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Spermatogonial stem cells (SSCs) are the germline stem cells that are essential for the maintenance of spermatogenesis in the testis.
However, it has not been sufficiently understood in amphibians, reptiles, and fish because numerous studies have been focused
mainly on mammals. The aim of this review is to discuss scientific ways to elucidate SSC models of nonmammals in the
context of the evolution of testicular organization since rodent SSC models. To further understand the SSC models in
nonmammals, we point out common markers of an SSC pool (undifferentiated spermatogonia) in various types of testes where
the kinetics of the SSC pool appears. This review includes the knowledge of (1) common molecular markers of vertebrate type
A spermatogonia including putative SSC markers, (2) localization of the markers on the spermatogonia that have been
reported in previous studies, (3) highlighting the most common markers in vertebrates, and (4) suggesting ways of finding SSC
models in nonmammals.

1. Introduction

The germ cell lineage in both male and female vertebrates
originates from primordial germ cells (PGCs). In males,
PGCs become enclosed by somatic supporting cells, which
are the precursors of Sertoli cells [1, 2]. Sertoli cells of
mice and turtles originate from coelomic epithelial cells
in the testis; Sertoli and granulosa cells have a common
precursor in mice and medaka [1, 3–8]. PGCs and Sertoli
cells then together form solid strands of cells, which are
called seminiferous cords (or cysts in fish and amphibians)
[2, 9]. Later, these cords (or cysts) form a lumen and
become lobules in fish and amphibians or seminiferous
tubules in reptiles, birds, and mammals [10–12]. Finally,
spermatogenesis, which is an organized process in verte-
brate testes to produce from spermatogonia (SPG) to
mature spermatozoa (SPZ) through an individual’s life-
span, occurs in the cyst or seminiferous tubule (Figure 1)
[13, 14].

Spermatogonial stem cells (SSCs) are the germline stem
cells that are a rare population with long-term renewal
potential in the testis [15]. The SSCs are small in proportion,
representing only 0.03% of all germ cells in rodent testes
because a majority of testicular germ cells are differentiated
SPG, spermatocytes (SPC), spermatids (STD), and SPZ in
seminiferous tubules or cysts [10, 14, 15]. It has been
reported that active movement of SSCs occurs around the
vasculature-associated region to communicate with testicu-
lar somatic cells [16, 17]. Localization of the SSC pool
labeled with Neurogenin 3/enhanced green fluorescent pro-
tein (EGFP) is biased to the vascular network and accom-
panies Leydig and other interstitial cells in the intact testis
of mice [17, 18]. The Glial line-derived neurotrophic factor
family receptor alpha-1 (GFRα-1)+SSC pool tends to local-
ize on the basement membrane of the seminiferous tubules
near the vasculature and interstitium [16]. Spermatogonia
(SPG) undergoing differentiation leave the vasculature-
associated region and disperse throughout the basal com-
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partment of the seminiferous epithelium. The prevailing
“Asingle SSC Model” in seminiferous tubules has been sug-
gested to represent the ability of SSCs to multiply and self-
renew in rodents [10, 15, 19–21]. Asingle (As) SPG as SSCs
have the ability to self-renew throughout the lifetime to pre-
serve SSC population size and differentiate into A-paired (Apr)
and A-aligned (Aal) SPG to maintain the process of spermato-
genesis and preserve male fertility [10, 15, 22, 23]. Currently,
there are two rodent SSC models (“revised Asingle model”
and “fragmentation model”), which have been performed
with transplantation experiments to characterize stem cell
activity in mice [22, 24].

The testicular organization consists of tubular testes for
reptiles, birds, and mammals and lobular testes for amphib-
ians and fish. The cysts are produced when a Sertoli cell
becomes associated with a primary SPG (also called PGCs),
which has the largest nuclei among spermatogenic cells, and
mitotic divisions of the primary spermatogonium produce a
group of secondary SPG that are enclosed by the Sertoli cell,
which forms the wall of the cyst [25, 26]. Spermatogenesis
occurs in a cyst of a testicular lobule, which consists of unit-
termed cysts, including a mix of testicular germ cells and Ser-

toli cells [27] (Figure 1). Sperms are released into the lumen of
lobules and are transported through sperm ducts connected
between each lobule (Figure 1) [28]. Lobular testes are divided
into restricted and unrestricted lobular testes, wherein during
active spermatogenesis, type A SPG are found only in the
periphery of the restricted lobular testis of fish and salamander
or type A SPG are seen in all the lobules of the unrestricted
lobular testis in fish and frogs, respectively (Figure 1) [25,
28–39]. In the tubular testis, PGCs and pre-Sertoli cells then
together form solid strands of cells, which are called seminifer-
ous cords [3, 40, 41]. These cords form a lumen and become
seminiferous tubules in reptiles, birds, and mammals [25, 26]
(Figure 1). Spermatogenesis developing from SPG to SPZ
occurs in seminiferous tubules (Figure 1). Localization of germ
cell differentiation is different between anamniote and amni-
ote vertebrates because of diverse testis organization. In addi-
tion, the available discussion on the kinetics and models of
vertebrate SSC has been limited because identification of SSC
models has been reported mainly in mammals. The purpose
of this review is to discuss evidence-based SSC models and
to find ways for SSC models of nonmammals by searching
common SSC and type A SPG markers in vertebrates.
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Figure 1: Testicular organization in vertebrates. Amphibians and fish have lobular testes, and the lobular testis is classified into restricted
and unrestricted lobules. Type A spermatogonia are found in cysts, located in the periphery of the restricted lobular testis of fish and
salamander. Spermiation occurs in the nonperipheral region of the testis. Type A spermatogonia are seen within all cysts which are
located in the lobules of the unrestricted lobular testis in fish and frogs. Spermatogenesis occurs in a cyst of a testicular lobule, consisting
of unit-termed cysts with a mix of testicular germ cells and Sertoli cells. Mammals, birds, and reptiles have tubular testes where
spermatogenesis and type A spermatogonia are observed in the basement membrane of seminiferous tubules. Differentiation of
spermatogonia and primary spermatocytes via mitotic cell division and the production of haploid spermatids from the tetraploid
primary spermatocytes via meiotic cell division occur in vertebrate spermatogenesis.
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2. Models of Spermatogonial Stem Cells and
Type A Spermatogonia among Vertebrates

The transplantation technique is a powerful tool method to
characterize SSC activity including germ cell differentiation,
progeny production, and lineage tracing using EGFP-
transgenic mice, which has been used for demonstrating
mouse SSC models [15, 42]. Currently, there are two models
in rodents that have been verified via transplantation with a
specific marker. “Asingle SSC Model” has been modified by
Lord and Oatley who subsequently proposed the “revised
Asingle model” (Figure 2(a)) [24]. A previous study has dem-
onstrated the expression and function of inhibitor of differ-
entiation 4 (ID4) in ID4/EGFP mice, wherein the ID4/
EGFP-expressing SPG population with high ID4 expression
was enriched with SSCs [43]. Spermatogonia with high levels
of ID4/EGFP expression are primarily As SPG within the
testes, and these cells encompass over 85% of the SSC popu-
lation in transplantation analysis. In contrast, SPG with low
levels of ID4/EGFP expression are identified primarily as Apr
and some As SPG with low levels of ID4 expression encom-
pass less than 15% of the self-renewing population in trans-
plantation analysis. The SPG population with the high level
of ID4/EGFP expression gives higher levels of putative SSC
markers, which led to high colonization efficiency in trans-
plantation, and ID4 overexpression impairs spermatogenesis
characterized by a blockade in differentiation [43, 44]. They
proposed the “revised Asingle model” which explains that
under steady-state conditions, a subset of the As population
with higher ID4 expression is considered functionally true
SSCs, and some plasticity of As and Apr SPG with lower
ID4 expression may exist between SSCs and progenitors
(Figure 2(a)).

Yoshida and his colleagues proposed the “fragmentation
model” which describes cell kinetics and undifferentiated
type A SPG in the mice (Figure 2(a)) [16, 22, 45, 46]. The
SSC maintenance not only is dependent on self-renewing
cells (As) but also involves a more extensive population com-
prising Apr and Aal SPG [47]. This population has self-
renewing abilities similar to those of stem cells [47]. Live cell
imaging and lineage tracing experiments involving EGFP/
GFRα-1+SSC pool (including As, Apr, and Aal SPG) during
steady-state spermatogenesis have revealed that the SCC
pool actively migrates over a large area on the basal lamina
without stopping at particular points and that the breakage
of intercellular bridges occurs more often than expected
[16]. Asingle SPG are generated through self-renewal and
the fragmentation of Apr or Aal SPG [16]. Notably, the pro-
duction of two As SPG by cell division is rare, and the major-
ity of As SPG are generated from the fragmentation of Apr
and Aal SPG (Figure 2(a)) [16]. This result supports that
SSC maintenance is more regulated by the fragmentation
of Apr and Aal SPG than SSC self-renewal. Recently, they
have analyzed the fate of transplanted mouse SSCs at the
single-cell resolution that a small fraction of EGFP/GFRα-1
+SSCs repopulate over the long term in host mouse testes,
and it is enhanced to restore host fertility by transient sup-
pression of donor SSC differentiation using retinoic acid
[48]. Interestingly, this model is indirectly supported by

another study, which reported that purified mouse KIT pro-
tooncogene receptor tyrosine kinase+differentiating SPG
committed to undergo differentiation can generate func-
tional germinal stem cells that can repopulate germ cell-
depleted testes when transplanted into adult mice [49]. This
study suggested that stemness could be acquired by differen-
tiating progenitors after tissue injury and throughout life.
These findings suggest that the SSC pool is not a fixed entity
but a differentiation state that can be lost or regained accord-
ing to its physical status, thus proposing a new characteristic
of the SSC pool [22]. Asingle and Apr SPG have been sug-
gested as the SSC pool in the “revised Asingle model”, and
the “fragmentation model” suggests that As, Apr, and Aal
SPG are considered the SSC pool (Figure 2(a)). So far, these
models are the only evidence-based SSC models in
vertebrates.

In primates, dark and pale type A SPG (Adark and Apale
SPG) are localized at the basement membrane of primate
seminiferous tubules and are morphologically identified by
their nuclear architecture and staining intensity with hema-
toxylin [50, 51]. In the Adark and Apale SPG model, two exist-
ing types of SSCs have been suggested. The first type
comprises monkey Adark SPG (“reserve” stem cells), which
are the stem cells that produce equal numbers of Adark
SPG, whereas the second type is the Apale SPG (“active” stem
cells), which divide to give rise to type B SPG that differen-
tiate into primary SPC [52–54]. This model has been con-
tested by Ehmcke et al. who claimed that the Adark SPG
(“regenerative reserve”) are recognized as true SSCs with a
low mitotic activity under steady-state conditions, and the
Apale SPG initiate spermatogenesis by self-renewal of Apale
SPG as “renewing progenitors” [23, 54–56]. Currently, it
has been suggested that the different nuclear architecture
of Adark and Apale SPG may strongly correlate with cell cycle
stages; Adark and at least some Apale are the same population
of cells at different stages of the cell cycle [42, 54, 57]. In
terms of the cell cycle, Adark and Apale SPG are considered
the SSC pool (undifferentiated type A SPG) (Figure 2(b)).
However, the identification of distinct SSCs in the Adark
and Apale SPG, which is demonstrated by transplantation
experiments with molecular markers, remains unclear.

In birds, the model of SSC identification and renewal has
not been established due to insufficient studies on SSCs. The
classification of SPG, based on chromatin distribution and
nuclear morphology, has been proposed to describe the pro-
cess of SPG development in birds. In Japanese quail and
goose, four different types of SPG are identified in seminifer-
ous tubules: dark type A, two pale A types (pale 1 and 2),
and type B SPG [58–60]. In turkey, three types of SPG have
been defined: dark type A, pale A type, and type B SPG [61].
The dark type A SPG for both species are analogous to the
As/Apr in rodents and Adark/Apale in primates.

In reptiles, it has been reported that there are type A and
B SPG based on histological morphology. The seasonal cycle
of spermatogenesis has demonstrated different patterns with
an increase in seminiferous tubule size in turtles, snakes, and
lizards [62–66]. In turtles, there are three major types of
SPG, namely, resting, type A, and type B SPG [67]. The rest-
ing SPG, which appear during four seasons and have darkly
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stained chromatin packed tightly within the nuclei and lack
visible nucleoli, do not enter meiosis to replenish the sper-
matogonial population near the end of spermatogenesis
[67]. Turtle resting SPG may correspond to undifferentiated
SPG as the SSC pool. In snakes and lizards, type A SPG are
determined by morphology without classifying such as
undifferentiated type A SPG [62, 65, 66, 68]. In amphibians,
primary SPG that are located in the periphery of the lobules
have been considered undifferentiated type A SPG undergo-
ing mitosis, and secondary SPG are similar to type B SPG
(differentiated SPG) in rodents [25, 28, 33–35]. In bullfrogs
and newts, PGCs claimed in seasonal spermatogenesis are
designated as primary SPG [34, 69–71]. However, evidence
of resting and primary SPG that supports their SSC poten-
tials has not been found in both species yet.

The majority of testicular structures are lobular types in fish
(Figure 1). SSCs have been studied in classification, in vitro cul-
ture, and transplantation in fish more than in reptiles and
amphibians. Spermatogenesis including type A SPG, type B
SPG, and primary SPC has been well studied in fish [14, 32,
72]. An initial cyst is formed with undifferentiated type A
SPG, which is considered a stem cell and comprises a few Sertoli

cells. Fish type A SPG are classified into undifferentiated type A
and differentiated type A SPG that correspond to undifferenti-
ated As~Aal (2~16 germ cells) and differentiating type A
(A1~intermediate) SPG in rodents, respectively [14, 73–76]
(Figure 2(b)). The potential activity of SSCs has been evaluated
in fish using transplantation experiments, indicating the stem-
ness of undifferentiated type A SPG. In trout, DEAD-box heli-
case 4 (VASA)/GFP-expressing PGCs or type A SPG, which are
xenotransplanted into salmon, can develop into functional
sperm cells and egg cells that can form offspring [77–80]. In
addition, the SSC activity of type A SPG has been evaluated
using molecular markers [72, 80]. In sturgeon, early-stage germ
cells which are transplanted into recipient larvae can migrate to
genital ridges and the number of SSCs significantly increases in
later larval stages [81]. In zebrafish, VASA/EGFP-expressing
undifferentiated type A SPG can develop into spermatogenic
cells at different stages of spermatogenesis and oocytes after
transplantation into germ cell-deficient male and female zebra-
fish [82]. Furthermore, in vitro culture and purification of type
A SPG have been studied for differentiation and enrichment in
dogfish, catfish, zebrafish, and carp [83–88]. So far, undifferen-
tiated type A SPG have the SSC potential in fish (Figure 2(b)).

U
nd

iff
er

en
tia

te
d 

ty
pe

 A
sp

er
m

at
og

on
ia

‘Fragmentation model’ ‘Revised Asingle model’

As

Apr

Aal (4 cells)

Aal (8 cells)

Aal (16 cells)

?

SS
C 

po
ol

 (I
D

4+
l)

SS
C 

po
ol

 (G
FR

𝛼
-1

+)

Differentiating spermatogonia
(type A1, A2, A3, A4 and 

intermediate spermatogonia) 

Mouse SSC models 

(a) (b)

512

A undifferentiated

A differentiated

A differentiated

A differentiated

TeleostsPrimates
A dark/A pale

A dark/A paleU
nd

iff
er

en
tia

te
d 

ty
pe

 A
sp

er
m

at
og

on
ia

 (S
SC

 p
oo

l)

U
nd

iff
er

en
tia

te
d 

ty
pe

 A
sp

er
m

at
og

on
ia

 (S
SC

 p
oo

l)

Hypothetic schemes of spermatogonial kinetics

A dark/A pale

A dark/A pale spermatogonium

Type A spermatogonium

Type B spermatogonium

Figure 2: Spermatogonial stem cell models in rodents and proposed kinetics of undifferentiated type A spermatogonia in primates and
teleosts. Mouse “revised Asingle model” and “fragmentation model” are illustrated in (a), based on the previous reports [16, 22, 24, 45,
46]. In vertebrates, only these models have been verified by transplantation experiment which includes SSC markers’ expression in
undifferentiated type A SPG via GFP transgenic animal model or lineage tracing. ID4 positive As and Apr SPG are considered the SSC
pool in the “revised Asingle model” (a). In the “fragmentation model,” GFRα-1 positive As, Apr, and Aal SPG are suggested as the SSC
pool (a). In addition, duplication of As SPG by cell division is rare and the majority of As SPG production occurs by the fragmentation
of Apr and Aal SPG. Hypothetic schemes of primate and teleost SSCs (undifferentiated SPG) are presented in (b), based on previous
reports (b) [23, 42, 73, 75, 116, 117]. However, SSC kinetics has not been verified via transplantation and lineage tracing experiments as
performed in mouse SSCs. The SSC pool has been proposed in primates and teleosts; also, the kinetics of the putative SSC pool has not
been suggested in birds, reptiles, and amphibians. In primates, Adark and Apale SPG are considered the SSC pool including single and
paired Adark/Apale spermatogonia (b). Only undifferentiated type A SPG (A undifferentiated) are considered the SSC pool in teleosts (b).
Red curved arrows indicate self-renewal of As spermatogonia (or Adark/Apale spermatogonia). Blue curved arrows indicate differentiation
from Apr spermatogonia to As spermatogonia. Green curved arrows indicate clonal fragmentation from Apr and Aal spermatogonia to As
spermatogonia. The black arrow indicates a division of each germ cell during spermatogenesis. Asingle, Apr, and Aal indicate As, Apr, and
Aal spermatogonia. Adark/Apale indicates Adark/Apale spermatogonia. “A undifferentiated” and “A differentiated” indicate undifferentiated
type A and type A differentiated spermatogonia in panel (b), respectively.
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Undifferentiated type A SPG of vertebrates, such as As,
Apr, Aal, Adark, and Apale SPG, are considered the SSC pool,
based on their localization in the basement membrane of
tubules and cysts of lobules, characterization of nuclei, their
rarity, and transplantation evidence. To further understand
SSCs in nonmammals, we analyzed the expression of puta-
tive SSC markers in type A SPG during the early and adult
stages of testis development among vertebrates.

3. Class-Crossed Molecular Markers of
Spermatogonial Stem Cells and Type A
Spermatogonia in Vertebrates

Gonocytes and PGC, which are considered to be the origin
of SSCs and also expressed in adult type A SPG, have been
used for identifying the SSC pool (Supplementary Table 1)
[15]. Putative SSC markers and type A SPG, expressed in
testicular tubules (or lobules) and cultured (or isolated)
SPG, have been analyzed in the SSC pool of vertebrates;
class-crossed and class-specific markers are shown in
Supplementary Information including a detailed
description of expression of the SSC and SPG markers in
vertebrates. According to the “revised Asingle model” and
the “fragmentation model,” the vertebrate SSCs include
undifferentiated type A SPG as the SSC pool such as As,
Apr, and Aal SPG or Adark and Apale SPG. “SSCs” claimed
in the previous research studies were intactly used in the
marker description of this section and Supplementary
Information. The candidate markers for the SSC pool,
which are common in two classes or more, were selected
by results visualized by immunocytochemistry,
immunohistochemistry, in situ hybridization, magnetic-
activated cell sorting (MACS), and fluorescent-activated
cell sorting (FACS) in the testicular tubules (or lobules) at
specific developmental stages as well as transplantation
experiments for producing donor-derived offspring. SSC-
related studies only with RT-PCR results were excluded
from the selection of putative SSC markers. All genes listed
were confirmed for their evolutionary conservation using
NCBI Orthologs (https://www.ncbi.nlm.nih.gov). Due to
the number of research reports on nonmammals, it was
not easy to isolate the common markers for the SSC pool
of vertebrates. As shown in Supplementary Tables 1 and 2,
plenty of putative SSC markers from mammalian testis
tissues and their cultured (or isolated) SSCs have been
studied more frequently than birds, reptiles, amphibians,
and fish. Comparatively, GFRα-1, thymocyte differentiation
antigen 1 (THY1), promyelocytic leukemia zinc finger
protein (PLZF), nanos C2HC-type zinc finger 1 (NANO1),
nanos C2HC-type zinc finger 2 (NANOS2), and OCT4 are
class-crossed markers of the SSC pool (Supplementary
Table 1). Here, we review GFRα-1 expression in
vertebrates which is the most common molecular marker
after investigating putative SSC markers.

In mature male dogfish, GFRα-1 is highly expressed in
all undifferentiated SPG and differentiating SPG, as well as
in cultured GFRα-1-expressing spermatogonial cells, but it
is not detectable in SPC- and STD-related zones [83, 89].

In tilapia, GFRα-1 is detected exclusively in undifferentiated
type A SPG with a large nucleus of large single cells in sexu-
ally mature male testes, and the density of GFRα-1+SPG is
high in the peripheral regions of the tubular testis (near
tunica albuginea). Cultured GFRα-1+SPG, isolated from
the adult testis, can colonize in recipient adult tilapia [90].
In rainbow trout, GFRα-1 transcripts are detected in type
A SPG of mature testes, and their levels decrease in type B
SPG [91]. In medaka adult testes, GFRα-1 transcript levels
are high in SPG and moderate in SPC, and SPG isolated
from immature testes express GFRα-1 [92, 93]. In bullfrogs,
PGCs (gonocyte-like SSCs) of adult testes are the largest cells
located in the lobular periphery and are surrounded by Ser-
toli cells, and GFRα-1 immunoexpression is observed in the
cytoplasm and plasma membrane of PGCs [35]. In adult
scorpion mud turtles, GFRα-1 is expressed in undifferenti-
ated type A SPG (SSC) and is predominantly located in areas
where a seminiferous tubule faces the interstitial compart-
ment containing blood vessels [94]. In chicken, the propor-
tion of GFRα-1+ cells is 2.8% in the cells of adult testes.
GFRα-1 mRNA and protein expression is detected mainly
in type A SPG close to the basement membrane of the sem-
iniferous tubule, and GFRα-1-expressing SPG produce the
progenies in recipient chickens [95, 96]. Spermatogonia, iso-
lated from juvenile and adult quail using a differential plat-
ing technique, express GFRα-1, and SPG cultured from
adult pheasant testes also express GFRα-1 [97, 98]. Mamma-
lian GFRα-1 is expressed in gonocytes and undifferentiated
type A SPG of the testis and cultured (or isolated) SSCs
(Supplementary Table 1). Certainly, mouse GFRα-1 is
expressed in the SSC pool (As, Apr, and Aal SPG) during
steady-state spermatogenesis (Supplementary Table 1). In
vertebrates, GFRα-1 is a common marker for the SSC pool,
and its expression is exclusively observed in gonocytes,
undifferentiated type A SPG, and cultured SSCs. In
addition, GFRα-1+ cells have been used for transplantation
experiments to produce donor-derived offspring and for
elucidating SSC models in rodents [16, 48]. In analysis of
molecular markers, it reveals that GFRα-1 is the most
potential SSC marker in vertebrates.

4. Finding Models of Spermatogonial Stem
Cells in Nonmammals

After analyzing type A SPG localization of putative SSC
markers in vertebrates, several characteristics are revealed
in the SSC pool of vertebrates. Firstly, the SSC pool is
observed in SPG in the basement membrane of seminiferous
tubules, the periphery of restricted lobular testes, and the
basement membrane near the cyst of unrestricted lobular
testes mixed with several types of germ cells. Secondly, many
of the putative SSC markers in mammals are not expressed
or have not been studied in other classes (Supplementary
Table 1). Thirdly, transplantation including SSC markers’
expression with progeny production has been performed in
a few gonochoristic fish (nonmammals). Based on these,
we discuss ways of verifying SSC models of nonmammals
in the evolution of the testicular organization.
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As mentioned above, testis organization is divided into
tubular and lobular testes for optimal reproductive strate-
gies. Mammals and birds exhibit homeothermy, internal fer-
tilization, specific sex chromosome (ZZ/ZW or XX/XY),
tubular testis, and exogenous factor-independent sex deter-
mination (Table 1). Reptiles and amphibians show poiki-
lothermy, external fertilization, lobular testis, and
exogenous factor-dependent sex determination; additionally,
certain species possess specific sex chromosomes (ZZ/ZW or
XX/XY) (Table 1). Fish exhibit poikilothermy, external fer-
tilization, lobular testis, various types of sex chromosomes,
and exogenous factor-dependent sex determination
(Table 1). Reptilian reproductive strategies show the inter-
mediate characteristics between fish-amphibians and birds-
mammals (Table 1). Tubular and lobular testes diverge in
stability of the sex determination system, fertilization strat-
egy, and animal body type (Table 1). Although spermato-
genesis is a universal process in vertebrates, the testicular
organization is varied in the reproductive strategies of verte-
brates (Figure 1 and Table 1). The SSC pool of amniotes and
anamniotes exists in the basement membrane of seminifer-
ous tubules and cysts of lobular testes, respectively
(Figure 1). In particular, the difference in testis organization
may imply a difference in SSC kinetics in vertebrates and
suggest that the SSC kinetics and their markers can vary
between tubular and lobular testes. To understand SSC
models in nonmammals further, it is necessary to demon-
strate whether the “revised Asingle models,” “fragmentation
model,” or other models can be applied to elucidate SSC
kinetics in the lobular testis of anamniotes or not. In a pre-
vious study, GFRα-1, which has been used to trace mouse
As, Apr, and Aal SPG to explain the “fragmentation model,”
was found to be the only common marker for the vertebrate
SSC pool (Supplementary Table 1) [16, 48]. Comparatively,
type A SPG of fish are classified in more detail than those
of reptiles and birds (Figure 2(b)). In addition, the kinetics
of undifferentiated type A SPG using transgenic fish and
organ culture has been reported in several studies. In
rainbow trout and medaka, VASA/GFP-carrying type A
SPG have been used in transplantation experiments and
germ cell cultures, which possess the ability to produce

donor-derived offspring [77–80, 99–109]. Additionally, the
culture of testis fragments has been performed in rainbow
trout and medaka, which increased the proliferation of
SPC and SPG; GFRα-1 is expressed in undifferentiated
type A SPG of both species [110, 111] (Supplementary
Table 1). Recently, the in vitro-expanded germline stem
cells, enriched from immature VASA/GFP rainbow trout,
exhibit stem cell activity and potency to produce functional
eggs, sperm, and healthy offspring [109]. In testicular
organization, medaka and rainbow trout have restricted
and unrestricted lobular testes, respectively [79, 91, 110,
112–114]. In common, two bony fish are gonochoristic in
which only each individual develops to a male with testes
or a female with ovaries after fertilization [115].
Spermatogenesis in unrestricted lobular testes occurs in a
single cyst corresponding to the seminiferous tubules
(Figure 1). However, the differentiation and proliferation of
germ cells (SPG, SPC, STD, and SPZ) occur in various
cysts of restricted lobular testes, and the cysts are located
in the peripheral region extending to the central sperm
duct; each cyst in the testis is divided into mitotic and
meiotic cysts in restricted lobular testes (Figure 1). It is
possible that SSC kinetics (self-renewal and division) is
different from those in unrestricted lobular and tubular
testes. Rainbow trout and medaka satisfy the conditions
(GFRα-1 expression in undifferentiated SPG, organ culture
of the testis, and establishment of a GFP transgenic animal
model) that can apply the live imaging experiments using
GFRα-1/EGFP to prove the “fragmentation model”; SCC
activity can be analyzed in ID4-EGFP salmon and medaka
to verify the “revised Asingle model.” In addition, PLZF and
OCT4, which are conserved in vertebrates, are promising
undifferentiated SPG markers after GFRα-1. Therefore,
finding SSC models using two fish can provide the
diversity of SSC kinetics in the lobular testis in
nonmammals.

Here, we tried to investigate the common SSC markers
after examining the putative markers of the SSC pool in ver-
tebrates. To date, GFRα-1 is the most common marker for
the SSC pool in vertebrates, and it can be used to verify
SSC models using experiments (transgenic animal model,

Table 1: Reproductive strategies in vertebrates.

Reproductive
strategy

Subgroups
Fish Amphibians Reptiles Birds Mammals

Animal body
types

Poikilothermic Poikilothermic Poikilothermic Homeothermic Homeothermic

Fertilization External∗ External∗ Internal Internal Internal

Sex
chromosome
types

XX/XY, ZZ/ZW, X1X2X3X4/X1X2Y, ZO/
ZZ, or more types [115, 118]

XX/XY or ZZ/ZW [118,
119]

XX/XY or ZZ/
ZW [118,
120–123]

ZZ/ZW [118,
124]

XX/XY [118,
125, 126]

Sex reversal
or biased sex
ratio

Yes [115, 127] Yes [128–131]
Yes [120, 122,
123, 132]

No No

Testicular
organization

Anastomosing tubular testis, restricted
lobular testis, or unrestricted lobular testis

[14, 29–32, 115, 133, 134]

Restricted lobular testis or
unrestricted lobular testis

[25, 28, 33–38]

Tubular testis
[62, 65]

Tubular testis
[135]

Tubular testis
[14, 136–138]

∗There are exceptions in fish and amphibians. Guppies, coelacanths, dogfish, and fanged frogs have the internal fertilization [139–143].

6 Stem Cells International



transplantation, and in vitro culture) in nonmammals. To
understand SSC kinetics in nonmammals, further studies
including the identification of novel markers, development
of organ culture, and establishment of SSC molecular
marker-carrying transgenic animal models should be per-
formed in birds, reptiles, and amphibians. If a specific SSC
model is common across several classes or a new model of
SSCs can appear in other classes with lobular testes, we can
understand why self-renewal and differentiation of SSCs
are different in the evolution of testis organization and
reproductive strategy among vertebrates.
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