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A B S T R A C T

Organic pollutants have an adverse effect on the neighboring environment. Industrial activates are the major
sources of different organic pollutants. These primary pollutants react with surrounding and forms secondary
pollutant, which persists for a long time. The present investigation has been carried out on the surface of ac-
tivated sawdust for phenol eliminations. The process parameters initial concentration, contact time, adsorbent
dose and pH were optimized by the response surface methodology (RSM). The numerical optimization of
sawdust (SD), initial concentration 10 mg/l, contact time 1.5 h, adsorbent dose 4 g and pH 2, the optimum
response result was 78.3% adsorption. Analysis of variance (ANOVA) was used to judge the adequacy of the
central composite design and quadratic model found to be suitable. The coefficient of determination values was
found to be maximum Adj R2 0.7223, and Pre R2 0.5739 and significant regression at 95% confidence level
values.

1. Introduction

Phenol is an essential industrial solvent for different production
concern. In cooperation with its position under 595 hazardous wastes
among 1678 listed on Environmental Protection Agency National
Priorities List [1]. Phenol is available in air, water, and soil by in-
dustrial activities and natural deterioration of organic wastes. Phenol
degraded rapidly in air and soil by hydroxyl radical reaction (estimated
half-life 14.6 h), and persist in water for a somewhat longer period [2].
If degradation is sufficiently slow, phenol in sunlight water will un-
dergo photooxidation with photochemically produced peroxyl radicals,
and leach to groundwater [3]. The most common anthropogenic
sources of phenol in water include coal tar [4], waste water from pro-
cessing industries such as resins [5], plastics [6], fibers [7], adhesives
[8], iron and steel [9], leather [10], paper pulp mills [11] and wood
treatment facilities [12]. The addition of this there is two natural
sources of phenol in aquatic media are animal wastes and decomposi-
tion of organic wastes [13].

In literature, aqueous phenolic wastes have been treated for many
years by different methods including chemical oxidation [14], chemical
coagulation [15], extraction with solvents [16,17], membrane tech-
nology [18], ion exchange [19] and adsorption [20,21]. Among them,
physical adsorption method is generally considered to be the best,

effective, economical and most frequently used method for the removal
of phenolic pollutions [22]. Different types of synthetic and natural
adsorbents have been used to treat the phenolic wastewater by re-
searchers [23]. Attention has been focused on natural adsorbents
(bacteria, fungi, yeast, algae, agricultural by-products, and wood by-
products), which have good absorption capacities due to large surface
area, homogeneous pore size, well defined structural properties, se-
lective adsorption ability, easy regeneration, and multiple uses [24].
Adsorbent methods has been also applied for removal of DDT [25],
cyanide [26], copper [27], mercury [28], color dye [29] etc. Among
them waste biomass consider to be easily available in almost all region
with reasonable price. The major component of biomass like lignin,
cellulose and hemicellulose provides large surface area and better at-
tachment with aromatic organic compound [26,29].

The main aim of this research work is to subtract the phenol from
synthesized wastewater by adsorbent technique. The experiment was
performed in the batch reactor. The effect of different experimental
parameters such as the solution pH, temperature, sorbate concentration
on the adsorption has been optimized by using response surface
methodology. The interaction between phenol molecules and activated
surface has been studied with Langmuir isotherm. The characterisations
of adsorbent and adsorbed were also studied with Fourier transfer in-
frared (FTIR), energy diffractive x-ray (EDX-ray) and scanning electron
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micrographic (SEM).

2. Material and methods

2.1. Materials

2.1.1. Chemical and water sample
All the analytical grade chemicals were used in this experiment

supplied by Himedia Laboratories Pvt. Ltd. Mumbai India. A stock so-
lution containing 1000 mg/L of phenol was prepared by dissolving 1 g
of pure phenol crystal in 1 L of Millipore water (Q-H2O, Millipore Corp.
with a resistivity of 18.2 MX-cm).

2.1.2. Absorbent
The sawdust was arranged from the local timber industry and wa-

shed with distilled water to remove the dust particles. To prevent the
color leaching and other impurities sawdust were washed until clear
solution obtained. Finally, washed biosorbent was dried at 75 °C in the
oven for 8 h. To prepared activated carbon, dried sawdust mixed with
2 N H2S04 in 1:3 solid to liquid ratio and kept in a muffle furnace at
temperature 200 °C for 14 h. The sawdust activated carbon was washed
with millipore water to eliminate residual chemicals and dried at 60 °C
temperature for 24 h. Additional soaking has been done with 1%
NaHCO3 solution and kept overnight for the complete elimination of
acid. The product was washed with double distilled deionized water
until superficial liquid were acquired and dried at 60 °C for 12 h.
Finally, the adsorbent was stored in an airtight poly bag for the ex-
periment. The physicochemical characteristics of activated sawdust are
mention in Table 1.

2.2. Methods

2.2.1. Experimental design
The parameters initial concentration (IC), contact time (CT), ad-

sorbent dosage (AD) and pH on adsorption efficiency with sawdust was
studied with a standard response surface methodology (RSM) design
called central composite design (CCD). This method helps to optimize
the effective parameters with a minimum number of experiments, and
also to analyze the interaction between the parameters [30]. In this
study percentage adsorption has been taken as a response (Y) of the
system, while process parameters, initial concentration 5–40 mg mL−1;
pH: 2–10; Contact time 1–3 h and adsorbent dose 0.5–5 g has been
taken as input parameters. For statistical calculations, the levels for the
four main variables X1(IC), X2(t), X3(g) X4(pH) were coded as according
to the following relationship.

=
−xi (Xi Xi)
δX (1)

where X0 is the value of Xi at the center point and δX presents the step
change. The variables and levels of the design model are given in
Table 2. The results of the Y (response) of adsorption were measured
according to design matrix listed in Table 3. From experimental ob-
servations, it was assumed that the higher order interactions were small

relative to the low order.

2.2.2. Experiment
The sorption of phenol on sawdust was studied in a batch mode at

room temperature. The kinetic adsorption experiments were carried out
in 100 mL flasks sealed with Parafilm, to prevent the loss of phenol by
volatilization. The general method has been used for this study. A
known weight of sawdust was equilibrated with 60 mL of the phenol
solution (know concentration) at room temperature of 21 °C for a
known period of time (Table 3). All adsorption studies were conducted
in a rotary incubator shaker at agitation speed (Sa) of 150 rpm. The
flasks were then removed from the shaker and the final concentration of
phenol in the solution was analyzed using a spectrophotometer UV. The
pH of the suspension in the experiments was adjusted with NaOH 0.1 M
(1 M) and H2SO4 0.1 M (1 M). In addition, for the reliability of ad-
sorption data, blank tests were also carried out in the same way.

The adsorption efficiency of phenol in solution was calculated by
equation:

=
−Removal Co Ce x 100

Co
(%) ( )

(2)

The phenol concentration retained on the adsorbent phase (q
mg mg−1) was calculated by equation:

Table 1
Characteristics of activated sawdust.

S.No Characteristics Values

1 Specific gravity 0.61
2 Bulk density (Kg/m3) 415
3 Porosity (%) 72
4 Mean pore radius (A°) 4.5
5 Surface area (m2/g) 19
6 Moisture content (%) 50.1
7 Loss on ignition (w/w %) 96.12
8 BET surface area (m2/g) 910

Table 2
Factors and levels of the experimental design for adsorption.

Factors Level 1
(-α)

Level 2
(−1)

Level 3
(0)

Level 4
(+1)

Level 5
(+α)

Inlet concentration
(mg/l)

5 10 20 30 40

pH 2 4 7 8 10
Contact Time (h) 1 1.5 2 2.5 3
Adsorbent Dose (g) 0.5 1 3 4 5

Table 3
The different combination of the factors for the experimental design.

Runs X1 (Initial
Concentration)

X2

(Contact
Time)

X3

(adsorbent
dose)

X4pH Y (%
adsorption)

1 0 0 0 0 73
2 0 0 0 −2 82
3 1 −1 1 1 91
4 −1 −1 1 −1 96
5 0 0 0 0 67
6 −1 1 −1 −1 74
7 −1 1 1 1 97
8 0 0 0 0 67
9 −2 0 0 0 81
10 0 0 0 0 67
11 0 0 0 0 67
12 1 1 1 −1 85
13 −1 −1 1 1 51
14 2 0 0 0 55
15 0 0 0 2 9
16 −1 −1 −1 1 92
17 1 1 −1 1 47
18 0 0 0 0 67
19 1 −1 −1 1 71
20 1 −1 1 −1 53
21 0 0 −2 0 30
22 −1 1 −1 1 92
23 1 1 −1 −1 75
24 −1 −1 −1 −1 93
25 0 −2 0 0 30
26 1 1 1 1 32
27 −1 1 1 −1 92
28 1 −1 −1 −1 55
29 0 2 0 0 67
30 0 0 2 0 91
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=
−q V Co C

W
( )

(3)

where Co(mg mL−1) and C (mg mL−1) are the concentrations of phenol
before and after adsorption reaction, respectively, V (mL) is the volume
of the reaction solution, and W (g) is the adsorbent mass.

2.2.3. Analysis of sample
Fourier transform infrared (FTIR) spectroscopic analysis was per-

formed (FTIR-2000, Perkin Elmer). The spectra were measured from
4000 to 0 cm−1. The surface area, total pore volume, and average pore
diameter of the samples were determined from the adsorption iso-
therms of nitrogen at 77 K using Autosorb I, supplied by Quanta chrome
Corporation, USA. The surface morphology of the sample was examined
using scanning electron microscope (Model VPFESEM Supra 35VP).
Proximate analysis was carried out using thermogravimetric analyzer
(TGA) (Model Perkin Elmer TGA7, USA).

3. Result and discussion

3.1. Model fitting and statistical analysis

The percentages of adsorption (Y) affecting parameters were opti-
mized by central composite design and response surface method. In
order to describe the nature of the response surface in the optimum
region, a central composite design with five coded levels (-α, −1, 0,
+1, +α) was performed and four factors (IC, CT, AD and pH) were
selected using design expert 6.0.8 software and processed. The results
of the Y (response) of adsorption were measured according to design
matrix and the measured responses are listed in Table 3. Linear, in-
teractive, quadratic and cubic models were fitted to the experimental
data to obtain the regression equations. Two different tests namely the
sequential model sum of squares and model summary statistics were
employed to decide about the adequacy of various models to represent
adsorption with sawdust. Results of these tests are given in Tables 4 and
5, for percentage adsorption removal respectively. The cubic model was
found to be aliased. For quadratic and linear models, the p-value was
lower than 0.02, and both of these could be used for further study as per
sequential model sum of squares test. As per model summary statistics,
the quadratic model was found to have maximum Adj R2 0.7223, and
Pre R2 0.5739 values excluding cubic model which was aliased.
Therefore, a quadratic model was chosen for further analysis. To de-
termine whether or not the quadratic model is significant, it is crucial to
perform analysis of variance (ANOVA) mention in Table 6. The prob-
ability (P-values) values are used as a device to check the significance of
each coefficient, which also shows the interaction strength of each
parameter (smaller the P-values bigger significance of the corre-
sponding coefficient). In addition to analyzing the independent vari-
ables’ effects, this experimental methodology also generates a mathe-
matical model. The graphical viewpoint of the mathematical model has
led to the term RSM. The relationship between the responses and the

inputs is given in equation

= × × × … … … … … … ±Y f X X X X X( , , , .. ) ϵn1 2 3 4 (4)

where:

Y is the response;
f is the unknown function of response,
X1, X2, X3,… Xn are the input variables, which can affect the re-
sponse,
n is the number of the independent variables, and
ε is the statistical error that represents other sources of variability
not accounted for by f.

After selection of the design, the model equation is defined and
coefficients of the model equation are predicted. A manual regression
method was used to fit the second order polynomial given by Eq. (5),
respectively to the experimental data and to identify the relevant model
terms. The final equation obtained in terms of coded factors is given
below:

= − × + × + ×

− ×

X X X

X

Adsorption Y% ( ) 68.3 9.5833 2.75 5

8.1667
1 2 3

4 (5)

The statistical significance of the ratio of mean square variation due
to regression and mean square residual error was tested using ANOVA
[31]. The ANOVA for the second-order equation fitted for percentage
adsorption efficiency. The Model F-value of 2.81 implies the model is
significant. There is only a 4.68% chance that a "Model F-Value” could
occur due to noise. Values of "Prob> F" less than 0.0500 indicate
model terms are significant. In this case, X1 and X3 are significant model
terms. Values greater than 0.1000 indicate the model terms are not
significant which are contact time and pH.

3.1.1. Significance of experimental parameters
The effect of contact time on the percentage adsorption of phenol at

optimum conditions is the presented in Fig. 1. It was observed that the
equilibrium time is dependent on the adsorbate concentration. As the
time period for which the adsorbent was kept in contact with phenol
solution was increased, the percentage adsorption increasing and
reached equilibrium at 1.5 h for 5 mg/l and 10 mg/l, 2 h for 20 mg/l
and 30 mg/l, 2.5 h for 40 mg/l respectively. This might be due to the
active binding sites of adsorbent fully bind the ions up to 1.5 to 2 h and
after this time there was no change in percentage adsorption. Since the
adsorption process is a transfer of the pollutant from the liquid phase to
the solid one, the contacting time between the two phases has an effect
on the mass transfer rate. So the above mentioned times are the best
time for adsorption. The experimental result of sorption of phenol on
sawdust at various concentrations is shown in Fig. 2. Studied showed
that the percentage adsorption decreased with increase in the initial
concentration of the pollutant. The extent of adsorption increased from
46% to 86% when the concentration of the adsorbate decreased from
40 mg/l to 5 mg/l. The increase in uptake may be due to the availability
of more number of phenol ions in solution for sorption. Moreover,
higher initial adsorbate concentration provided higher driving force to
overcome all mass transfer resistances of the ions from the aqueous to
the solid phase resulting in higher probability of collision between ions
and the active sites [32].

The effect of pH value on the percentage removal of phenol at op-
timum values of the others factor is shown Fig. 3. It can be seen that the
percentage adsorption is higher at lower pH. As the pH increased, there
was little increase in the percentage of adsorption and it was maximum
at pH 4. This may be due to the molecular form of phenol persists in the
medium and surface protonation is minimum, leading to the enhance-
ment of phenol adsorption. When the pH was further increased, a sharp
decrease in the percentage of adsorption was observed. It attributes to
the weakening of electrostatic force of attraction between the

Table 4
S0065quential model sum of squares.

Source Sum of Mean F p-value Remark
Squares Df Square Value Prob> F

Mean vs Total 139946.7 1 139946.7 Suggested
Linear vs Mean 4586.333 4 1146.583 2.814678 0.0468 Suggested
2FI vs Linear 819.75 6 136.625 0.277212 0.9407
Quadratic vs 2FI 661.05 4 165.2625 0.284832 0.8832
Cubic vs

Quadratic
6342.167 8 792.7708 2.350443 0.1385 Aliased

Residual 2361 7 337.2857
Total 154717 30 5157.233

*Sequential Model Sum of Squares Selects the highest order polynomial where the ad-
ditional terms are significant and the model is not aliased.
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oppositely charged adsorbate and adsorbent and ultimately led to the
reduction in sorption capacity [33]. When the pH was increased beyond
7.0, a gradual decrease in the percentage adsorption was observed. This
might be due to the in high pH range, phenol forms salts which are
readily ionized leaving the negative charge on the phenolic group. At
the same time, the presence OH- ions on the adsorbent prevents the
uptake of phenolate ions. In acidic medium, the H+ ions on the surface
are also exchanged with the positively charged sorbet species with
subsequent coordination of phenol ion. The decrease in the removal of
ions at higher pH (≤ 4) is apparently due to the higher concentration of
H+ ions present in the reaction mixture, which compete with the ions
for the adsorption sites of sawdust and formation of soluble hydroxyl
complexes. Similar behavior has been reported during the adsorption
using rice husk [34], agriculture waste [35] and activated carbon [36].

The percentage adsorption increased with increase in adsorbent
dose. This shows in Fig. 4 where the percentage adsorption was plotted
against adsorbent dose. The percentage adsorption increased from 45%
(minimum) at a lower adsorbent dose to 86% (maximum) at a higher
adsorbent dose. This can be attributed to increased adsorbent surface
area and availability of more adsorption sites resulting from the in-
creasing adsorbent dosage. Further increase in adsorbent dose de-
creases the adsorption. The decrease in phenol ion uptake at higher
adsorbent dose may be due to the competition of the ions for the sites
available [37].

For numerical optimization of sawdust (SD), the optimum response
result was 78.3%, percentage adsorption. The optimum processing
conditions using numerical optimization were the coded levels (−1,
−1, 1, −1) or initial concentration (10 mg/l), contact time (1.5 h),
adsorbent dose (4 g) and pH (2) and is shown in Fig. 5(a). The Response
prediction desirability is found to be very good 0.942, shown in
Fig. 5(b).

3.1.2. Adsorption equilibrium
Langmuir isotherm model is probably the most widely applied

Table 5
Model summary statistics.

Source Std. Adjusted Predicted Remark

Dev. R-Squared R-Squared R-Squared PRESS

Linear 0.004591 0.76614 0.7222912 0.5738805 0.000614 Suggested
2FI 0.004937 0.7803154 0.6789225 −0.3737402 0.001981
Quadratic 0.005352 0.8013884 0.622638 −0.7369903 0.002505
Cubic 0.002031 0.9828329 0.9456376 −2.7842138 0.005457 Aliased

Table 6
Analysis of variance.

Source Sum of Mean F p-value Remark
Squares Df Square Value Prob> F

Model 4586.333 4 1146.583 2.814678 0.0468 significant
X1 2204.167 1 2204.167 5.410875 0.0284
X2 181.5 1 181.5 0.445553 0.5106
X3 600 1 600 1.472903 0.02362
X4 1600.667 1 1600.667 3.929379 0.0585
Residual 10183.97 25 407.3587
Lack of Fit 10153.97 20 507.6983 84.61639
Pure Error 30 5 6
Cor Total 14770.3 29

Fig. 1. Effect of initial concentration of phenol on contact time.

Fig. 2. Effect of initial concentration of phenol on contact time.

Fig. 3. Effect of initial concentration of phenol on pH.
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model for isotherm adsorption. It considers the adsorption energy of
each molecule is the same, independent of the surface of material, the
adsorption takes place only on some sites and there are no interactions
between the molecules. The Langmuir equation was used to study the
adsorption isotherms of phenol. The linear form of the Langmuir
equation [38] is as follows:

= +
C
q

1
Q b

C
Q

e

e o

e

o (6)

where Ce (mg/L) is the equilibrium concentration of the solution, qe
(mg/g) is the amount of phenol sorbed at equilibrium, Qo is the ad-
sorption capacity and represents a practical limiting adsorption capa-
city when the adsorbent surface is fully covered with monolayer ad-
sorbent molecule and b is Langmuir constant. The Qo and b values are
calculated from the slopes (1/Qo) and intercepts (1/Qob) of the fol-
lowing linear plot of Ce/qe versus Ce. The straight line indicates that
the adsorption complies with the Langmuir model as shown in Fig. 6.

3.1.3. Characterization of adsorbent
Sawdust showed better performance in for phenol adsorption

(78.3%). The functional groups responsible for phenol biosorption onto
sawdust were studied by FTIR spectra. The FTIR spectroscopy is a sig-
nificant systematic technique, which identifies the vibration features of
functional groups that are available on sorbent surfaces. The result
presented in Fig. 7(a) and (b). Peak around the section 2384.12 cm−1

and 3214.35 cm−1 indicates –CH and –OH functional group. A peak
observed around 3785.48 cm−1 indicates vibration of O-H group (free
non-hydrogen bonded). The absorption peaks around 1302.45 cm−1

established the occurrence of carboxyl groups in the CH2-OH poly-
saccharide structure [39]. Peaks at 1257.22 cm−1 were the stretching
of O–H functional groups. The strong band within 1125–700 cm−1 is
owing to CH2-OH group, which is the representative peak for poly-
saccharides. The peak around 1525.65 cm−1 relates to owing to the
occurrence of carboxyl and carbonate structures, conjugated hydro-
carbon groups, carboxylic groups and aromatic hydrocarbons, re-
presenting biosorption of phenol. The change was the disappearance of
peaks at 3785.35 cm−1, 1611.05 cm−1, 1408.20 cm−1, 1145.65 cm−1

and 1135.09 cm−1 indicating a decrease of –OH, stretch of COOH, C-
OH and CH2-OH group on the surface of biosorbent. It is clear from the
FTIR analysis that the possible mechanism of biosorption of phenol on
sawdust biomass may be owing to appearance and disappearance of
functional groups and chemical reactions with sites of biosorbent sur-
face and also due to physical adsorption.

Analysis of the physicochemical composition of sawdust has been
done with EDX, which mention in Table 7 and shown in Fig. 8(a) and
(b). The analysis shows the presence of carbon, hydrogen, carbohydrate
cellulose, hemicellulose, sulphur, lignin, and ash. The peak 35.98%,
22.05% cellulose, 17.8%, 8.45% hemicellulose was observed before and
after application sawdust. Ash contents increase in adsorbent from
4.7% to 8.5% wt. after phenol adsorption. Scanning electron micro-
graph was used to characterize the surface morphology of the sample as
shown in Fig. 9(a) and (b). It can be seen from Fig. 9(a) smooth mor-
phology and large pore is available on the sawdust surface. The well-
developed pores resulted in the larger surface area and more porous

Fig. 4. Effect of initial concentration of phenol on adsorbent dose.

Fig. 5. Graphic representation of the (a) desirability 3D plot (b) optimized percentage
adsorption for sawdust.

Fig. 6. The linear Langmuir Adsorption Isotherm for phenol with sawdust.
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structure of the SD which would further enhance the adsorption pro-
cess. Fig. 9(b) shows after adsorption process SD, the porous structure
of SD was full of cavities. The surface micrograph appeared like da-
maged and uneven due to phenol ions adhere on the surface of sawdust.
This is assumed to be effective biosorption of phenol onto SD.

3.2. Comparatively, study with others

In literature, a variety of methods has been introduced to handle the
phenolic wastewater, such as electrocoagulation [40], advanced oxi-
dation [41], different biological and non-biological methods [42], and
biomass waste including with sawdust [43,44]. It was noticed that by
electrocoagulation 92% of phenol has been removed at initial con-
centration 2.5 mg/L, pH 2.0 and treatment time 30 min. Suzuki et al.,
2015 reported that 100% decomposition of 50 mg/dm3 phenol was

reached within 120 min using an O3–UV–TiO2 process. Another study
shows that phenol-degrading bacteria that can utilize 500–600 mg/l
phenol completely after 48 h incubation belongs to Pseudomonas Pu-
tida strains. This technique associated with high-priced treatment, low
efficiency, with toxic by-products. Some author has been also reported
phenol removal 91.6% at 130 mg/l of initial concentration, 0.82 g of
adsorbent dose, natural pH 6.7 and 120 min of contact time [43] and
83% of phenol at initial concentration of 50 mg/L, pH 6, and adsorption
60 min at normal temperature [44]. As compared to all above study
present experiment results shows 78.3% adsorption of phenol at the
minimum operating condition of initial concentration 10 mg/l, contact
time 1.5 h, adsorbent dose 4 g and pH 2. It was found that with a small
amount of adsorbent and experimental time, maximum absorptions of
phenol have been achieved. Sawdust is easily available nearby local
area and cost-effective also. Hence, make use of sawdust as adsorbent
will contribute to the sustainability of the surrounding environment.

4. Conclusion

The statistical design of the experiments was applied in optimizing
the conditions of maximum adsorption of the phenol onto sawdust. The
result data from ANOVA demonstrates that the model was highly sig-
nificant. For numerical optimization of sawdust, the optimum response
result was 78.3%, percentage adsorption at 10 mg/l initial concentra-
tion, 1.5 h contact time, 4 g adsorbent dose and pH 2. The quadratic
model was found to have maximum Adj R2 0.7223, and Pre R2 0.5739
values. The results of Isotherm data showed that the adsorption of
phenol followed Langmuir isotherm The FTIR spectra give information
about the disappearance of functional groups on the surface of the
sorbent. Scanning electron micrograph shows the high porous structure

Fig. 7. Fourier transformed infrared study of sawdust (a) before
used, (b) after used.

Table 7
Approximate analysis of sawdust.

S.No Components Before adsorption (wt
%)

After adsorption (wt
%)

1 Total volatile matter 85.47 45.34
2 Total carbonate 51.7 30.1
3 Cellulose 35.98 22.05
4 Hemicellulose 17.8 8.45
5 Carbon 45.01 20.65
6 Hydrogen 6.47 2.45
7 Nitrogen 0.29 0.01
8 Sulphur 0.55 0.02
9 lignin 25.4 10.17
10 Ash 4.7 8.5

Fig. 8. EDX study of sawdust (a) before used, (b) after used.
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of sawdust. After adsorption of phenol, the activated carbon has been
washed with warm water (40 °C). The wastewater generated has been
used as floor-washing; due to phenol has antimicrobial property (insects
and home flies). The activated carbon can be used for cement material
or reuse again for adsorption purpose. The outcome of this study proof
that biosorbent (activated sawdust) can be used in tertiary treatment for
the adsorption of phenol from industrial effluents discharge. The ap-
plication of response surface methodology gives valuable information
on interactions between the factors and also helps to the recognition of
possible optimum values of the studied factors.

Appendix A. Transparency document

Transparency document associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.bbrep.2017.08.007.
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