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Using the transient trajectories 
of an optically levitated 
nanoparticle to characterize 
a stochastic Duffing oscillator
Jana Flajšmanová1, Martin Šiler1*, Petr Jedlička1, František Hrubý1, Oto Brzobohatý1, 
Radim Filip2 & Pavel Zemánek1*

We propose a novel methodology to estimate parameters characterizing a weakly nonlinear Duffing 
oscillator represented by an optically levitating nanoparticle. The method is based on averaging 
recorded trajectories with defined initial positions in the phase space of nanoparticle position and 
momentum and allows us to study the transient dynamics of the nonlinear system. This technique 
provides us with the parameters of a levitated nanoparticle such as eigenfrequency, damping, 
coefficient of nonlinearity and effective temperature directly from the recorded transient particle 
motion without any need for external driving or modification of an experimental system. Comparison 
of this innovative approach with a commonly used method based on fitting the power spectrum 
density profile shows that the proposed complementary method is applicable even at lower pressures 
where the nonlinearity starts to play a significant role and thus the power spectrum density method 
predicts steady state parameters. The technique is applicable also at low temperatures and extendable 
to recent quantum experiments. The proposed method is applied on experimental data and its validity 
for one-dimensional and three-dimensional motion of a levitated nanoparticle is verified by extensive 
numerical simulations.

Linear harmonic oscillators are useful idealisations explaining a broad class of phenomena. However, real oscil-
lators are always nonlinear. Typically, they exhibit a soft Duffing nonlinearity turning oscillations to anharmonic 
one. Despite long-term experimental investigation, new diverse effects have been recently observed in the under-
damped Duffing oscillators based on nano-electromechanical systems1–3, micro-electromechanical systems4–8, 
nonlinear electric oscillators9, particles trapped in nonlinear potentials10, solid-state systems11, mechanical oscil-
lators with a chemical bond12 and also proposed for upcoming quantum mechanical oscillators with supercon-
ducting qubits13. They stimulate further investigations of both equilibrium states and transient dynamics of 
anharmonic oscillators.

At long time scales, when dynamics tends to equilibrate, and for short transient times, the anharmonicity 
can have different impacts. A precise description of transient effects in nonlinear oscillators is therefore essential 
for our understanding of nonequilibrium physics and applications ranging from nanosensing and thermody-
namically engines up to social dynamics14–23. The faithful characterization of a nonlinear oscillator requires 
to estimate its parameters beyond standard methodology based either on the equilibrium state (ES) or on the 
power spectral density (PSD) of particle positions or velocities24–29. Both these methods presume that values 
estimated from steady states are valid also during the transient dynamics. Such assumption can, however, lead 
to significant systematic errors in the values of estimated parameters, e.g. in the case of a nonlinear oscillator 
with large amplitudes, as we demonstrate in this paper.

Currently, optomechanics with a levitating particle oscillating in a nonlinear potential formed by an electro-
magnetic field in an optical or radiofrequency spectral region is a viable platform to test and understand many 
new nonlinear phenomena and, ultimately, bring them to very low temperatures where quantum mechanics 
affects the oscillations28, 30–37. This trapping technique provides us with new possibilities for mechanical sensing 
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and manipulation in the field of nanotechnology and chemistry. It is therefore desirable that the methodology 
characterizing parameters of a nonlinear oscillator is applicable also in quantum mechanics. Moreover, the 
methodology should apply to transient effects, in contrast to the widespread approach based on PSD.

The levitating nanoparticle system is specific because the nanoparticle position is typically the only directly 
observable quantity. The velocity can be in principle determined using an independent Doppler velocimetry38 
or by homodyne detection39 but this technique requires a high speed detection and data acquisition system. An 
object velocity or momentum is most frequently estimated by a numerical differentiation of measured positions 
of a levitating particle. Therefore, a method which uses information mainly from the particle position is gener-
ally more broadly applicable.

In this paper, we present a suitable approach estimating all desired parameters of a weakly nonlinear Duffing 
oscillator assuming that the particle radius is known. Our estimation method is based on a post-processing of 
acquired time records of particle positions and averaging trajectories in the statistical ensemble. We compare 
our results with the commonly used PSD method and, unlike Refs.18, 40, we obtain the Duffing coefficient of 
nonlinearity without any external driving force which could affect the system parameters and would be undesir-
able for experimental studies of quantum effects. Moreover, the determined damping coefficient follows well the 
theoretical prediction down into low pressures. Our method is capable of the determination of parameters on 
the time scale that is faster than the heating rate which is crucial for experimental testing of transient stochastic 
phenomena with levitating particles.

Experimental set‑up and data processing
A nanoparticle (NP) is trapped in a focused laser beam in all three orthogonal directions. A scheme of an optical 
trap in a transversal direction is shown in Fig. 1a. Since the non-conservative scattering force is proportional to 
a sphere radius a as a6 41, 42, it can be neglected with respect to the conservative gradient forces acting upon an 
NP. Thus the spatial profile of the trapping potential U

(

x, y, z
)

 follows an inverted shape of the optical intensity 
I
(

x, y, z
)

 as U
(

x, y, z
)

≃ −I
(

x, y, z
)

 . Since the real lateral or longitudinal intensity profile is close to the Gaussian 
or Lorentzian shape43, respectively, the potential energy of the NP displaced further from the equilibrium posi-
tion is lower in the real optical trap comparing to the ideal parabolic potential (compare solid red and dashed 
blue curves in Fig. 1a). Such slight deviations from an ideal shape are frequently neglected for an NP with cooled 
translational motion28 because it moves in the dominantly parabolic bottom of the potential well, and the NP 
trajectory is analyzed following the theory for an ideal harmonic oscillator29. However, if NP’s motion is cooled 
but coherently excited, the nonlinearities in the potential arise and drag the NP motion out of ideal harmonic 
oscillations. It is the same nonlinearity affecting the NP at higher temperatures. Assuming just the first lower-
even-order terms in Taylor series expansion of the real profile of the potential near its minimum18, 44, see also 
Supplementary Information, it gives the Duffing type nonlinearity. The nonlinearity in the system can be char-
acterized by the stiffness of the Duffing spring that depends on the position x of the object as κD = κ

(

1− ξx2
)

 , 

Figure 1.   (a) A scheme of a nanoparticle (NP) levitating in one-dimensional optical potential along the 
lateral axis x . Dashed blue and solid red curves denote the parabolic shape of the ideal harmonic oscillator 
and nonlinear Duffing potential, respectively. Initial conditions of the particle motion are denoted as (x0, vx0) . 
(b) Experimental set-up. A low-noise y-polarized laser beam (wavelength 1064 nm, Mephisto 2000NE) is 3× 
expanded using lenses L1 and L2 (Thorlabs AC127-025-C, AC254-075-C). The trapping power is controlled 
by a rotating half-wave plate �/ 2 (Thorlabs WPH10M-1064) placed in front of a polarizing beamsplitter PBS 
(Thorlabs PBS253). The beam is focused by an aspheric lens L3 (Lightpath 355330, NA = 0.77) placed inside a 
vacuum chamber and maximal beam power 100 mW can be obtained here. Silica NPs (170 nm in diameter, 
Bangs Laboratories, Inc.) are launched from a silicon substrate towards the beam focus by a focused laser pulse 
(wavelength 532 nm, energy 4 mJ in a single pulse, Continuum Minilite MLII)60 under a chamber pressure of 
7 mBar. The unscattered and scattered light by the NP trapped near the beam focus is collected by an aspheric 
lens L4 (Thorlabs C240-TME) in forward direction, demagnified by a telescope L5 and L6 (Thorlabs AC254-
250-C, AC254-030-C), and detected by a quadrant photodetector QPD (Hamamatsu G6849). The QPD signal 
is processed by a home-made electronics and the NP positions in all three axes are acquired by National 
Instruments FPGA card (NI FPGA NI 5783 adapter module, FlexRIO FPGA) with the sampling frequency 
1.78 MHz.
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where κ is the stiffness of the ideal harmonic oscillator and ξ represents the coefficient of Duffing nonlinearity. 
In the real optical traps the coefficient ξ is positive and thus the stiffness of the optical spring gets weaker with 
an increasing deviation from the equilibrium position x = 0 . Such an oscillator is called a softening Duffing 
oscillator14, 18, 45, 46. Technical details of the whole experimental set-up are described in Fig. 1b.

An example of a 1D trajectory of an optically levitated NP in a potential well formed by a single strongly 
focused Gaussian laser beam is plotted in Fig. 2a. It shows that the NP oscillates with an amplitude that varies 
in time. Figure 2b shows two magnified regions of Fig. 2a (blue) and corresponding NP instantaneous velocity 
(orange) determined as a central difference vx(t) = [x(t +�t)− x(t −�t)]/2�t , where �t is the time step in 
data acquisition given by the sampling frequency �t = 1/fsample = 1/1.78 μs which is sufficiently high compar-
ing to the examined processes (~ 90 kHz). In the first example, the NP “wiggles” with a low amplitude ( |x| < σx , 
where σx is the standard deviation of the particle position) close to the bottom of the potential (center of the 
optical trap) while the second part of the trajectory shows the sustained oscillations with a higher amplitude 
( |x| > σx ). At the same time scale, small-amplitude motion is strongly affected by noise whereas the large-
amplitude oscillations are rather modified by the nonlinear potential softening. Furthermore, Fig. 2c shows a 
two dimensional histogram of the Gaussian shape obtained from a long-time data set (30 s) showing probability 
density function of an NP being in a given volume of a phase space—i.e. having given position and velocity in 
the x axis.

A standard steady-state analysis of NP motion in a harmonic potential is based on the power spectral density 
(PSD) of NP positions described by the following function10, 24, 26, 28, 47, 48

where kB , TSP , m , �0 = 2π f0 , ω , Ŵ , and Ps denote the Boltzmann constant, effective spectral temperature of the 
thermal bath driving an NP with a white noise distribution, particle mass, NP eigenfrequency (in rad/s), fre-
quency, medium damping, and technical measurement noise29, respectively. PSDs calculated from the long data 
set for two different ambient pressures are shown in Fig. 2d. For ambient pressure of 10 mBar and higher we 
obtained almost perfect fit of Eq. (1) to experimental data because the peak broadening is caused predominantly 
by the damping Ŵ and the resonant peak is not visibly influenced by the nonlinear behaviour or crosstalks with 
other axes. In contrast in the lower pressures noticeable differences appear: (1) the measured peak is wider and 
lower than the theoretically predicted one, (2) there is a clear asymmetry of this peak and it exhibits a visible 
negative skewness. Such a deviation of the experimental PSD profile from the ideal one can be caused by the 
softening of the experimental potential profile from the assumed ideal harmonic trap18, 29, 44, 49. If we consider 
the lowest order of nonlinearity characteristic for a Duffing oscillator (see Fig. 1a), the oscillation frequency 
depends on the amplitude of oscillations18, 44, 45 as experimental data in Fig. 2f demonstrate. This behaviour leads 
to a continuum of new frequency components that contribute to the PSD at frequencies below the PSD resonant 
frequency (main peak) and cause asymmetry of the PSD peak observed in Fig. 2d for the lower pressure49. The 
secondary peaks observed in Fig. 2d are caused by crosstalks between the measured x axis and other coordinate 
axes y and z and their higher harmonics. Figure 2e reveals experimental evolution of the main peak for more 
values of the ambient pressure with two highlighted levels of pressure discussed above.

Obviously, fitting the steady-state PSD of a real nonlinear oscillator with Eq. (1), which is valid only for the 
ideal harmonic oscillator, has to lead to an imperfect determination of parameters of the real oscillator29, as we 
show later in Fig. 5. Moreover, this PSD approach is not suitable for current investigation and use of transient 
out-of-equilibrium coherent effects faster than any heating of the motion40. After the cooling of levitating systems 
to the ground state37, such estimation of the Duffing oscillator from fast transient effects are crucial for upcoming 
studies of quantum effects50–54.

Therefore, in this work, we propose a novel method for determination of parameters of an optically levitated 
NP. Unlike the methods based on equipartition theorems in equilibrium steady-state or PSD methods that are 
independent of initial conditions, we post-process measured stochastic trajectories for selected suitable initial 
conditions and follow an NP trajectory during a short transient dynamics to determine required parameters. 
However, we study a stochastic system where a random noise influences the individual trajectories of the NP 
probing a nonlinear potential. Thus each transient process starting at the same point in the phase space (x0, vx0) 
leads to a different trajectory. Therefore, we opted for an analysis of the moments (e.g. mean and variance) of 
such ensemble of NP trajectories that start in the same volume of the phase space. Statistical moment dynamics 
can be further used up to the ground state of mechanical motion.

The consequent post-processing algorithm for one axis (shown for the x axis) proceeds in the following steps:

1.	 Record of QPD signals in voltage is transformed to the NP positions x(t) by the calibration factor CV→m 
described in Methods.

2.	 The NP positions acquired at low pressures ( p < 1 mBar) are filtered by a frequency domain bandpass filter 
(passband for the x axis: 87–96 kHz, passband for the y axis: 72–90 kHz) in order to keep only the leading 
oscillation in the selected axis because at low pressures crosstalks between different axes become visible in 
PSD and influence the analyses of particle motion in a selected axis.

3.	 Using the filtered NP positions x(t) determined in equidistant time steps �t , we calculate NP velocities vx(t) 
using the central difference rule vx(t) = [x(t +�t)− x(t −�t)]/2�t , where �t is given by the sampling 
frequency during the data acquisition �t = 1/fsample = 1/1.78 μs. Furthermore, we verified by the computer 
simulations that the experimental sampling frequency is sufficient to calculate the instantaneous particle 
velocity even at atmospheric pressure.

(1)Pxx(ω) =
2kBTSP

m

Ŵ
(

ω2 −�2
0

)2 + Ŵ2ω2
+ Ps,
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Figure 2.   (a) Particle trajectory in the x axis normalized to its standard deviation σx for the ambient pressure 1 mBar. 
(b) Magnified regions of the trajectory (blue) from (a) for small and large oscillations together with the corresponding 
velocity (orange) obtained by the central difference normalized to its standard deviation σv . (c) Probability density 
function of the NP in the phase space at the ambient pressure 1 mBar for a 30 s long data set. Cross marks define 
starting points of trajectories shown in (f). (d) Power spectral density (PSD) of x positions of a trapped NP (full curves) 
with fitted functions given by Eq. (1) (dashed curves) for two different pressures. Obtained frequency and damping 
are �0/(2π) = (92403.0± 0.4) Hz, Ŵ = (59367± 9) s−1 and �0/(2π) = (91054± 3) Hz, Ŵ = (14810± 70) s−1 
for pressures p = 10 and p = 0.1 mBar, respectively. (e) Two-dimensional map showing measured PSD evolution for 
different pressures. The green and red dashed lines correspond to the pressure 10 mBar and 0.1 mBar shown in (d), 
respectively. (f) Mean trajectories obtained by averaging the trajectory sections starting at the same point in the phase 
space (x0, 0) for different initial amplitudes x0 at pressure 1 mBar. (g) An averaged variance Var(x) for trajectories 
started at the same point in the phase space (0, 0) at pressure 1 mBar.
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4.	 We look for an event when both position and velocity pass through a small region of the phase space 
x0 −�x0 ≤ x0 ≤ x0 +�x0 and vx0 −�vx0 ≤ vx0 ≤ vx0 +�vx0 , where both �x0 and �vx0 are small but 
slightly bigger than the experimental uncertainty of measured positions and calculated velocities. If we find 
several consecutive points in this region, the selected one gives the minimal separation from x0 . The uncer-
tainties were estimated by the high frequency tail of the PSD at frequencies above 660 kHz (see Calibration 
of quadrant photodetector in Methods) and they correspond to the white noise having standard deviation 
∼ 2 nm, which is about 3% of the particle standard deviation from the optical trap center.

5.	 When such an event is detected, we assume it is the beginning of a new trajectory corresponding to t = 0 
and we take a snippet of an on-going trajectory of length δt (typically δt ≃ 100 μs). This snippet is added 
into a statistical ensemble of trajectories starting at the vicinity of the point (x0, vx0) in the phase space.

6.	 Steps (4) and (5) are applied on the remaining part of the acquired NP record while over-lapping parts of 
the trajectories are not included.

7.	 Averaged trajectory 〈x(t)〉 ,  velocity 〈vx(t)〉 and their variances Var(x) = �x2(t)� − �x(t)�2 , 
Var(vx) = �v2x(t)� − �vx(t)�2 are calculated from the statistical ensemble obtained in the previous steps. 
Each ensemble may contain from tens up to ∼ 5× 104 snippets of trajectories depending on the selected 
initial conditions.

Several examples showing such averaged trajectories starting at points (x0, 0) are shown in Fig. 2f where 
the damping of oscillator amplitudes can be clearly seen as well as the frequency dependence on the oscillator 
amplitude. Furthermore, Fig. 2g shows the increase in the position variance Var(x) determined for the particular 
initial condition (x0, vx0) = (0, 0)±

(

2 nm, 1mm s−1
)

 . After a short transient process the variance achieves a 
saturated value which corresponds to the thermalization of the particle motion to the surrounding bath.

Methods for determination of parameters of the Duffing oscillator
Below we present a description of four methods we use for estimation of the parameters of the nonlinear Duffing-
type oscillator. At the end of each subsection describing one method the procedure for the parameter determina-
tion is summarized.

The Duffing oscillator approximation (DOA).  In many types of nonlinear oscillators with a harmonic 
potential minimum, a nonlinearity only weakly modifies harmonic oscillations. In this case it is sufficient to add 
only the first nonlinear term to the harmonic potential profile description given by a Taylor series expansion45, 55. 
On time scales shorter than any thermalization, the motion of the so-called Duffing oscillator can be described 
by the deterministic Duffing equation (DDE) in the following form

where x denotes the particle position along one axis, Ŵ = γ /m denotes the medium damping with m and γ 
being the mass of the oscillator (e.g. a levitating NP) and drag coefficient of the medium (e.g. air at low pres-
sure), respectively. �0 =

√
κ/m denotes the eigenfrequency of the ideal harmonic oscillator with the oscillator 

stiffness κ (e.g. the stiffness of the optical trap). ξ represents the coefficient of Duffing nonlinearity and is related 
to the third order coefficient of the Taylor expansion of the optical force near the potential minimum at x = 0 . 
The softening Duffing oscillator described in this way will be subject of our following analyses.

Local analysis near x = 0 of such Duffing oscillator for weak damping Ŵ leads to a solution of the lowest 
perturbation order in the form of a damped oscillator56

where x0 and θ0 are given by the initial conditions at t = 0 . The frequency �D can be expressed as56

Considering only a weakly damped nonlinear oscillator we can define the eigenfrequency of the damped 
harmonic oscillator �H depending on its initial amplitude as

In reality, the micro- or nano-oscillators are driven by thermal noise which is generally assumed as the white 
noise and the DDE modifies to the Langevin type of stochastic Duffing equation (SDE) in the following form18, 45

(2)ẍ + Ŵẋ +�2
0x
(

1− ξx2
)

= 0,

(3)x(t) = x0 exp

(

−
1

2
Ŵt

)

cos (�Dt + θ0),

(4)�2
D = �2

0

(

1−
3

4
ξx20

)

−
(

Ŵ

2

)2

.

(5)�H =
√

�2
D + (Ŵ/2)2

(6)≃ �0

(

1−
3

8
ξx20

)

.
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where the broadband fluctuating Langevin force Ffluct is uncorrelated in time with zero mean and its variance is 
given by the fluctuation–dissipation theorem 

〈

Ffluct(t)
〉

= 0,
〈

Ffluct(t)Ffluct
(

t ′
)〉

= 2mŴkBTδ
(

t − t ′
)

 , where 〈. . .〉 
denotes correlation of functions within brackets and δ(x) denotes the delta function. This equation is later used 
for numerical simulations of the dynamics, results are presented in Supplementary Information. Even though 
Eq. (7) assumes the driving force with a white noise spectrum, the simulations and experimental activities can 
be extended to a driving force with a coloured noise spectrum, e.g. using an external force with well-controlled 
frequency spectrum.

Idealized harmonic oscillations.  For initial conditions close to the potential minimum, the weakly damped 
nonlinear oscillator behaves predominantly as harmonic18 and a transient motion can be well described by a 
harmonic oscillator with an eigenfrequency �0 continuously damped with rate Ŵ and excited by thermal sur-
rounding characterized by the effective transient temperature TTR . It is sufficient to select initial conditions at 
the potential minimum with zero speed and observe heating and random build-up of many linearized small 
oscillations. We use the post-selection process described in the previous section, in order to virtually cool down 
the NP and afterwards the NP motion under the influence of the heat transfer from surroundings is analyzed. 
This is equivalent to a direct observation of the particle heating in experimental systems57. If we select the initial 
conditions at (x0, vx0) = (0, 0)±

(

2 nm, 1mm s−1
)

 and determine Var(x) from the experiment for long enough 
acquisition time to cover the thermalization, we can fit the variance profile very well using the analytical solution 
of the linearized harmonic oscillator24

From the fit to the experimental data (see Fig. 3a) we can determine all three parameters �0 , Ŵ and TTR . These 
parameters remain constant even if the NP enters the nonlinear region. As a cross-check, we can use the variance 
of velocities, which provides us with the same results. In a weakly damped system with Ŵ ≪ �D , we can use a 
simplified formula without oscillations in order to quantify the heating of the system, i.e. medium damping as 
well as the effective temperature using

Such fit to the experimental data for a weakly damped oscillator is shown in Fig. 3b.

A few nonlinear oscillations.  A nonlinearity in the potential profile influences the NP motion if an NP initial 
position is placed far from the potential minimum. If the damping is weak, i.e. Ŵ ≪ �0 , and initial oscillator 
amplitude is sufficiently large, the NP amplitude does not change significantly over a few periods neither due to 
the damping nor due to the thermal heating (see Fig. 2f). In this regime, the averaged trajectories or phase space 
portraits follow very well deterministic nonlinear damped oscillations with negligible stochastic driving term, 
as described by Eqs. (2–6).

(8)Var(x) =
kBTTR

m�2
0

{

1− e−Ŵt

[

�2
0

�2
D

−
Ŵ

2�D
sin (2�Dt)+

Ŵ2

4�2
D

cos (2�Dt)

]}

.

(9)Var(x) =
kBTTR

m�2
0

(

1− e−Ŵt
)

.

Figure 3.   Time dependent increase in variance Var(x) of the ensemble of trajectories with initial conditions 
close to (x0, vx0) = (0, 0) for different pressures. Blue curves depict experimental data and red dashed 
curves are fits (a) by Eq. (8) and (b) by Eq. (9). The values of fitted parameters are �0/(2π) = (92± 2) kHz, 
Ŵ = (58.0± 0.5)× 103 s−1, T = (24± 1) °C; and Ŵ = (467± 2) s−1, T = (125.5± 0.5) °C for pressures p = 10 
and p = 0.1 mBar, respectively.
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Figure 4a shows an example of phase portraits obtained for different initial conditions (x0, 0) at the short 
time scale (< 1 ms) of such the regime. Due to the low damping, trajectories spiral slowly inwards towards the 
equilibrium point and stay on their orbits. The dashed curves, resembling clock hands, show the NP position in 
the phase space for different oscillation amplitudes and at given times from the initial condition denoted as the 
blue dashed straight line. As the oscillation evolves, the dashed curves bend backwards indicating that the outer 
phase space trajectories orbit with a lower frequency. Figure 4b confirms the dependence of �H on the initial 
conditions (x0, vx0) and shows the expected parabolic profile described by Eq. (6).

Determination of Ŵ : Fitting Eq.  (9) to the variance Var(x) of trajectory ensembles starting at 
(x0, vx0) = (0, 0)±

(

2 nm, 1mm s−1
)

 we obtained the damping coefficient Ŵ and the saturated-level pre-factor 
kBT/

(

m�2
0

)

 (see Fig. 3). Alternatively for higher ambient pressures we obtained the damping coefficient Ŵ , 
eigenfrequency �0 and bath temperature T by fitting Eq. (8) to the same dataset.

Determination of  �D : Fitting Eq. (3) to the mean position of trajectory ensembles x(t) over a few periods 
( ∼ 10 ) we determined the oscillation frequency �D (see Fig. 2f). The initial amplitudes x0 may reach up to ∼ 2× 
the standard deviation of particle positions in the trap. For even bigger initial displacements the size of trajectory 
ensemble becomes very small and the results of analysis are unreliable.

Determination of  �0 and ξ : Employing Eq. (5) with �D and Ŵ determined above gives the eigenfrequency of 
a damped Duffing oscillator �H . Fitting parabolic dependence of Eq. (6) to �H for different initial conditions x0 
gives the eigenfrequency �0 and the coefficient of Duffing nonlinearity ξ (see Fig. 4b).

Determination of  T : Determination of Ŵ in the first step above gave the pre-factor kBT/
(

m�2
0

)

 or directly the 
effective temperature T . Since �0 is known from the previous step, the pre-factor gives the effective temperature 
T (knowing the NP diameter 170 nm and its density 2000 kg/m3).

Numerical solution of deterministic Duffing equation (DDE).  To check the accuracy of the approxi-
mative solutions given by Eqs. (3–6), we solve DDE given by Eq. (2) using the direct numeric integration (Mat-
lab, ODE45 function) under the selected initial conditions. We use this procedure to search for parameters ( Ŵ , 
�0 , and ξ ) giving the best coincidence between the numerical solution of DDE and experimental data corre-
sponding to a few nonlinear oscillations presented in Sect. 1 (see also an example in Fig. 2f).

Determination of Ŵ, �0, and ξ : We fitted numerical solution of Eq. (2) to all averaged trajectories x(t) (for vari-
ous initial conditions (x0, 0) ) at once. The contribution of trajectories was weighted as x−2

0  so that all trajectories 
contributed to the residual sum with the same weight.

Power spectral density (PSD).  For comparison with other methods we also used this classical method. 
PSD does not depend on initial conditions, therefore, it is not proper to characterize the transient dynamics. It 
can be used only to observe similarities and difference between the oscillator parameters at the short-time and 

Figure 4.   (a) Phase portraits of the NP motion reconstructed using the averaged experimental data normalized 
to standard deviations. The phase space trajectories drawn over 50 µs starting at different initial positions 
x0 = 20, 40, 60, 75, 90, 105, and 120 nm, fixed initial velocity vx0 = 0 and ambient pressure 1 mBar. The dashed 
curves connect the phase space positions corresponding to the same times t  but different initial positions. 
Normalizing factors σx and σv denote 

√
Var(x) and 

√
Var(vx) , respectively. (b) Eigenfrequency of a damped 

Duffing oscillator �H as a function of the initial NP amplitude x0 for various ambient pressures is obtained from 
parameter fitting by Eq. (3) to the data similar to Fig. 2f. The fit by Eq. (6) is plotted by dotted curves.
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long-time scale. Furthermore, this method does not allow to determine the coefficient of nonlinearity because 
only the harmonic potential is assumed to get Eq. (1).

Determination of  Ŵ and �0 : Fitting Eq. (1) to experimental Pxx gives �0 and Ŵ.
Determination of T :  In the case that the calibration constant of the position detector is determined by other 

means we can use the velocity PSD Pvv , see Eq. (11) and Methods, in order to determine the spectral effective 
temperature. In such a case the spectral temperature can be expressed as29

For this approach the limiting factor is the determination of high frequency shot noise, see Methods, or the 
actual limits of the integral achievable from the experiment.

Numerical solution of stochastic Duffing equation (SDE).  In order to verify the described methods 
used for data processing and determination of parameters of the Duffing oscillator, we simulate the random 
particle motion in 1D described by the SDE given by Eq. (7) based on the Verlet scheme58. This approach is also 
generalized to 3D and corrected for influences of the other axes, as we described in more details in Supplemen-
tary Information.

We simulated 200 trajectories of an NP with random initial conditions with a time step corresponding to the 
experimental sampling frequency (total duration of a single trajectory was 1 s). The data were processed in the 
same way as experimental data and the obtained parameters were compared with the input ones.

Results and discussion
We have acquired data at several levels of ambient pressure, processed in a way described in the previous sec-
tion for different initial conditions and determined oscillator’s parameters using methods DOA, DDE and PSD. 
Further, we obtained trajectories using SDE by means of computer simulations for parameters determined from 
the experiment and processed in the same way as the measured trajectories, see also Supplementary Information. 
Figure 5 compares the obtained parameters for the x (left) and y (right) axes. Other possible methods how to 
determine parameters of the Duffing oscillators are summarized in Methods. Simulations for huge set of input 
parameters are analyzed in Supplementary Information and verify applicability and possible bias of each method.

Eigenfrequency �
0
.  �0 obtained by DOA and DDE methods are about 1 kHz higher comparing to the PSD 

method. This is caused by the fact that �0 for the Duffing oscillator corresponds to the extrapolated oscillation 
frequency with zero amplitude x0 which is the highest frequency, see Eq. (6). In contrast, the PSD method aver-
ages oscillation frequencies of all amplitudes.

Only for the highest pressure (10 mBar) values of �0 obtained by all methods are in agreement. In this case 
the dominant effect in the PSD method is the peak broadening by the damping and the resonant peak is not 
influenced by the nonlinear behaviour at all. The frequency drift through different pressures (same in both axes) 
is caused by the fluctuation of the total optical power in the trapping laser beam.

The analysis of the 1D simulated data follows the same trends as in the case of experimental data. In case of 
DDE method a weak bias ∼ 0.3 % towards higher frequencies appears. On the contrary the analysis of 3D simu-
lations shows that values of eigenfrequency �0 obtained by all methods are shifted by a similar value towards 
lower frequencies, involving corrections described in Supplementary Information. Similar results were also 
confirmed by the analysis of SDE simulated data with various input conditions (see Supplementary Informa-
tion). Therefore, we are persuaded the DOA and DDE methods provide valid �0 for weakly nonlinear systems 
of optically levitated particles.

The coefficient of Duffing nonlinearity ξ.  DDE method gives slightly higher values of coefficient of non-
linearity than DOA with the mean value and standard error in the x and y axes equal to ξx = (2.7± 0.2)µm−2 
and ξy = (2.1± 0.2)µm−2 , respectively. Discrepancy between both methods increases for ambient pressure 
above 2 mBar where values from DOA method drop down significantly. At these pressures the oscillations are 
strongly damped and the eigenfrequency �H can not be determined with sufficient precision (see the yellow 
curve in Fig. 4b) where the fit by Eq. (6) fails to give reliable results.

If the DOA and DDE methods were applied on the simulated data (both 1D and 3D), the DDE method returns 
values corresponding to the input values of the simulations. The DOA method gives the same values as DDE but 
deviates in the same way as experimental data for higher pressures.

The values obtained with DOA and DDE can be compared with a theoretical estimate of ξ for the Gaussian 
beam with the beam waist w0 under Rayleigh approximation18, 44 using ξ = 2/w2

0 that gives ξ = 2.76µm−2 . The 
beam waist in the focal plane w0 = 0.85µm was determined from Zemax software package in accordance to 
the aberrations of the focusing lens at the trapping wavelength but ignoring polarization effects in such non-
paraxial beam. Thus the obtained beam waist is the same for the x and y axes and approximately two times 
wider comparing to the direct utilization of numerical aperture of ideal focusing optics. Moreover, the particle 
diameter of 170 nm is slightly bigger than Rayleigh approximation allows, therefore the force profiles deviate 
from the expected simple gradient of optical intensity dependence which may also slightly influence the value of 
the coefficient of nonlinearity. Consequently the value of ξ predicted from the Gaussian beam waist corresponds 
quite well with the values determined from the experimental trajectories.

(10)TSP =
m

πkB

∫ ∞

0
Pvv(ω)dω.
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The damping coefficient Ŵ.  Values of medium damping Ŵ obtained with DOA, DDE and PSD for differ-
ent pressures from the experimental data are also compared with the theoretical model47, where we assumed 
nitrogen molecule diameter 0.372 nm and viscosity 17.7 µPa s. Only the DOA method gives a very good coin-
cidence with the theoretical model in the whole range of investigated pressures. DDE and PSD methods fol-
low well the theory for pressures above 0.5 mBar however for lower pressures Ŵ values obtained by those two 
methods differ from the theoretical predictions by one order or even more. Since the peak in experimental PSD 
broadens and gets asymmetric at lower pressures due to the nonlinearity in the system (see Fig. 2d,e), its fit by a 
function derived for an ideal harmonic oscillator results in a larger Ŵ . In the case of 1D SDE simulated data the 
DDE method follows well the theoretical predictions (see red circles in row 3 of Fig. 5) while the analysis of 3D 
simulated trajectories by the DDE method (red crosses) reveals the same trend as the analysis of experimental 
data. On the contrary the DOA analysis of variance increase in the experimental data as well as in 1D or 3D SDE 
simulated trajectories leads to the almost perfect coincidence with the values predicted by the theoretical model. 
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Figure 5.   Comparison of pressure dependence of parameters of the Duffing oscillator represented by the 
optically levitated particle in a nonlinear optical potential. Left and right columns correspond to an NP 
oscillating along the x and y coordinate axis, respectively. (row 1) Eigenfrequency �0 , (row 2) the parameter of 
Duffing nonlinearity ξ , (row 3) the damping factor Ŵ , (row 4) effective temperature T , (all panels) full curves: 
DOA (blue), DDE (red), PSD (orange). Circles ◦ and crosses × correspond to 1D and 3D simulations from 
SDE analysed by different methods, where we used parameters obtained by the analysis of experimental data 
with the method marked bold in the legend, for more information see Supplementary Information. Colour 
of each symbol corresponds to the method of analysis depicted in the legend. All errorbars correspond to the 
95% confidence intervals of the given quantity and are either directly based on the results of the nonlinear 
least square fitting or the results of the fits are combined by the error propagation law that gives the depicted 
intervals, respectively.
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Thus we conclude that the increased damping obtained by DDE method is caused by the crosstalks between 
coordinate axes (especially between lateral and longitudinal ones).

Effective temperature T.  The last parameter describing dynamics of levitated NP in a Duffing type poten-
tial is the effective temperature T. We compared the temperature obtained by the position variance in DOA 
method (referred to as transient temperature TTR) and by the integration of the area under the oscillation peak 
in velocity PSD (PSDvv), referred to as the spectral temperature TSP

29. We note we fixed the value of the calibra-
tion constant obtained at pressures higher than 0.4 mBar, as we explain in Methods. Both methods provide us 
with comparable results due to the fact that the energy of particle motion contained in PSDvv is independent 
of the nonlinear effects. We see that T is constant for pressures above 0.5 mBar and corresponds to the ambi-
ent temperature. For lower pressures the effective temperature firstly slowly increases which is followed by the 
steep increase for even lower pressures up to ∼ 500 K. This behaviour corresponds to the temperature increase 
observed in57 and was explained by a decrease of the heat dissipation by conduction at low pressures. Unfor-
tunately, our system does not allow us to reach even lower pressures ( < 10−2 mBar) where one would expect 
the saturation of temperature since all absorbed heat would be dissipated only by the radiation independent of 
ambient pressure. The increase in the temperature is evident from the saturation level of the position variance 
shown in Fig. 3. For a higher pressure of 10 mBar (Fig. 3a) the saturation level is lower compared to the variance 
at pressure of 0.1 mBar shown in Fig. 3b. The temperature obtained by the analysis of the simulated trajectories 
corresponds well to the experimental values that were used as simulation inputs.

Conclusions
Parameters of a nonlinear oscillator are usually estimated from steady states but the oscillator parameters found 
during the transient dynamics can be significantly different. The ability to thoroughly characterize the nonlinear 
oscillator on the short time scale is crucial for experimental testing of transient dynamics of levitating particles 
used in nanosensing and thermodynamical engines. The parameters are predicted even before the heating rate 
considerably affects the experiment which is desirable e.g. for quantum experiments with a prepared initial state. 
We introduced new transient methods to characterize parameters of an optically levitated NP behaving as a 
weakly nonlinear Duffing oscillator. The novel approach is based on post-processing of the acquired experimental 
data in such a way that for each selected initial state in the phase space, an ensemble of short evolutions is col-
lected. From mean position and momentum and their variances, a Duffing oscillator can be fully characterized 
through its eigenfrequency, damping, coefficient of nonlinearity or temperature. The described methodology 
can be used also for very low temperatures down to quantum mechanical motion.

We developed two methods, i.e. Duffing oscillator approximation (DOA) and deterministic Duffing equation 
(DDE), and we applied them on experimental data and on datasets obtained from stochastic Duffing equation 
(SDE) for a wider range of experimentally accessible parameters. The comparisons between the methods and 
with the widely used steady-state method of power spectral density (PSD) assuming only an ideal harmonic 
oscillator are revealed in Fig. 5 and discussed in detail in the previous section. The comparison with SDE veri-
fied the reliability of parameters extracted by the methods for one-dimensional and three-dimensional motion 
of the NP. Focusing only on the parametric region corresponding to the experimental parameters we conclude 
that both DOA and DDE determine eigenfrequency �0 with a precision better than 1 % and nonlinearity ξ with 
a precision better than 14 % for pressures lower than 1 mBar. DOA gives damping factor Ŵ with a precision better 
than 1 % for all considered pressures, nonlinearities and temperatures. In contrast velocity PSD method gives 
temperature estimate within 1 % while DOA within 14 % for pressures between 0.01 and 10 mBar.

Moreover, the trajectories simulated by the SDE could be in principle used directly to obtain the parameters 
of the experimental system together with the concept of machine learning59. Here the artificial neural network 
(ANN) would be trained using the simulated trajectories or some features acquired of such trajectories and later 
the ANN would predict parameters of the experimental system based on the measured data. Yet this approach 
is extremely time consuming and computationally demanding and contradicts our approach in this paper to 
develop a simple and fast method to characterize oscillator parameters and optical trap properties. In conclu-
sion, the presented transient methods can reliably characterize all important parameters describing the Duffing 
oscillator especially for lower pressures (under 1 mBar), where the nonlinearity plays a significant role and a 
peak profile in PSD starts to deviate from the ideal Lorentzian shape.

Methods
Calibration of quadrant photodetector.  For the position calibration of the quadrant detector we used 
a method based on an integrating of the velocity PSD Pvv29 which was calculated directly from the position PSD 
Pxx as

P∞xx  is the average level of the white (shot) noise at high frequencies in Pxx . The calibration constant is then 
calculated as

where T = 295  K is the room temperature. To determine the noise level P∞xx  we analyzed Pxx for fre-
quencies ω/2π > 0.75fNyq , where fNyq = fsample/2 is the Nyquist frequency and the sampling frequency 

(11)Pvv =
(

Pxx − P∞xx
)

ω2.

(12)CV→m =

√

πkBT

m ∫∞0 Pvvdω
,
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fsample = 1.78 MHz. In this range the PSD was firstly smoothed by a moving average filter and then the result 
was fitted by

where A , B , and C are fitted parameters. If B > 0 we set the noise level as P∞xx ≡ C , otherwise we set the noise 
level to the mean value of the high frequency part ( ω/2π > 800 kHz) of Pxx.

The recovered calibration factor CV→m forms a constant level plateau for pressures above 0.4 mBar (see Fig. 6) 
which is consistent with the previously published results29. For lower pressures below 0.4 mBar the calibration 
constant CV→m starts to drop. This can be attributed to the change of the NP temperature leading to a higher 
temperature of the NP center of mass motion than the room temperature used for calculation of the red curves 
in Fig. 6. Therefore, we applied the value of calibration constant equal to mean value of CV→m in the pressure 
range from 0.4 mBar up to 10 mBar to all studied pressures.

List of all possible methods for determination of parameters of the Duffing oscillator.  In 
the following section we present an overview of several alternative ways that can be used for determination of 
parameters describing a Duffing oscillator. The mentioned methods are explained in more details in the main 
text.

Determination of  Ŵ. 

1.	 Fitting Eq. (9) to the variance of trajectory ensembles Var(x) the damping coefficient Ŵ and the saturated-
level pre-factor kBT/

(

m�2
0

)

 are obtained.
2.	 Fitting Eq. (8) to the variance of trajectory ensembles Var(x) for higher ambient pressure, the damping coef-

ficient Ŵ , eigenfrequency �0 and effective temperature T are obtained.
3.	 Fitting Eq. (3) to the mean position of trajectory ensembles x(t) over a few periods, medium damping Ŵ and 

the oscillation frequency �D are determined.
4.	 Fitting Eq. (1) to the position PSD gives Ŵ assuming an ideal harmonic oscillator.
5.	 Fitting Eq. (11) to the velocity PSDvv gives Ŵ assuming an ideal harmonic oscillator.
6.	 Fitting numerical solution of Eq. (2) to all averaged trajectories x(t) (for various initial conditions (x0, 0) ) at 

once gives values of Ŵ , �0 and ξ.

Determination of  �D. 

7.	 Step (3) gives also the oscillation frequency �D.

Determination of  �0. 

	 8.	 Employing Eq. (5) with �D and Ŵ determined above gives the eigenfrequency of a damped Duffing oscil-
lator �H . Fitting parabolic dependence of Eq. (6) to �H for different initial conditions x0 gives the eigen-
frequency �0 and the coefficient of Duffing nonlinearity ξ .

	 9.	 Step (2) gives also �0.
	10.	 Step (4) gives also �0.
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Figure 6.   Pressure dependence of calibration constant CV→m calculated from the PSD Pvv (red) and a value of 
calibration constant that was actually used for the data processing (blue) for the x (left) and y (right) axes.
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	11.	 Step (5) gives also �0.
	12.	 Step (6) gives also �0.
	13.	 In the case of three-dimensional nanoparticle motion, one should use the frequency correction to get the 

eigenfrequency comparable to one-dimensional case, see Supplementary Information.

Determination of  ξ. 

	14.	 Step (8) gives also coefficient of Duffing nonlinearity.
	15.	 Step (6) gives also.

Determination of  T. 

	16.	 Step (1) gives the pre-factor kBT/
(

m�2
0

)

 . With the known �0 and oscillator mass, T can be calculated.
	17.	 In the case that the position detector is already calibrated, the velocity PSD can be used to determine the 

spectral temperature, employing Eq. (10).

Data availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding author upon reasonable request.
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