that:
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tray,i =
∑K

k=1
Lray,i,k fk → Ax = b, (3)

where: Lray,i,k—parts of the length of the i-th ray falling on the k-th cell (m) (if the ray does

not pass through cell k, then Lray,i,k = 0), A =
[
Lray,i,k

]
I×K

(m), x = [ f1, f2, . . . , fK]
T (s/m),

b =
[
tray,1, tray,2, . . . , tray,I

]T
(s). The above is the definition of a system of equations in relation

to the value of fk, which is used to determine the velocity distribution of ultrasound wave propagation
in tomography. After its solution, we get that:

cL tom,k =
1
fk

, (4)

where cL tom,k—mean velocity of the longitudinal wave in the k-th cell (m/s) (in the sense of the
presented method). Please note that I (the number of rays used) must not be less than K (the number
of the assumed cells) and the rays must evenly cover the test area. The system of equations formulated
in such a way is an ill-conditioned one, which forces the use of iterative techniques of its solving. The
basic method in this respect is an algorithm developed by the Polish mathematician Stefan Kaczmarz
(1937). In 1970, Gordon and his collaborators, working on the application of this technique in medicine,
rediscovered this method and named it Algebraic Reconstruction Technique (ART) [43]. It was this one
that was used in the first in the world computed tomography scanner constructed by Hounsfield in
1972 [44]. On the basis of the Kaczmarz algorithm, many other methods were developed. Currently, the
literature distinguishes three basic ways of imaging: the aforementioned ART, Simultaneous Iterative
Reconstruction Technique (SIRT), and Simultaneous Algebraic Reconstruction Technique (SART) which
is a combination linking the advantages of the ART and SIRT methods [35,46]. For this purpose, the
Tikhonov regularization method can also be used in the method of least squares (e.g., Reference [24]).

In this article, all tomographic images presented below were solved with the use of a randomized
Kaczmarz algorithm. The final result was taken as xmean,q, i.e., the mean of q independently obtained
solutions of equation system (3). Hence:

xmean,q =
1
q

∑q

r=1
xr. (5)

In a given solution xr, its subsequent approximations were made by projecting the previous
approximation in a direction perpendicular to the randomly selected straight lines defined by the
equations of system (3), but so that each of these lines would be used only once. The starting point for
the iteration of each xr was the vector:

x0 =
[
c−1

L ref, c−1
L ref, . . . , c−1

L ref

]T

1×K
, (6)

where cL ref—reference value of the longitudinal wave velocity (m/s). The number q of the averaged
solutions of equation system (3) were selected so that the condition was met:∣∣∣∣∣∣ eg,q − eg,q−1

eg,q

∣∣∣∣∣∣ < 10−5 and eg,q =

∣∣∣∣∣∣Axmean,q − b
∣∣∣∣∣∣

||b||
. (7)

As mentioned in the introduction, another inconvenience of the presented method of tomographic
imaging is the fact that ultrasonic waves are diffracted when avoiding areas with different acoustic
resistance, so that the real paths of the fastest propagation are curvilinear. This is one of the basic
sources of inaccuracy of the presented approach if there are sub-areas with significantly different
acoustic resistances in the tested concrete element in relation to the rest of the element [25,32,33]. These
issues will be discussed in the context of the following calculation examples and experimental studies
concerning the detection of elastically degraded concrete zones.
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3. Localized Elastic Degradation in Concrete—Crack Model in Concrete According to the Damage
Mechanics

In concrete, due to its brittleness, the evolution of damage occurs in particular at the action of
tensile stresses [27–31]. The process begins with the formation of microcracks which, with further
increase in stress, grow into localized damage zones and cracks visible to the naked eye. For this
reason, the presence of such zones at the final stage can be easily detected visually, as they contain
cracks of the order of tenths of a millimeter in width. On the other hand, they are not visible at an
early stage of development, and what is important, the initial microcracks usually do not occur in
random places of concrete structure. When the cementitious material structure develops, the high
and low internal cohesion zones can be distinguished. Especially, the places with low cohesion are
the ones where cracks begin to grow because, in such places, even a small amount of released energy
causes their propagation. They form mainly around the micro-pores or near the phase separation
surfaces [11]. From the analyses presented in this respect within the damage mechanics, it is known
that this process obviously leads to elastic degradation of concrete, which means a local decrease in
material stiffness [27–31,49]. This phenomenon gives grounds for detection and control of this type of
damage by ultrasound tomography if the spatial distribution of propagation velocity of a selected
type of mechanical waves (e.g., Reference [24,33]) is assessed within such a framework. That is why,
in the article, the preliminary calculations were oriented on determining the spatial distribution of
concrete stiffness change in the case of localized damage under tension. The necessary information was
obtained in this way in order to analyze the propagation of ultrasound waves in a localized elastically
degraded concrete zone which evolution leads finally to forming macro-cracks. The calculations were
performed using the assumptions of one of the most popular models in this respect, introduced by
Chaboche [27] and Mazars [28], which takes into account the weakening of the material due to the
isotropic damage accumulation and which was developed by Pijaudier-Cabot [29–31] in non-local
terms. In a uniaxial tensile state, the model assumes the following relationship between stress and
deformation (using the principle of strain equivalence):

σ = (1−D)E0ε, (8)

where: σ—tensile normal stress (Pa); ε—normal strain [-] E0—Young’s modulus in undamaged material
(Pa); D—damage parameter [-]. Due to thermodynamic limitations of the process, the following must
be satisfied:

if fD = ε− κ = 0 and
.
ε > 0, then

D = 1− (1−At)
κ0
κ −At exp(−Bt(κ− κ0)) and

.
κ =

.
ε,

(9)

if fD = ε− κ < 0 or
.
ε ≤ 0, then

.
D = 0 and

.
κ = 0,

(10)

where: At, Bt—material parameters [-]; fD—load function [-]; κ—variable describing the process of
material weakening [-]; κ0—initial value of the variable κ [-]; ε—non-local equivalent tensile strain
[-]. To simplify the problem, if we assume that pure tension occurs in a concrete element with its axis
described by variable x (m), the non-local equivalent strain at point x will be defined as:

ε(x) =
1

Vr

∫ s(2)

s(1)
ε̃(s) ψ(x− s)A(s) ds, (11)

Vr(x) =
∫ s(2)

s(1)
ψ(x− s)A(s) ds , (12)

ψ(x− s) = exp

−4(x− s)2

l2c

, (13)

ε̃ =

√∑3

i=1
〈εi〉

2, (14)
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where: ε̃—local equivalent tensile strain [-]; εi—local principal strain [-]; Vr—representative volume
of the material (m3), s—variable describing the position along axis x (m); s(1), s(2)—starting and
ending point of the considered element (m); A—cross-sectional area of the element (m2); lc—the
characteristic dimension of the non-locality or the so-called internal length (m); ψ—weight function [-];
〈. . .〉—Macauley’s operator. Variability of function ψ is adopted in the model identical to the normal
distribution with standard deviation lc

2
√

2
. It also means that the range of the non-locality practically

ceases to be significant above the distance lc because ψ(x− s = lc) = 1.83·10−3 (Figure 2). In addition,
in the case of uniaxial tension, ε̃ = ε where ε is the normal strain along the axis of the beam, κ0 will
be equal to this deformation at the moment of initiation of the damage evolution, and κ0 can reach
a maximum value of ft/E0 where ft is the tensile strength. In the incremental version needed for
the numerical analysis of the problem, the stress and damage evolution Equations (8)–(10) take the
following forms:

if fD = ε− κ = 0 and ∆ε > 0, then
∆σ = (1−D)E0∆ε− ∆DE0ε

∆D = ∂D
∂ε ∆ε = ∂D

∂ε
1

Vr

∫ s(2)
s(1)

∆ε̃(s) ψ(x− s)A(s) ds

∆κ = ∆ε

,
(15)

if fD = ε− κ < 0 or ∆ε ≤ 0, then
∆σ = (1−D)E0∆ε

∆D = 0
∆κ = 0

,
(16)

where: ∆ . . .—the finite increment of a given quantity.
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A separate issue related to the use of the discussed model is the adoption of appropriate material
parameters that will enable the most accurate capture of the real behavior of concrete. The authors in
paper [31] give the approximate typical ranges of these parameters in case of concrete of moderate
strength, i.e., E0 = 30–40 GPa, At = 0.7–1.2, Bt = 104–5·104, κ0 = 10−4, and lc = 3–5 da max where da max

is the maximum size of the aggregate. However, so far, there are no exhaustive items in the literature
devoted to research and formulation of automatic optimization calculation techniques allowing for
precise estimation of all parameters mentioned above for a given type of concrete due to the length lc. It
is assessed using mainly the scale effect and the model is calibrated by a manual trail-and-error method
(e.g., Reference [31,49,50]). For this purpose, a suitable coefficient inverse problem is formulated in this
article which uses illustratively the data from [34]. These tests concern the uniaxial tensile testing of a
series of “dog bone” shaped concrete specimens of mean compressive strength fcm,cube = 50 MPa and
da max = 8 mm. The scheme of specimens is shown in Figure 3, and the experimental load-elongation
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dependencies (Pexp-uexp) of a selected series of specimens of an overall length of 30 cm within a range of
up to 50 µm are shown in Figure 4a. This relation was obtained on the basis of digitalization of graphs
presented in Reference [34], and due to their quality by entering the curve in the middle area formed by
the envelope of all several curves measured on the specimens of the length of 30 cm. For calculations,
data from this series of samples were selected from all 7.5 cm, 15 cm, 30 cm, 60 cm, 120 cm, and 240 cm
length series, which were tested in Reference [34], because in their case the relatively highest number
of measurements was obtained with possibly small scatter of measured tensile strength. On the other
hand, samples with a length of 7.5 cm were characterized by the largest scatter of measurement results
on the basis of which the authors of [34] concluded that the width of their smallest section is smaller
than the length lc and it can be larger. For this reason, its value was suggested as 6–7 da max. The
elongation measurement base was 0.6 times the notch length in the specimen (Figure 3). It should be
noted at this point that a very interesting analysis of the development of elastically degraded zones
based on the data from work [34] was also presented in Reference [50] but without formulating a
coefficient inverse problem.
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Figure 3. Shape of concrete specimens for the tension tests (based on Reference [34]).
The tests included in Reference [34] were also selected for analysis due to the fact that the shape of

the specimens enables, in tension, the location of the brittle damage zone in their middle area, leading
to the formation of a single macro-crack when the load capacity is exhausted. In the considerations, for
the sake of simplification, a bar in tension of variable cross-section was used as a model of specimens,
according to their geometrical features. This choice was dictated by the need to carry out the calculation
procedures described below in an acceptable time frame due to the computer hardware available
(PC with a processor 3.06 GHz and RAM 8 GB—time of solving one task approximately 2 min). The
boundary problem analyzed was solved using the finite element method (FEM) in an incremental
version using physical Equations (15),(16). Two-node bar finite elements with 2 degrees of freedom
and constant and averaged over the length physical and geometric features (with one integration
point in the middle of the element) were used. One hundred and twenty-one finite elements were
adopted on the axis of the specimen of the length of 30 cm. In addition, the load increments of the
specimen were assumed to be continuously elongated during the calculation, which meant switching
the force sign at the transition to the weakening phase. The force increment, in turn, was selected in
each step so that the increments in elongation of the measuring base and normal strain in each of the
elements would not exceed, respectively, the values of 0.15 µm and 1.25× 10−6. Taking into account
the above mentioned conditions of calculations allowed to obtain a satisfactory convergence of the
solution. Further increase of the number of elements and decrease of permissible increments of strain
and displacements did not significantly affect the result (Figure 4b).
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First, E0 was estimated by adjusting the slope of the initial straight-line section to the measuring
point

[
Pexp, uexp

]
= [20 kN, 5 µm] in the load-elongation relation (P-u) obtained from the model in the

elastic range. The calculus procedure in this case was realized using ordered domain search. Hence,
it was determined that E0 = 38.29 GPa. Other parameters, i.e., At, Bt, κ0, and lc were estimated by
minimizing the objective function:

F(p) =
∑n

i=1

(
Pi(p) − Pexp,i

)2
, (17)

where: Pexp,i—specimen loads from the experiment (N) determined in the weakening phase (Figure 4a)
for elongations at equidistant intervals starting from uexp = 8.25 µm (for Pexp = Pmax = 30.72 kN—i.e.,
maximum load) to uexp = 50 µm (for Pexp = 8.18 kN); Pi—equivalents Pexp,i determined on the basis
of the assumed model (N); p = [p1, p2, p3, p4]—vector of variables corresponding to the parameters
searched for, i.e., At, Bt, κ0, and lc, respectively. On that basis, it was assumed that:

arg min F(p) = [At, Bt,κ0, lc]. (18)

The calculations in formula (17) assumed n = 31. The minimization of the implicit function (17)
was carried out in three stages. In the first stage, a genetic algorithm was used on a population of
20 parameter vectors p in 20 selections. The vector components of the first population were drawn
in preselected intervals: p1 of [0.7, 1.2], p2 of [104, 5 × 104], p3 of [5 × 10−4, Pmax/(E0Amin)] and p4 of
[3 da max, 11 da max], where Amin [m2] is the minimum cross-sectional area of the specimen at the center
of its length; hence, Pmax/Amin = ft. It should be noted that the upper limit of interval selected for p4

is greater than that given in Reference [31,34]. The authors assumed finally the value 11 da max as the
first smallest one for which the genetic algorithm did not estimate placing the minimum point of F
right next to the upper limit of p4. Subsequent generations of the population were created as follows: p
with the lowest value of F passed unconditionally to the next generation, the next 10 new vectors p
were obtained by arithmetic crossover of randomly selected p from the group of the first 14 vectors of
the old generation after their ordering from the lowest to the highest value of F. The set of the last nine
new vectors p were drawn in the same way as in the first generation. This procedure was repeated
independently five times. In the second stage, the same procedure as in the first stage was followed,
however, changing the draw intervals of vector p components. The boundaries of them were defined
from 0.8 to 1.2 of the the values of the p vector components for which the lowest value of F was obtained
in stage one. In the third and final stage, an orderly search of the domain of acceptable solutions was
performed in the vicinity of the point defined by the vector p components with the lowest F-value found
in the second stage. The search interval was selected from 0.99 to 1.01 of the values of the parameters
of this vector. If the minimum F in this area was at the boundary of any interval, the procedure was
repeated where the point with the current minimum value F determined the midpoint of the intervals
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in the next step. In this way, the following values of the parameters of the concrete damage evolution
equations were obtained: At = 8.01× 10−1, Bt = 1.95× 104, κ0 = 5.64× 10−5 and lc = 112 mm while
the objective function F reached the value 6.07× 106 N2. This outcome corresponds to the global mean
square relative error √(

∑n
i=1 (Pi(p) − Pexp,i)

2/
∑n

i=1 Pexp,i
2) = 0.027 which expresses matching the

experimental curve to the theoretical one in the weakening phase. In Figure 4a, the experimental curve
and model one for the determined parameters were compared. Figure 4b also shows the course of the
model curve after increasing the number of elements to 241 and reducing the permissible increments of
measurement base elongation and normal strain to the value of 0.075 µm and 6.25× 10−7, respectively,
to confirm the correctness of the calculations from the point of view of ensuring the convergence of the
solution. In this case, the mean square relative difference between the solutions in the weakening phase
with dense and rare discretization amounted to √(

∑n
i=1 (P241,i − P121,i)

2/
∑n

i=1 P121,i
2 ) = 7.6× 10−3

where in the subscripts the number of elements used is given. On the other hand, Figure 5a shows the
distribution of the damage parameter D at its different maximum values along the axis of the specimen
at its middle section during the growth of the localized damage. It is also an equivalent way of modeling
the development of macro-crack formation from the point of view of damage mechanics [30,49]. The
D-distributions with a proportional 2-fold increase of all dimensions of the specimen model (Figure 5b)
with the same values of parameters determining the accuracy of the solution were also calculated
in a comparative way. A very similar variability of individual distributions was obtained, while the
maximum width of the equivalent macro-crack zone reached a value approximately equal to 2lc. This
confirms the correctness of the presented method of modeling the localized damage evolution in the
case of tension in concrete. The presented considerations also justify the adoption of a specific resolution
in tomographic imaging by means of wave velocity maps, i.e., dimensions δ1 and δ2, according to
Figure 1. In an extreme case, they should not be greater than 2lc, however, in order to ensure adequate
image sharpness and precise identification of the degree of damage, they should be adequately smaller.
Taking into account the variability of the distribution D, it is reasonable that δ1 and δ2 were assumed
in the interval of approximately lc/3− lc/5. The presented result also shows that the knowledge of
the value of lc is crucial for the correct assessment of the distribution of damage around the crack in
ultrasound tomography, and, on the other hand, it is the tomography that can be used for the direct
assessment of this value.
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Figure 5. Calculated distributions of D during the development of the damaged zone in the middle of
the specimen: (a) model of the specimen d× h = 20 cm × 30 cm (b) specimen model with twice the
total width and length increased d× h = 40 cm × 60 cm (d, h according to Figure 3).

Given that the growth D according to relation (8) causes the decrease of Young’s modulus of the
material, i.e.,: ED

E0
= 1−D, (19)

where: ED—tangential Young’s modulus (Pa) of the damaged material during inactive growth of the
damage, it is in its micro-cracked zones that the velocity of ultrasound waves decreases. Hence, based
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on the simplified isotropic damage evolution model for concrete developed in Reference [27–31] for
three-dimensional stress state and assuming negligible change in material density during the evolution
of brittle damage, the following estimated relationships can be given:

cLD

cL0
=

√
ED

E0
or

ED

E0
=

(
cLD

cL0

)2

, (20)

where: cL0, cLD—the velocity of the longitudinal wave in the virgin and damaged material, respectively,
(m/s). Based on relations (19), (20), variabilities of Young’s modulus and longitudinal wave velocity are
shown in Figure 6 which correspond to the damage parameter distributions from Figure 5b. They will
be used in the computational examples presented in point 4 that illustrate the problem of tomographic
detection of cracks in concrete members at various stages of their evolution.
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It needs to be highlighted that the numerical results presented in this point can be directly used
only in the case of pure tension in concrete. However, they can be also generalized usefully for the
case of bent reinforced concrete (RC) beams when estimating the damage level in concrete of such
beams with the following simplifying assumptions: the planar cross-sections of RC beam remain
planar after loading (as in Bernoulli–Euler theory), failure of the concrete is determined by the normal
cross-sectional stresses, and the average normal strains along beam axis are equal in the bonded
reinforcing longitudinal bars and surrounding concrete. These assumptions are also commonly used
in the design of RC beams, for example, as described in the EN-1992-1-1:2004 standard. Under the
mentioned conditions, the results shown in Figure 6 can be also applied to a damage estimation of
individual fibers of RC beam. The authors used the numerical results in this way for damage level
estimation of experimentally tested RC beams in point 5.

4. Determination of Times and Paths of the Fastest Sound Propagation Using Dijkstra’s
Algorithm

In this paper, Dijkstra’s algorithm [40] was used to evaluate the shape of paths of the fastest
propagation of ultrasound waves and the time needed for them to travel in concrete elements. The
physical basis for this type of calculations is Fermat’s principle [36]. Implementation of Dijkstra’s
algorithm in this type of problem in a compact material area V ∈ R2 (plane case) may be described as
follows (e.g., Reference [42]). Let a sonic pulse be given at point S ∈ V which triggers the propagation
of a specific wave type (e.g., longitudinal). Then, a graph from nodes with numbers i assigned to points
Xi ∈ V (i = 1, 2, . . . , m) should be built. S is one of the points Xi, and edges of the graph will be created
only between those nodes which the XiX j ⊂ V (i, j = 1, 2, . . . , m) condition is met for. Weight values
w(i, j) for the particular edges will be the pass-through times of sound between the points, assuming
that it is moving in a straight line section XiX j. Hence:

w(i, j) =
∫ X j

Xi

dli j

c
, (21)
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where: c—considered wave speed (m/s), li j—variable describing the position on a straight line section
joining points Xi and X j (m). In general, it can be seen that the more nodes evenly covering the V area
(e.g., assuming an orthogonal grid of points Xi—Figure 7), the more accurate the calculation will be
carried out. To increase the time efficiency of the method, when we are only interested in the time of
sound propagation between selected two points, the number of nodes can be reduced only to those
that lie within a reasonable distance from the straight line connecting these points and/or do not place
nodes in a sub-areas where it is known that D ≈ 0. If the graph is constructed, it is possible to use
Dijkstra’s method in a standard way, i.e.,:

1. A set Q of all the nodes i = 1, 2, . . . , m is created and a vector d in which the times needed for
a wave to travel from the node corresponding to the point S = X1 to other nodes are recorded.
First, it is assumed that d1 = 0 and di = ∞ for i , 1.

2. In the set Q, a node (let us assign it a number j) is found for which the component d has a
minimum value and is removed from this set. If the set Q is empty, the calculations are over.

3. In the case of other nodes i , j belonging to the set Q, an inequality di > d j + w (i, j) is checked. If
the inequality is satisfied, the value of d j + w (i, j) is assigned to the component di. The algorithm
returns to point 2.
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Figure 7. Illustrative orthogonal node arrangement for a graph in a plane problem (based on
Reference [42]).

In the final effect of the algorithm operation, the vector components di are equal to the time after
which, from the moment of excitation of the wave at point S, it reaches the point Xi assuming that the
wave can only move on the edges of the graph. Remembering during the calculation also the next
nodes indicated in point 3 of the algorithm, you can recreate the path of the fastest wave propagation
in the graph.

4.1. Calculation Example 1

The primary purpose of the example is to show to what extent a change in stiffness in a localized,
elastically degraded concrete zone can cause the paths of the fastest sound wave propagation to deflect.
Another objective is to propose, on the basis of the performed analysis, a useful way to reduce the
inaccuracies in tomographic imaging that may arise from this.

The example presents Dijkstra’s method of calculating the paths and times of the fastest longitudinal
ultrasound wave propagation between the assumed transmitting/receiving points in the longitudinal
section of the concrete beam model. One damaged zone was assumed to be formed in the beam in its
entire cross-section of 0.4 m × 0.4 m (these dimensions were arbitrarily selected as typical, but this does
not change the general conclusions which were finally drawn on this basis). The damaged area is located
in the middle of a beam section of 1.2 m in length. It was assumed that the brittle damage changes the
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distribution of wave propagation velocity along its length in the x function according to the results shown
in Figure 6b. It means that a damage level is uniform in a given cross-section of the beam. Consideration
was limited to cases where a minimum ratio of ED/E0 in the damaged area was 0.9, 0.8, 0.6, or 0.2 with
the development of the defect, and, due to the geometry of the task, imaging was performed on the
section of the beam along its central vertical plane of symmetry. In order to simplify the calculations,
the impact of any reinforcement on the results is not taken into account in the example. It should be
obviously noted that this influence can be important for practical research and must not be ignored in
the case of higher reinforcement ratios, in particular for the sound wave paths along the reinforcing bars.
It is recommended to avoid such measurement situations as much as possible (e.g., Reference [1]). For
this reason, it should also be emphasized that the conclusions resulting from the presented calculation
examples can be used for quantitative analyses directly only for beams with a low reinforcement ratio and
arrangement of propagation paths between the primary reinforcing bars and not along them and arms
of stirrups, as well. In other situations, the impact of reinforcement should be taken into account—e.g.,
using appropriate correction factors, reducing the measured wave velocities so that they correspond to
propagation conditions in non-reinforced concrete [1].

The assumed scheme of the beam with transmitting/receiving points is shown in Figure 8. The
transmitting/receiving points were selected in the system of opposite points distant from each other
every ∆p = 6.25 mm. Using Dijkstra’s algorithm, wave propagation times and paths were determined
between the opposite points and with shifting of the receiving points relative to the transmitting points
right or left so that the angle of inclination of the straight line between them to the axis x was 45◦ or
135◦, respectively. In Figure 8, the tomographic rays corresponding to the wave propagation paths
analyzed are also marked. Furthermore, in order to provide a convenient quantitative interpretation,
the numerical results are presented in a dimensionless form, normalizing them to values that would
have been obtained in the absence of the damage (i.e., in material characterized by longitudinal wave
velocity equal to cL0).
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Figure 8. Scheme of the beam model with the assumed damage distribution and the system of
transmitting/receiving points and rays.

First, it was checked how the distance between the nodes of the graph (∆n according to Figure 7)
in Dijkstra’s method influences the convergence of results. The graph nodes were placed in the
transmitting/receiving points and inside the imaged longitudinal section in the intersection points of
the orthogonal grid with the step of ∆n vertically and horizontally. In order to reduce the calculation
time, only the damaged area (in which ED/E0 < 1) was covered by the internal nodes. The weights
of the graph edges were determined from relation (21) by integrating the speed distributions shown
in Figure 6b with a step of 1 mm using the rectangular method. Figure 9 shows paths of the fastest
propagation illustratively only between transmitting/receiving points distant by 5 cm from each other,



Materials 2020, 13, 551 14 of 37

min(ED/E0) = 0.2 and ∆n ≈ 100 mm, 50 mm, 25 mm, 12.5 mm, 6.25 mm, or 3.125 mm. Adoption of
∆n in this way caused that the number of graph nodes in the width of the damaged area changed in
extreme cases from 3 to 70. The width of this area can be read from the diagrams in Figures 5 and 6.
Table 1 shows the maximum relative changes of the determined wave propagation times on the fastest
paths tpath,i (s) and their lengths Lpath,i (m) as the step of the graph nodes decreases where i is the path
index. When interpreting the shape of paths in Figure 9, it should be noted that if there is more than one
path with the same wave propagation time due to the selection of points of graph nodes and symmetry
of the problem geometry then the algorithm used shows the first one found among them. On the other
hand, when analyzing the convergence of the solution (Table 1), it can be stated that, with the decrease
in the step of the graph node grid, its relative changes become less and less significant and converge
to zero. Due to the time needed to solve one such task and the owned computer hardware, further
calculations were carried out using the solutions obtained at ∆n = 3.125 mm (PC with processor
3.06 GHz and RAM 8 GB allowing to determine data for one path on average in approximately 4 min
at ∆n = 3.125 mm).
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Figure 9. The shape of the paths of the fastest propagation between the selected transmitting/receiving
points in the longitudinal section of the beam with the area damaged at min(ED/E0) = 0.2 and
∆n ≈ (a) 100 mm, (b) 50 mm, (c) 25 mm, (d) 12.5 mm, (e) 6.25 mm, and (f) 3.125 mm.

Figure 10 collectively shows the shape of selected paths of the fastest wave propagation depending
on the degree of damage. It is evident that as the minimum ratio ED/E0 decreases the wave undergoes
increasing deflection in the damaged area. At the same time, it is obvious that the time needed to travel
such a path by the wave is shorter and shorter than the one that would be calculated with a simplistic
assumption of its propagation in a straight ray. The scale of this difference is illustrated in Figure 11
showing how the propagation times change along the fastest paths and rays connecting consecutive
opposite transmitting/receiving points and points lying diagonally at an angle of 45◦ to each other
in relation to the axis of the beam. Figure 11 does not show the variability of times along the paths
between points lying diagonally to each other at an angle of 135◦ relative to the axis x because it is
the same as for those lying at an angle of 45◦ taking into account the symmetry. In order to make the
diagrams more readable, they are also presented in the form of continuous curves. In the case of a
damaged zone with a course perpendicular to the axis of the beam analysed in the example, it can be
observed that greater differences in wave propagation times along the real paths and calculated on the
assumption of their straightness occur for those that connect the opposite points and are increasing as
the damage increases. These differences are much smaller for paths connecting the points diagonally.
This observation may be used to reduce the inaccuracy of tomographic calculations due to the fact



Materials 2020, 13, 551 15 of 37

that tpath,i (in fact, the times determined from measurements) are inserted in real situations in place of
tray,i in the system of Equation (3) where it is assumed in a simplistic way that tray measured,i = tpath,i.
Therefore, in the case of propagation times only for opposite points, an approximate relationship can
be proposed between tpath,i and tray,i, i.e.,:

tray,i ≈ tray approx,i = tpath,i + β
(
tpath,i −min

(
tpath,i

)
i=1,2,...,I

)
, (22)

where: tray approx,i—approximated propagation times assuming a wave passage over the ray (s),
β—non-negative factor [-].

Table 1. Maximum relative changes in path length and wave propagation times when changing ∆n in
different defect evolution phases.

max
∣∣∣∣ tpath,i(∆n2)−tpath,i(∆n1)

tpath,i(∆n1)

∣∣∣∣
i=1,2,...I

[-]

∆n1, ∆n2 [mm] min (ED/E0) [-]

0.9 0.8 0.6 0.2

50, 100 0.0035 0.0085 0.0154 0.0150

25, 50 0.0030 0.0054 0.0104 0.0230

12.5, 25 0.0024 0.0020 0.0030 0.0057

6.25, 12.5 0.0011 0.0012 0.0021 0.0040

3.125, 6.25 0.0003 0.0006 0.0004 0.0011

max
∣∣∣∣ Lpath,i(∆n2)−Lpath,i(∆n1)

Lpath,i(∆n1)

∣∣∣∣
i=1,2,...,I

[-]

∆n1, ∆n2 [mm] min (ED/E0) [-]

0.9 0.8 0.6 0.2

50, 100 0.0199 0.0386 0.0794 0.0430
25, 50 0.0119 0.0245 0.0543 0.0281

12.5, 25 0.0071 0.0100 0.0262 0.0324
6.25, 12.5 0.0043 0.0072 0.0109 0.0180

3.125, 6.25 0.0016 0.0032 0.0067 0.0094
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Figure 10. The shape of paths of the fastest propagation between the selected transmitting/receiving
points in the longitudinal section of the beam depending on the degree of elastic degradation in the
damaged zone min(ED/E0) = (a) 0.9, (b) 0.8, (c) 0.6, and (d) 0.2 (for ∆n = 3.125 mm).



Materials 2020, 13, 551 16 of 37

Materials 2020, 13, 551 16 of 37 

 

 
Figure 11. Times of wave propagation ݐ୮ୟ୲୦,௜  on the fastest paths, and ݐ୰ୟ୷,௜ over the straight rays 
between the transmitting/receiving points in the different phases of the defect evolution: min(ܧୈ/ܧ଴) = (a) 0.9, (b) 0.8, (c) 0.6, and (d) 0.2. The results are presented as a function of the position 
of the transmitting points: a black line for the fastest paths determined by Dijkstra’s algorithm (for ߂୬ = 3.125 mm); a grey line for the paths established as straight rays. The diagrams on the left refer 
to the paths connecting the opposite points and those on the right to the points lying diagonally at an 
angle of 45° to each other in relation to the axis ݔ. 

Thus, the factor ߚ scales propagation times from real paths by elongating them in relation to 
the minimum value in the direction of positive values so as to bring their course as close as possible 
to the times that would correspond to the passage of a wave over the straight ray. As a result, this 
will clearly result in a reduction of calculation errors. Analyzing the graphs shown in Figure 11, this 
factor can be determined, e.g., from the least squares method. However, in a situation of actual 
measurement, due to the lack of such data, this is impossible. Therefore, the authors propose to apply 
the following heuristic approach to the determination of ߚ. Approximate solution of the system of 
Equation (3) can be alternatively obtained using Tikhonov’s method [51,52] minimizing the function 
of the mean square error of this solution (the so-called residual term ܨ୰ୣୱ ) with additional 
consideration of the regularisation term ܨ୰ୣ୥  (e.g., Reference [24]). Using this approach in the 
measurement situation, when in Equation (3) we replace the appropriate components in the vector ݐ ܊୰ୟ୷ ୫ୣୟୱ୳୰ୣୢ,௜ = ୰ୟ୷ ୫ୣୟୱ୳୰ୣୢ,௜ݐ ୮ୟ୲୦,௜ acrossݐ = ୰ୣୱܨ :we will obtain ,(ߚ)୰ୟ୷ ୟ୮୮୭୶,௜ݐ =  ଵଶฮܠۯఈ,ఉ − ୰ୣ୥ܨ ,ฮଶ(ߚ)܊ = భమߙฮ܀൫ܠఈ,ఉ − ఈ,ఉ൯ܠ୰ୣୱ൫ܨ ଴൯ฮଶܠ + ఈ,ఉ൯ܠ୰ୣ୥൫ܨ = min → ఈ,ఉܠ = ۯ୘ۯ) + (ߚ)܊୘ۯ)ଵି(܀୘܀ߙ +  ,(଴ܠ܀୘܀ߙ

(23)

Figure 11. Times of wave propagation tpath,i on the fastest paths, and tray,i over the straight rays between
the transmitting/receiving points in the different phases of the defect evolution: min(ED/E0) = (a) 0.9,
(b) 0.8, (c) 0.6, and (d) 0.2. The results are presented as a function of the position of the transmitting
points: a black line for the fastest paths determined by Dijkstra’s algorithm (for ∆n = 3.125 mm); a grey
line for the paths established as straight rays. The diagrams on the left refer to the paths connecting the
opposite points and those on the right to the points lying diagonally at an angle of 45◦ to each other in
relation to the axis x.

Thus, the factor β scales propagation times from real paths by elongating them in relation to the
minimum value in the direction of positive values so as to bring their course as close as possible to the
times that would correspond to the passage of a wave over the straight ray. As a result, this will clearly
result in a reduction of calculation errors. Analyzing the graphs shown in Figure 11, this factor can
be determined, e.g., from the least squares method. However, in a situation of actual measurement,
due to the lack of such data, this is impossible. Therefore, the authors propose to apply the following
heuristic approach to the determination of β. Approximate solution of the system of Equation (3)
can be alternatively obtained using Tikhonov’s method [51,52] minimizing the function of the mean
square error of this solution (the so-called residual term Fres) with additional consideration of the
regularisation term Freg (e.g., Reference [24]). Using this approach in the measurement situation, when
in Equation (3) we replace the appropriate components in the vector b tray measured,i = tpath,i across
tray measured,i = tray appox,i(β), we will obtain:

Fres =
1
2‖Axα,β − b(β)‖2, Freg = 1

2α‖R
(
xα,β − x0

)
‖

2

Fres
(
xα,β

)
+ Freg

(
xα,β

)
= min→ xα,β =

(
ATA + αRTR

)−1(
ATb(β) + αRTRx0

)
,

(23)
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where: α—regularization parameter [-], R—regularization matrix (m), xα,β—solution of the problem for
given values α and β (s/m), x0—the point in the vicinity of which a regularized solution is sought (s/m).
Matrix R was assumed in further consideration as a unitary one multiplied by 1 m for the sake of the
unit account, and x0 as the vector according to Equation (6). In the proposed method of determination
of β, it is assumed that the less data contained in the vector b will be affected by measurement errors
due to the selection of β, the smaller the values of the term Freg in the case of an optimal solution to the
problem. It is, therefore, proposed to determine the optimal value of the coefficient β = βopt from the
relationships:

βopt = max (g(z)) for z ≥ 0, (24)

where
g(z) = arg min

(
Freg

(
xα=z,β>0

))
for z ≥ 0. (25)

Selection of βopt as the maximum value of function (25), in turn, has the following meaning:
determine what is the maximum possible increase in the propagation time of the wave in the vector b
using formula (22) with a minimum effect of regularization so that the original information contained
in system of Equation (3) is lost as little as possible at the same time. Using formulas (22)–(25),
the following values of βopt were obtained as in Table 2 for the data from the graphs in Figure 11.
Illustratively, the variability of the wave propagation time tray approx,i modified according to relation
(22) between opposite transmitting/receiving points at β = βopt and min(ED/E0) = 0.2 is shown in
Figure 12. At the same time, it was compared with tray, i and tpath,i, where tray approx,i has a much more
similar course to that of tray,i than tpath,i.

Table 2. βopt calculated on the basis of data from Figure 11 in case of the opposite transmitting/receiving
points in different phases of defect growth.

min (ED/E0) [-] 0.9 0.8 0.6 0.2

βopt [-] 0.09 0.15 0.33 1.24
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In order to assess the correctness of the proposed approximation method, appropriate 

tomographic reconstructions of the longitudinal wave velocity maps in the beam model section from 
Figure 8 are presented in Figure 13. The reconstructions were determined by the randomized 
Kaczmarz method in accordance with the information presented in point 2, where ܿ୐଴ was adopted 
as ܿ୐ ୰ୣ୤. The results are shown only for the central area of the beam separated by a red dashed line 
through which all types of rays passed due to their inclination. Wave velocity distributions in the 
damaged area according to Figure 6b were assumed with minimal ratio ܧୈ/ܧ଴ equal to 0.9, 0.8, 0.6, 

Figure 12. Propagation times tpath,i, tray,i and tray approx,i between the opposite transmitting/receiving
points for a defect with min(ED/E0) = 0.2. tray approx,i were calculated according to relation (22) with
β = βopt.

In order to assess the correctness of the proposed approximation method, appropriate tomographic
reconstructions of the longitudinal wave velocity maps in the beam model section from Figure 8 are
presented in Figure 13. The reconstructions were determined by the randomized Kaczmarz method in
accordance with the information presented in point 2, where cL0 was adopted as cL ref. The results are
shown only for the central area of the beam separated by a red dashed line through which all types
of rays passed due to their inclination. Wave velocity distributions in the damaged area according
to Figure 6b were assumed with minimal ratio ED/E0 equal to 0.9, 0.8, 0.6, or 0.2. The resolution of
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δ1 × δ2 = 3.33 cm × 3.33 cm was applied, as well as the number and arrangement of rays, as shown in
Figure 8. For comparison purposes, in addition to the reconstruction with the use of times tray approx,i
according to relation (22) and tpath,i, the original map is also shown on the basis of data from Figure 6b,
but in the resolution used, i.e., in each cell, its average speed value is taken from the formula:

cL mean,k =

∫
Ak

cL dx dy

Ak
, (26)

where: Ak—rectangular area occupied by the k-th cell (m2). Integral (26) was calculated in an
approximate way using the rectangular method, taking the step of integration after x and y,
respectively as δ1/10 and δ2/10. Therefore, relative errors were calculated for each reconstruction:
global—mean square eg =

√
(
∑K

k=1(cL mean,k − cL tom,k)
2/

∑K
k=1 c2

L mean,k) and local—maximal
el max = max((cL mean,k − cL tom,k)/cL mean,k)k=1,2,...,K, where cL tom,k was determined from system
of Equation (3). Because cL mean,k is not known in a real measuring situation, it is also necessary to
introduce a measure which will allow to estimate the reconstruction errors due to the assumption of
straight-lined rays without this information.
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Figure 13. Originally assumed distributions of wave velocity in the longitudinal section of the beam in
different stages of defect evolution (a) and their tomographic reconstructions according to Equation (3):
(b) calculated using the propagation times tray,i = tray approx,i for the paths connecting the opposite
points and tray,i = tpath,i for the paths connecting the points diagonally, (c) calculated using only the
propagation times tray,i = tpath,i (red dotted lines—explanation in the text).

In this paper, it is proposed to calculate index dcL ray max: the maximal relative difference between
cL ray measured,i (wave velocities averaged over the i-th ray based in real directly on the measured
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propagation times) and cL ray approx,i (wave velocities averaged over the i-th ray calculated, respectively,
on the basis of approximated propagation times according to relation (22)). This leads to the formula:

dcL ray max = max
(cL ray measured,i − cL ray approx,i

cL ray measured,i

)
i=1,2,...,I

= max
(
1−

tpath,i

tray approx,i

)
i=1,2,...,I

. (27)

A summary of eg, el max, and dcL ray max is presented in Table 3, depending on the adopted
calculation strategy, while for dcL ray max , the exact value of it is given in a comparative manner (if
calculated with the use of times of propagation tray,i instead of tray approx,i).

Table 3. Global—mean square (eg) and local—maximal (el max) relative tomographic reconstruction error
using the propagation times for the opposite points in Equation (3) tray,i = tray approx,i or tray,i = tpath,i.
Maximal relative difference in average wave velocities over the rays dcL ray max due to the use of
tray,i = tray approx,i or tray,i = tpath,i.

eg [-]

tray,i
min (ED/E0) [-]

0.9 0.8 0.6 0.2

tray approx,i 0.001 0.004 0.011 0.027
tpath,i 0.002 0.005 0.018 0.087

el max [-]

tray,i
min (ED/E0) [-]

0.9 0.8 0.6 0.2

tray approx,i 0.007 0.022 0.058 0.186
tpath,i 0.010 0.025 0.099 0.700

dcL ray max [-]

min (ED/E0) [-] 0.9 0.8 0.6 0.2

Equation (27), Exact value 0.005, 0.009 0.016, 0.023 0.067, 0.068 0.325, 0.323

The analysis of the presented results shows that the reconstruction error increases with the degree
of development of localized brittle damage. If propagation times tpath,i are used in vector b of Equation
(3) (as would be obtained directly from the measurement in the real situation), then, in the analyzed
case, the relative decrease of Young’s modulus in the damaged zone from 10% to 80% is connected
with the increase of eg from approximately 0.002 to 0.09. In parallel, el max changes from 0.01 to 0.70.
Introduction to the vector b propagation times for the opposite transmitting/receiving points according
to formula (22) with the optimum value of β allows reducing the relative reconstruction error of both
eg, as well as el max, for ranges from approximately 0.001 to 0.03 and from 0.007 to 0.19, respectively.
The use of formula (22) also allows for a more accurate evaluation of the shape and spatial range of the
defect (Figure 13), i.e., regardless of the degree of damage, its original shape is visualized correctly.
Using only propagation times tpath,i in the calculations allows to strictly assess the shape of the analyzed
defect only when Young’s modulus drops to about 20%. On the other hand, the value of dcL ray max also
allows a rough estimation of the differences in the reconstructed wave velocity maps that may occur
due to the adoption of the fastest straight-line propagation paths in calculations (although, taking into
account the limitations that result from its definition according to Equation (27)). Its advantage in turn
is that it can be determined in research only on the basis of measurement data. It starts to increase
noticeably when Young’s modulus drops in the defected zone above 20%.
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4.2. Calculation Example 2

The purpose of the second calculation example is to show that the desired resolution of the image
of changes in ultrasound wave velocity around localized damage can be obtained by using a reduced
number of transmitting/receiving points. To this end, so-called fictitious transmitting/receiving points
should be introduced for which propagation times will be interpolated on the basis of data from the
original set of points (e.g., Reference [33,47]). In a real measurement situation, this may often result
in a significant reduction of transmitting/receiving points, costs and time consumption of tests. The
simulation of such a measurement strategy for the data of the first calculation example is shown below.
The same geometry of the beam model and the method of its damage as in the first example were
adopted, but the number of points for which the original information about wave propagation times is
available was reduced in such a way that the gaps between them amount to ∆p = 10 cm. There are
fictitious points every 6.25 mm between them at the same intervals as the points in the first example. For
each group of paths, depending on the location of their transmitting/receiving points relative to each
other (the opposite points, the points lying diagonally at an angle of 45◦ and 135◦ in relation to the axis
x) times for paths connecting fictitious points were interpolated. The interpolation in the function of
transmitting points position was carried out with the use of a cubic Hermite spline assuming continuity
to the first derivative (pchip function in the MATLAB program environment was used). The results are
shown in Figure 14, where interpolation nodes were marked with circles. They were also compared
with the propagation times calculated with Dijkstra’s algorithm in the first example. Figure 14 does
not show the variability of times for the paths between the points lying diagonally to each other at an
angle of 135◦ relative to the axis x because it is the same as for those lying at an angle of 45◦ taking into
account the symmetry of the problem. In order to make the graphs easier to read, the interpolated
times and those of the first example are presented in the form of continuous curves. Relative global
interpolation errors are summarized in Table 4, i.e., eg =

√
(

∑I
i=1 ( tpath,i − tpath int,i )

2/
∑I

i=1 t2
path,i)

was calculated where tpath int,i (s) is the interpolated propagation time of the wave on the i-th path.

Table 4. Relative global interpolation errors of propagation times from the first example using a cubic
Hermite spline in different phases of defect growth.

min(ED/E0) [-] 0.9 0.8 0.6 0.2

eg [-] 0.002 0.003 0.007 0.020



Materials 2020, 13, 551 22 of 37

Materials 2020, 13, 551 22 of 37 

 

 
Figure 14. Times of wave propagation ݐ୮ୟ୲୦,௜  and ݐ୮ୟ୲୦ ୧୬୲,௜  on the fastest paths between 
transmitting/receiving points in different phases of defect evolution: min(ܧୈ/ܧ଴) = (a) 0.9, (b) 0.8, (c) 
0.6, and (d) 0.2. The results are presented as a function of the position of the transmitting points: a 
black line for the fastest paths determined by Dijkstra’s algorithm (for ߂୬ = 3.125 mm); a grey line 
in case of interpolation with nodes marked with circles. The diagrams on the left refer to the paths 
connecting the opposite points and those on the right to the points lying diagonally at an angle of 45° 
to each other in relation to the axis ݔ. 

In the same way as in the first example, the propagation times for the fastest ultrasound wave 
paths connecting opposite transmitting/receiving points were modified to bring them as close as 
possible to the propagation times of straight rays, but with the use of times ݐ୮ୟ୲୦ ୧୬୲,௜, i.e.,: ݐ୰ୟ୷,௜ ≈ ୰ୟ୷ ୟ୮୮୰୭୶,௜ݐ = ୮ୟ୲୦ ୧୬୲,௜ݐ + ߚ ቀݐ୮ୟ୲୦ ୧୬୲,௜ − min൫ݐ୮ୟ୲୦ ୧୬୲,௜൯௜ୀଵ,ଶ,…,ூቁ. (28) 

Then, using formulas (23)–(25), the values of ߚ୭୮୲ were obtained for data from Figure 14 as in 
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relation (28) between opposite transmitting/receiving points at ߚ = ୭୮୲ߚ  and min(ܧୈ/ܧ଴) = 0.2 is 
shown in Figure 15. At the same time, it was compared with ݐ୰ୟ୷,௜ and ݐ୮ୟ୲୦,௜, where ݐ୰ୟ୷ ୟ୮୮୰୭୶,௜ has 
also a much more similar course to that of ݐ୰ୟ୷,௜ than ݐ୮ୟ୲୦,௜. 

Table 5. ߚ୭୮୲  calculated on the basis of data from Figure 14 in case of the opposite 
transmitting/receiving points in different phases of defect growth. 

Figure 14. Times of wave propagation tpath,i and tpath int,i on the fastest paths between
transmitting/receiving points in different phases of defect evolution: min(ED/E0) = (a) 0.9, (b) 0.8,
(c) 0.6, and (d) 0.2. The results are presented as a function of the position of the transmitting points: a
black line for the fastest paths determined by Dijkstra’s algorithm (for ∆n = 3.125 mm); a grey line
in case of interpolation with nodes marked with circles. The diagrams on the left refer to the paths
connecting the opposite points and those on the right to the points lying diagonally at an angle of 45◦

to each other in relation to the axis x.

In the same way as in the first example, the propagation times for the fastest ultrasound wave
paths connecting opposite transmitting/receiving points were modified to bring them as close as
possible to the propagation times of straight rays, but with the use of times tpath int,i, i.e.,:

tray,i ≈ tray approx,i = tpath int,i + β
(
tpath int,i −min

(
tpath int,i

)
i=1,2,...,I

)
. (28)

Then, using formulas (23)–(25), the values of βopt were obtained for data from Figure 14 as in
Table 5. Illustratively, the variability of the wave propagation time tray approx,i modified according
to relation (28) between opposite transmitting/receiving points at β = βopt and min(ED/E0) = 0.2 is
shown in Figure 15. At the same time, it was compared with tray,i and tpath,i, where tray approx,i has also
a much more similar course to that of tray,i than tpath,i.

Table 5. βopt calculated on the basis of data from Figure 14 in case of the opposite transmitting/receiving
points in different phases of defect growth.

min(ED/E0) [-] 0.9 0.8 0.6 0.2

βopt [-] 0 0 0.10 0.68
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Figure 8 are presented in Figure 16. The reconstructions were determined by the randomized 
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Figure 15. Propagation times tpath,i, tray,i and tray approx,i between the opposite transmitting/receiving
points for a defect with min(ED/E0) = 0.2. tray approx,i were calculated according to relation (28) with
β = βopt.

In order to assess the correctness of the proposed propagation time interpolation method,
tomographic reconstructions of the wave velocity maps in the beam model longitudinal section from
Figure 8 are presented in Figure 16. The reconstructions were determined by the randomized Kaczmarz
method in accordance with the information presented in point 2 where cL0 was adopted as cL ref. The
results are shown only for the central area of the beam section separated by a red dashed line through
which all types of rays passed due to their inclination. For comparison purposes, reconstructions with
the use of times tray approx,i according to relation (28) and tpath int,i were presented. For the individual
reconstructions, their relative errors were also calculated: global—mean square eg, local—maximal
el max. The relative maximal difference in average speed over rays dcL ray max was also determined due
to the use of tray,i = tray approx,i or tray,i = tpath int,i, i.e., in this particular case:

dcL ray max = max
(
1−

tpath int,i

tray approx,i

)
i=1,2,...,I

. (29)

A summary of eg, el max and dcL ray max is presented in Table 6, depending on the calculation
strategy adopted, where the exact value of dcL ray max is also shown for a comparison as in Table 3.

Table 6. Global—mean square (eg) and local—maximal (el max) relative tomographic reconstruction
error using the propagation times for the opposite points in Equation (3) tray,i = tray approx,i or
tray,i = tpath int,i. Maximal relative difference in average wave velocities over the rays dcL ray max due
to the use of tray,i = tray approx,i or tray,i = tpath int,i.

eg [-]

tray,i
min (ED/E0) [-]

0.9 0.8 0.6 0.2

tray approx,i 0.0018 0.0024 0.0083 0.0191

tpath int,i 0.0018 0.0024 0.0100 0.0632

el max [-]

tray,i
min (ED/E0) [-]

0.9 0.8 0.6 0.2

tray approx,i 0.0108 0.0156 0.0467 0.1326

tpath int,i 0.0108 0.0156 0.0598 0.5053

dcL ray max [-]

min (ED/E0) [-] 0.9 0.8 0.6 0.2

Equation (29) Exact value 0, 0.009 0, 0.023 0.021, 0.068 0.208, 0.323
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Figure 16. Tomographic reconstructions of the wave velocity distribution from Figure 13a according to
Equation (3): (a) calculated with the propagation times tray,i = tray approx,i for the paths connecting the
opposite points and tray,i = tpath int,i for the paths connecting the points diagonally, (b) calculated only
with the propagation times tray,i = tpath int,i (red dotted lines—explanation in the text).

Analyzing the presented results one can draw general conclusions similarly to the reconstructions
from the first example. In addition, it can be noted that reconstruction errors, compared to those in
Table 3 for damaged zones with Young’s modulus drop of more than 10%, were decreased by up to
2 times at most. Again, it can also be stated that, in the case of a defect in a concrete member with
a higher degree of elastic degradation, the introduction into the vector b in Equation (3) of wave
propagation times after appropriate scaling (Equation (28) with the optimal value of β) allows for
effective, even several fold reduction of calculation errors and more correct evaluation of the defect
shape. The obtained results also confirm that the use of so-called fictitious points with interpolated
propagation times allows to increase the resolution of tomographic reconstructions of elastically
degraded concrete areas without the need to use “too dense” system of real transmitting/receiving
points. In this case, the value of dcL ray max also allows rough estimation of differences in reconstructed
wave velocity maps, which can occur due to the adoption of the fastest propagation paths as straight
in calculations. However, the use of fictitious points causes that it deviates from the exact values much
more than in the first example. Nevertheless, it is important at this point that it starts to increase
noticeably when Young’s modulus in the defect drops above 20%, and, for example, such an estimation
can be rationally increased by 2–3 times for safety reasons.
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5. Experimental Study

As part of the tomographic experiments, studies were carried out on RC elements after cracking
initiation—three beams on a laboratory scale and one prefabricated beam on a natural scale. Since
the calculation methodology presented in point 3 concerned the detection of elastically degraded
zones with a course perpendicular to the beam axis, the experiments illustrating the possibilities of its
practical application also focused on the evaluation of this type of defects. Hence, the laboratory beams
were bent until the first perpendicular cracks were formed in the middle area. In the second case, a
prefabricated industrially manufactured beam, that was damaged during transport to the construction
site, was inspected. There were cracks perpendicular to the beam axis and visible to the naked eye.
This beam was specially selected for an assessment to also test the presented calculation method in
near-real conditions. An important aspect of this study was also the willingness to check whether
ultrasound tomography in the presented approach could potentially be used for quality control of
prefabricated RC elements in industrial conditions.

The cross-sections of beams for tomographic imaging were selected so that the measurements
were disturbed as little as possible by their reinforcement (between longitudinal bars and vertical arms
of stirrups) [1,53]. In the case of laboratory beams, it was also decided to show how changing the
care method can affect tomographic detection of brittle damage. For this purpose, three samples were
stored under water for 1 to 28 days from the time of forming. Two of them were tested after 28 days and
the third one after 35 days (after its removal from water at the age of 28 days and storage at the room
conditions for the next 7 days). The storage temperature of all the beams was about 20 ◦C. Taking into
account also disturbances which may be caused by uneven distribution of humidity [53], the beams
were examined in conditions in which the distribution of humidity in them would be as homogeneous
as possible. The 28-day laboratory beams were tested for up to about 1 h after the removal from the
water bath, and the 35-day beam, after the removal from the water, was protected by polyethylene film
against moisture exchange with the ambient air until the test. In turn, the prefabricated beam was
stored about 7 months before the test inside the laboratory at an average relative humidity of about
50% and a temperature of 20 ◦C. The age of the prefabricated beam at the time of testing was about
9 months.

On the basis of theoretical considerations discussed in previous points, a detailed course of
tomographic measurements and method of processing data obtained this way was also established
and used during own experiments. The general scheme of this procedure is shown in Figure 17.
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5.1. Laboratory Beams

A diagram of the beams is shown in Figure 18. Their dimensions were 10 cm × 10 cm × 50 cm
and they were made of ready market mixture of concrete with a mean compression strength of
fcm,cube = 48 MPa after 28 days. The maximum aggregate diameter was da max = 8 mm. The
longitudinal lower reinforcement consisted of two bars of 8 mm in diameter, made of steel with
characteristic yield point declared by the manufacturer of fyk = 400 MPa. The studies consisted in the
measurement of the time of propagation of the longitudinal ultrasound wave using a Pundit-Lab tester
and transreceiver heads with a frequency of 250 kHz. The coupling of the heads and element was
provided by special gel for ultrasonic tests. The adopted system of transmitting/receiving points distant
from each other by ∆p = 10 cm is shown in Figure 18. Tomographic rays were assumed between the
opposite points and lying diagonally at an angle of 45◦ and 135◦ in relation to the beam axis (Figure 18).
The longitudinal vertical section of the beams for tomographic imaging was located in the middle
between the reinforcement bars. For comparison, the ultrasound tests were carried out in two stages:
before and after the first load-unload cycle in static three-point bending (Figure 19). The first load stage
was finished at the moment when the first cracks appeared, controlling the registered load (P) and
deflections at the centre of the span (u), i.e., until the slope change occurs in the function P− u. After
the second stage of ultrasonic testing, the beams were bent until their load capacity was exhausted.
The obtained values of the cracking (Pcr) and maximum (Pmax) loads are summarized in Table 7.
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Mean
1 2 3

Pcr [kN] 27 30 28 28.3
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Taking into account the measured longitudinal wave propagation times and basic frequency
of ultrasonic pulses, the average wavelengths for beam No. 1, 2, and 3 were, respectively, ~1.7 cm,
~2.0 cm, and ~2.1 cm before the loading and ~1.7 cm, ~1.8 cm, and ~2.0 cm after the loading. At the
same time, it allowed satisfying the basic requirement described in ASTM D2845-08 regarding the
selection of frequency so that measurable longitudinal ultrasonic waves could be generated in the
samples, i.e.,: dominant wavelength ≥ 3× the average grain size equal to ~4 mm.

The first visible crack appeared in each case in the middle of the beam span as perpendicular to
the beam axis (Figure 19). Measured and interpolated longitudinal wave propagation times tpath int,i
are shown in Figure 20 where interpolated times are determined using a cubic Hermite spline. The
diagrams also show tray approx,i determined according to relation (28) with β = βopt according to (24),
(25). In Figure 20, by comparing wave propagation times before and after the loading, the evolution of
cracks can be clearly observed and their location initially made in the sections where these times have
increased the most. It can also be seen that not taking into account the increase in the propagation
time of ultrasonic pulses along the straight rays compared to the times measured for the fastest paths
would lead to their underestimation of approximately 5–8% in the most damaged areas of the beams.
Figure 21 shows an example of a recorded signal by the receiving head together with a reading the time
of longitudinal wave propagation. In Figure 21, the signal caused by longitudinal wave propagation is
visible first, and, a moment later, the signal connected with the propagation of transverse and Rayleigh
waves of much higher amplitude can be noticed, but without the possibility of precise distinction of
the initial moment of their registration. This was also the main reason why the authors decided to use
longitudinal waves in their studies, taking into account the capabilities of their research equipment.
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Figure 20. Propagation times ݐ୮ୟ୲୦ ୧୬୲,௜ and ݐ୰ୟ୷ ୟ୮୮୰୭୶,௜ between the transmitting/receiving points in 
the beams before and after an action of cracking load: (a) No. 1, (b) No. 2, and (c) No. 3. The results 
are presented as a function of the position of the transmitting points: ݐ୮ୟ୲୦ ୧୬୲,௜ a grey line with nodes 
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Figure 20. Propagation times tpath int,i and tray approx,i between the transmitting/receiving points in the
beams before and after an action of cracking load: (a) No. 1, (b) No. 2, and (c) No. 3. The results
are presented as a function of the position of the transmitting points: tpath int,i a grey line with nodes
marked with circles, and tray approx,i a black, dashed line. The diagrams on the left refer to the paths
connecting the opposite points and those on the right to the points lying diagonally at an angle of 45◦

and 135◦ to each other in relation to the axis x.
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maximum measured mean speed of the longitudinal wave over all rays before loading was adopted 
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Figure 21. Example of signal recorded by the receiving head (transmitting point No. 4 and receiving
point No. 3 in beam No. 3): (a) before load; (b) after an action of cracking load.

Figure 22 shows the tomographic reconstructions of longitudinal wave velocity maps in the vertical
longitudinal section of the beams. Reconstructions were determined by a randomized Kaczmarz
method in accordance with the information presented in point 2, where for cL ref the maximum measured
mean speed of the longitudinal wave over all rays before loading was adopted (4547 m/s, 5377 m/s,
and 5587 m/s for beams No. 1, No. 2, and No. 3, respectively). The resolution of δ1 × δ2 = 2 cm × 2 cm
was applied and the arrangement of rays as in Figure 18 with addition of rays between real rays
connecting fictitious transmitting/receiving points at a distance of every 1 cm. The results are shown
only in the middle area of the beam section, separated by a red dashed line through which all types of
rays passed due to their inclination. The maps presented here are calculated on the basis of Equation
(3) with propagation times tray,i = tray approx,i in accordance with (28) for the paths connecting the
opposite points and tray,i = tpath int,i for the diagonal paths. For this purpose, the values of tpath int,i are
taken as shown in Figure 20. Optimal coefficients β necessary for the determination of tray approx,i were
calculated in accordance with (24) and (25) and their values are summarized in Table 8. The table also
shows the values of dcL ray max determined from Equation (29).

Table 8. βopt calculated on the basis of data from Figure 20 in case of the opposite transmitting/receiving
points and dcL ray max according to Equation (29) before and after an action of cracking load.

Optimal Scaling Factor β and dcL ray max Index No. of the Beam

1 2 3

βopt [-] before loading 0.74 1.34 0.73
βopt [-] after action of cracking load 6.02 1.29 1.24

dcL ray max [-] before loading 0.025 0.039 0.041
dcL ray max [-] after action of cracking load 0.050 0.053 0.086

Figure 22 shows clearly formed elastically degraded zones caused by load P = Pcr. Because of the
static scheme of the bent beams, they were created in the middle of their span in the lower part of the
cross-section. Based on Equation (20), the maximal tangential changes of Young’s moduli, defined by
the ratio of min(ED/E0) at the level 0.81, 0.50, and 0.68 in beam No. 1, No. 2, and No. 3, respectively,
can be estimated for these zones. In turn, their widths in these places is within the range of 16–18 cm.
They are very close to the width of the localized elastically degraded zones which were calculated
theoretically in point 3. For the ratio min(ED/E0) in the 0.5–0.8 interval, this corresponds to the width
of the damaged area from approximately 17 cm to 19 cm, which can be read from Figure 5a or Figure 6a.
This result indirectly pre-confirms the validity of the identification method for the internal length
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lc of concrete proposed in point 3. However, these preliminary out-comes need necessarily further
intense experimental verification. In addition, it can be seen in Figure 22 that, under real conditions,
the heterogeneity of the concrete itself can have a non-negligible effect on the results, as can be seen in
the reconstructions of wave velocity distributions before the loading the beams. This is also evidenced
by the determined values of dcL ray max at this stage of the study (Table 8). In turn, after the bending
moment load initiating the appearance of the first cracks, the values of dcL ray max from Table 8 show
that, in the investigated case, not taking into account deflections of the fastest propagation paths may
lead to overestimation of the velocity of longitudinal waves on average by approximately 5–9%.
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in the longitudinal section of the beam before and after an action of the cracking load: (a) No. 1, (b) No.
2, and (c) No. 3 (red dotted lines—explanation in the text).

Another interesting issue that can be seen is that, despite the same period of care in the water of all
beams, the speed of longitudinal waves in the intact configuration in beam No. 1 (stored an additional
1 week in the room conditions and isolation) was lower by about 20% if compared to the speed in
beams No. 2 and 3 (which were tested right after removing from water). The explanation for this may
be the fact of the phenomenon of self-drying of young concrete as a result of hydration processes [54].
On the other hand, as predicted by poromechanics [55], the initial tangent Young’s modulus of the
porous material and the Poisson’s ratio in the state of full saturation is higher than in the dry state,
which may result in a corresponding decrease in longitudinal wave velocity. In the case of cement
matrix materials, such changes in Young’s modulus and Poisson’s ratio were measured by means of
static tests among others in works [56–58]. For example, the Young’s modulus of concrete at the age
of 51 days with a mean compressive strength fcm,cube = 64.6 MPa (in the state of water saturation)
varied from 47.2 GPa to 45.1 GPa and the Poisson’s ratio from 0.25 to 0.15 at the transition from the
saturation with water to a moisture concentration reduced by approximately 2.2% by weight [58].
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Assuming proportional changes for dynamic values of this parameters and taking into account the
formula expressing the speed of longitudinal waves:

cL =

√
E0(1− ν)

ρ(1− 2ν)(1 + ν)
, (30)

where: ν—Poisson’s ratio [-], ρ—density (kg/m3), its relative decrease with the quoted range of changes
in E0, ν and density would be about 8%. The effect can be further enhanced by micro-cracks in concrete
arising as a result of its autogenic and/or moisture shrinkage [54] (the latter in the case of absence of
drying protection). The comparison of preliminary results from beams No. 1, 2, and 3 presented in
this paper obviously requires further testing on a larger number of samples. Nevertheless, it can be
unequivocally stated that obtaining reliable, reference longitudinal wave speed, necessary to assess
the scale of damage evolution in tomographic tests, must always be determined for concrete without
damage of the same composition, and which is stored in the same conditions as the assessed concrete.
In practice, this may be the maximal speed determined at the time of the test on the concrete structural
member in a place where there are no defects, or on a sample without defects taken from the member. It
should be emphasized in the light of outcomes of the tested beams for which only self-drying concrete
and extending the period before the tomographic investigation by 7 days changed the reference speed
by approximately 20%.

5.2. Prefabricated Beam

A scheme of a beam is shown in Figure 23. Its dimensions were 20 cm × 40 cm × 360 cm and it was
made of concrete with a mean compression strength after 28 days of fcm,cube = 38 MPa. The maximal
aggregate diameter was da max = 16 mm. The reinforcement was made of steel with characteristic
yield point declared by the manufacturer of fyk = 500 MPa. The longitudinal lower reinforcement
consisted of four bars with a diameter of 12 mm, top reinforcement of two bars with a diameter of
10 mm and the transverse reinforcement was made of bi-armed stirrups with a diameter of 8 mm
with a spacing of 125 mm. As mentioned at the beginning of this point, the beam was damaged
during transport and there were three cracks crosswise to its axis, two of which were in the central
area of the beam selected for tomographic imaging. The shape and width of this defects are shown in
Figure 24. The studies consisted in the measurement of the time of propagation of the longitudinal
ultrasound wave using a Pundit-Lab tester and transreceiver heads with a frequency of 54 kHz. The
coupling of the heads and beam was provided by special gel for ultrasonic testing. Taking into account
the measured longitudinal wave propagation times and basic frequency of the ultrasonic pulses, the
average wavelength was ∼ 7 cm and it allowed satisfying the basic requirements described in ASTM
D2845-08 regarding the selection of frequency from the point of view of average grain size (as in point
5.1). The adopted system of transmitting/receiving points distant from each other by ∆p = 10 cm is
shown in Figure 23. Rays were assumed between the opposite points and those lying diagonally at an
angle of ∼ 26.6◦ and ∼ 116.6◦ in relation to the beam axis (Figure 23). These angles have been changed
from those used in computational examples and experiments on the laboratory beams to shorten to
a reasonable minimum the length of diagonal paths taking account of the attenuation of ultrasound
signals and to ensure the most correct reading of the longitudinal wave propagation times. In turn, the
section for tomographic examinations was the vertical longitudinal plane of symmetry of the system
running simultaneously between the longitudinal reinforcement bars. Measured and interpolated
longitudinal wave propagation times tpath int,i are shown in Figure 25, where interpolated times are
determined using a cubic Hermite spline. The diagrams also show tray approx,i determined according to
relation (28) with β = βopt according to formulas (24) and (25). On the other hand, Figure 26 shows an
example of a recorded signal by the receiving head together with a reading of the time of longitudinal
wave propagation. As in the case of the tests presented in point 5.1, Figure 26 shows first the signal
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caused by the propagation of the longitudinal wave and then the signal induced by the propagation of
transverse and Rayleigh waves of much higher amplitude.Materials 2020, 13, 551 32 of 37 
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Figure 25. Propagation times tpath int,i and tray approx,i between the transmitting/receiving points in the
beam. The results are presented as a function of the position of the transmitting points: tpath int,i grey
lines with nodes marked with circles, and tray approx,i a black dashed line. The top diagram refer to the
paths connecting the opposite points and the bottom one to the points lying diagonally at an angle of
63.4◦ and 116.6◦ to each other in relation to the axis x.
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Figure 26. Example of a signal recorded by the receiving head (transmitting point No. 3 and receiving
point No. 1).

Figure 27 shows a tomographic reconstruction of the longitudinal wave velocity map in the
longitudinal section of the beam which was determined by a randomized Kaczmarz method according
to the information presented in point 2. The maximum measured average velocity of a longitudinal wave
along all rays, i.e., 3913 m/s, was assumed to be cL ref. The resolution of δ1 × δ2 = 3.33 cm × 3.33 cm was
applied and the arrangement of rays as in Figure 23 with addition of rays between real ones connecting
fictitious transmitting/receiving points at a distance of every 6.25 mm. The results are shown only for
the central section of the beam separated by a red dashed line through which all types of rays passed
due to their inclination. The maps presented here are calculated on the basis of Equation (3) with
propagation times tray,i = tray approx,i in accordance with (28) for the paths connecting opposite points
and tray,i = tpath int,i for the diagonal paths. For this purpose, the values of tpath int,i are taken, as shown
in Figure 25. The optimal coefficient β necessary for the determination of tray approx,i was calculated in
accordance with formulas (24)–(25) and amounted to 0.25. At the same time dcL ray max according to
Equation (29) amounted to 0.007, which, in the considered case, proves the lack of significant influence
of the generated cracks on the deflecting the fastest ultrasound wave propagation paths. This may also
demonstrate the high degree of homogeneity of the concrete in the prefabrication plant.
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In Figure 27, on the left side, clearly formed 2 elastically degraded zones can be seen which were
created around the visible cracks (at x ≈ −0.6 m and x ≈ −0.15 m). In addition, there are also two other
zones of this type which can be tomographically observed and were not signaled by visible defects (at
x ≈ 0.2 m and x ≈ 0.5 m) and a few smaller ones, reaching up to about 6 ÷ 9 cm deep into the beam
from its lower and upper surfaces. The latter may have been created before the beam was damaged as
a result of shrinkage stresses occurring while the element was drying out after dismantling the beam
formwork. Based on Equation (20), the maximal change of Young’s tangent modulus defined by the
min(ED/E0) ratio at the 0.77 level can be estimated, if one assumes in this case that cL0 = cL ref (in a
zone that goes across the beam at x ≈ −0.15 m). The width of the defect at this point is approximately
17 cm. It is very close to the width of the elastically degraded zone, which was calculated theoretically in
point 3. For the min(ED/E0) = 0.77 ratio, this corresponds to a damaged area width of approximately
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18 cm, which can be read from Figure 5b or Figure 6b. This result also indirectly pre-confirms the
validity of the identification method for the internal length lc of concrete proposed in point 3.

6. Conclusions

As a summary of this work, the following general conclusions should be highlighted:
(1) The accuracy of transmission ultrasonic tomography for the detection of brittle damage in

concrete can be effectively supported by the graph theory and, in particular, by Dijkstra’s algorithm.
What is important, it allows the determination of real paths of the fastest ultrasonic wave propagation
in concrete containing localized elastically degraded zones at any stage of their evolution. Thanks
to the analyses conducted on this basis, the authors developed the method of reducing errors in
reconstructions of longitudinal wave speed maps. In this approach, the errors are decreased which
are caused by using a simplification of straightness of the fastest wave propagation paths assumed
in the typical mathematical apparatus for ultrasonic tomography. The method is based on the
appropriate elongation of the measured propagation times of the wave travelling between opposite
transmitting-receiving transducers if the actual propagation paths deviate from straight lines.

(2) Transmission ultrasonic tomography allows the estimation of the internal length of concrete
defined in accordance with the methodology of damage mechanics. This problem is very important in
the case of studies carried within this field of mechanics (e.g., Reference [29–31,49,50]) when predicting
the extent and degree of brittle damage evolution in concrete structures. However, this conclusion may
be addressed to testing RC beams with certain restrictions regarding issues of bonding between concrete
and reinforcing bars and is appropriate for beams of lower reinforcement ratios with arrangement of
tomographic rays not along reinforcing bars.

(3) Knowledge of the internal length of concrete allows rational determination of the appropriate
resolution in ultrasonic tomography imaging and assessment of evolution of localized elastically
degraded zones.

(4) The use of fictitious transmitting-receiving points in ultrasonic tomography, for which wave
propagation times are calculated by interpolation of measured times, can contribute to the reduction
of the required number of transducers and possible costs in the considered approach to concrete
beams assessment while maintaining proper resolution of tomographic images. This outcome was
well-grounded in the case of numerical analysis conducted in the work and usefulness of this approach
was pre-confirmed in the own experiments. However, due to the limited number of these tests, it
needs further justification and experimental studies using different arrangements of distances between
sending-receiving points for ultrasonic pulses on the same RC members and confrontation with tests
based on, e.g., acoustic emission or X-ray tomography.
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Gdańsk, Poland, 11–13 October 2017; Pietraszkiewicz, W., Witkowski, W., Eds.; CRC Press: Boca Raton, FL,
USA, 2017; pp. 445–448.

25. Perlin, L.P.; de Andrade Pinto, R.C. Use of network theory to improve the ultrasonic tomography in concrete.
Ultrasonics 2019, 96, 185–195. [CrossRef] [PubMed]

http://dx.doi.org/10.1504/IJSTRUCTE.2009.030028
http://dx.doi.org/10.1680/stbu.11.00075
http://dx.doi.org/10.2478/ace-2018-0069
http://dx.doi.org/10.1016/j.conbuildmat.2019.07.320
http://dx.doi.org/10.3390/app9214700
http://dx.doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2437)
http://dx.doi.org/10.1016/j.compstruct.2018.05.112
http://dx.doi.org/10.3390/ma11101928
http://dx.doi.org/10.1016/j.conbuildmat.2016.09.013
http://dx.doi.org/10.1016/j.conbuildmat.2018.07.156
http://dx.doi.org/10.1016/j.ndteint.2008.03.005
http://dx.doi.org/10.1016/j.conbuildmat.2006.04.009
http://dx.doi.org/10.1016/j.conbuildmat.2016.08.158
http://dx.doi.org/10.1016/j.ndteint.2012.05.004
http://dx.doi.org/10.1016/j.conbuildmat.2012.09.003
http://dx.doi.org/10.1016/j.acme.2013.10.006
http://dx.doi.org/10.1016/j.conbuildmat.2016.05.056
http://dx.doi.org/10.1016/j.conbuildmat.2016.07.010
http://dx.doi.org/10.1016/j.ultras.2019.01.007
http://www.ncbi.nlm.nih.gov/pubmed/30755325


Materials 2020, 13, 551 36 of 37

26. Radon, J. Über die Bestimmung von Funktionen Durch ihre Integralwerte längs Gewisser Mannigfaltigkeiten.
In Berichte über die Verhandlungen der Königlich Sächsischen Akademie der Wissenschaften zu Leipzig,
Mathematisch-Physikalische Klasse; 69; B.G. Teubner: Leipzig, Germany, 1917; pp. 262–277. (In German)

27. Chaboche, J.L. Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack
Growth. J. Appl. Mech. 1988, 55, 65–72. [CrossRef]

28. Mazars, J. A description of micro- and macroscale damage of concrete structures. Eng. Fract. Mech. 1986, 25,
729–737. [CrossRef]

29. Pijaudier-Cabot, G. Non-local damage. In Continuum Models for Materials with Microstructure; Mühlhaus, H.B.,
Ed.; John Wiley & Sons: Chichester, UK, 1995; Volume 4, pp. 105–144.

30. Mazars, J.; Pijaudier-Cabot, G. From damage to fracture mechanics and conversely: A combined approach.
Int. J. Solids Struct. 1996, 33, 3327–3342. [CrossRef]

31. Pijaudier-Cabot, G.; Mazars, J. Damage Models for Concrete. In Handbook of Materials Behavior Models;
Elsevier: Amsterdam, The Netherlands, 2001; Volume 2, pp. 500–512.

32. Perkowski, Z.; Gozarska, K. Identyfikacja kruchych mikrouszkodzeń elementów betonowych za pomocą
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33. Tatara, K. Identyfikacja kruchych uszkodzeń w konstrukcjach betonowych z wykorzystaniem transmisyjnej
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