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Abstract

Background: The three-dimensional (3D) structure of the genome plays a crucial
role in gene expression regulation. Chromatin conformation capture technologies
(Hi-C) have revealed that the genome is organized in a hierarchy of topologically
associated domains (TADs), sub-TADs, and chromatin loops. Identifying such
hierarchical structures is a critical step in understanding genome regulation. Existing
tools for TAD calling are frequently sensitive to biases in Hi-C data, depend on
tunable parameters, and are computationally inefficient.

Methods: To address these challenges, we developed a novel sliding window-based
spectral clustering framework that uses gaps between consecutive eigenvectors for
TAD boundary identification.

Results: Our method, implemented in an R package, SpectralTAD, detects hierarchical,
biologically relevant TADs, has automatic parameter selection, is robust to sequencing
depth, resolution, and sparsity of Hi-C data. SpectralTAD outperforms four state-of-the-
art TAD callers in simulated and experimental settings. We demonstrate that TAD
boundaries shared among multiple levels of the TAD hierarchy were more enriched in
classical boundary marks and more conserved across cell lines and tissues. In contrast,
boundaries of TADs that cannot be split into sub-TADs showed less enrichment and
conservation, suggesting their more dynamic role in genome regulation.

Conclusion: SpectralTAD is available on Bioconductor, http://bioconductor.org/
packages/SpectralTAD/.

Keywords: Hi-C, Chromosome conformation capture, Topologically associated
domains, TADs, Hierarchy, SpectralTAD

Background
The introduction of chromatin conformation capture technology and its high-

throughput derivative Hi-C enabled researchers to accurately model chromatin interac-

tions across the genome and uncover the non-random 3D structures formed by folded

genomic DNA [1–3]. The structure and interactions of the DNA in 3D space inside

the nucleus has been shown to shape cell type-specific gene expression [3], replication
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[4], guide X chromosome inactivation [5], and regulate the expression of tumor sup-

pressors and oncogenes [6].

Topologically Associated Domains (TADs) refer to a common structure uncovered

by Hi-C technology, characterized by groups of genomic loci that have high levels of

interaction within the group and minimal levels of interaction outside of the group [1,

5, 7, 8]. TAD boundaries were found to be enriched in CTCF (considering the direc-

tionality of its binding) and other architectural proteins of cohesin and mediator com-

plex (e.g., STAG2, SMC3, SMC1A, RAD21, MED12) [3, 7], marks of transcriptionally

active chromatin (e.g., DNAse hypersensitive sites, H3K4me3, H3K27ac, H3K36me3

histone modifications) [5, 7–9]. From a regulatory perspective, TADs can be thought of

as isolated structures that serve to confine genomic activity within their walls, and re-

strict activity across their walls. This confinement has been described as creating “au-

tonomous gene-domains,” essentially partitioning the genome into discrete functional

regions [9, 10].

TADs organize themselves into hierarchical sets of domains [8, 11, 12]. These hier-

archies are characterized by large “meta-TADs” that contain smaller sub-TADs and

chromatin loops. To date, most methods were developed to find these single meta-

TADs instead of focusing on the hierarchy of the TAD structures [13–15]. While inter-

esting insights can be gleaned from the meta-TADs [16], work has shown that smaller

sub-TADs are specifically associated with gene regulation [10, 17, 18]. For example, it

has been found that genes associated with limb malformation in rats are specifically

controlled through interactions within sub-TADs [18]. These results highlight the im-

portance of identifying the full hierarchy of TADs.

Several methods have been designed to call hierarchical TADs (Supplementary Ma-

terial, Additional file 1). However, most algorithms require tunable parameters [14, 19]

that, if set incorrectly, can lead to a wide variety of results. Many tools have been

shown to highly depend on sequencing depth and chromosome length (reviewed in

[20]). Furthermore, the time complexity of many algorithms is often prohibitive for de-

tecting TADs on a genome-wide scale. Also, many tools are not user-friendly and lack

clear documentation [21], with some methods even lacking publicly available code [11].

Furthermore, the choice of TAD callers in the R/Bioconductor ecosystem remains lim-

ited (Supplementary Material, Additional file 1).

Our goal was to develop a simple data-driven method to detect TADs and uncover

hierarchical sub-structures within these TADs. We propose a novel method that ex-

ploits the graph-like structure of the chromatin contact matrix and extend it to find

the full hierarchy of sub-TADs, limited only by the resolution of Hi-C data. Our ap-

proach employs a modified version of the multiclass spectral clustering algorithm [22,

23] and uses a sliding window based on the commonly used 2Mb biologically max-

imum TAD size [7, 24]. We introduce a novel method for automatically choosing the

number of clusters (TADs) based on maximizing the average silhouette score [25]. We

show that this approach finds TAD boundaries with more significant enrichment of

known boundary marks than those called by other TAD callers. We then extend the

method to find hierarchies of TADs and demonstrate their biological relevance. Our

method provides a parameterless approach, efficiently operating on matrices in text for-

mat with consistent results regardless of the level of noise, sparsity, and resolution of

Hi-C data. The method is fast and scales linearly with the increasing amount of data.
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Our method is implemented in the SpectralTAD R package, freely available on GitHub

(https://github.com/dozmorovlab/SpectralTAD) and Bioconductor (http://bioconduc-

tor.org/packages/SpectralTAD/).

Results
An overview of the SpectralTAD algorithm

SpectralTAD takes advantage of the natural graph-like structure of Hi-C data, allowing

us to treat the Hi-C contact matrix as an adjacency matrix of a weighted graph. This

interpretation allows us to use a spectral clustering-based approach, modified to use

gaps between consecutive eigenvectors as a metric for defining TAD boundaries (Fig. 1a,

Methods). We implement a sliding window approach that increases the stability of

spectral clustering and reduces computation time. This approach detects the best num-

ber and quality of TADs in a data-driven manner by maximizing the number of in-

ternal contacts within TADs and minimizing those between TADs. To achieve this, we

maximize a clustering metric called silhouette score that measures within TAD similar-

ity and penalizes for the high similarity between TADs.

Fig. 1 SpectralTAD overview and hierarchy of TADs and boundaries. a) First two eigenvectors from decomposition of
submatrices defined by sliding window across the diagonal of Hi-C matrix are projected on unit circle, and clustered
based on largest gaps (defined by Euclidean distance) between eigenvectors. Silhouette score is used for automatic
number of clusters (TADs) selection. b) TADs not enclosed within other TADs are defined as primary, while TADs
contained within other TADs are defined as secondary, tertiary, etc. c) Boundaries are defined as the rightmost point
of a given TAD. Boundaries belonging to a single TADs are defined as level 1, while boundaries shared by two, three,
TADs are defined as level 2, 3, etc.
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Defining hierarchical TADs and boundaries

We distinguish hierarchical types of TADs by their position with respect to other

TADs. Primary TADs, or “meta-TADs,” are defined as the top-level TADs that are not

enclosed within other TADs (Fig. 1a). Conversely, we define “sub-TADs” as TADs de-

tected within other TADs. We further refine the definition of sub-TADs to describe

the level of hierarchy in which a sub-TAD is contained. Secondary TADs refer to sub-

TADs which are contained within a primary TAD; tertiary TADs correspond to sub-

TADs that are contained within two TADs and so on (Fig. 1b). Unless specified other-

wise, we report results concerning primary TADs.

TAD boundaries represent another important element to be considered within the

hierarchy. Using the terminology introduced in An et al. [26], we define a level 1

boundary as a TAD boundary belonging to a single TAD, irrespective of the TAD type.

Level 2 and level 3 boundaries correspond to boundaries that are shared by two or

three TADs, respectively (Fig. 1c).

An additional type of region is a gap, which refers to an area where there are no

TADs present either due to a lack of sequencing depth, a centromere, or simply a lack

of organization (Supplementary Methods, Additional file 1). The percentage of non-

centromeric gaps varies across chromosomes and resolutions (Supplementary Table S1,

Additional file 2), being 19.9% on average for the GM12878 data. In general, we observe

that data at higher resolution (e.g., 10 kb) have the highest percentages of gaps due to

sparsity. In our analysis, TADs are allowed to span the non-centromeric gaps.

Systematic approach for comparing TAD quality

A TAD boundary detection method (“TAD detection” hereafter) must be robust to

sparsity and noise in Hi-C data, detect consistent TADs across sequencing depths and

resolutions, and the TADs must be biologically and statistically meaningful. To com-

pare the concordance of TAD boundaries identified by different TAD callers under dif-

ferent conditions, we used the Jaccard similarity metric. To compare TAD boundaries

identified at different resolutions, we used a modified Jaccard similarity metric (Supple-

mentary Material, Supplementary Figure S1, Additional files 1 and 3). Using simulated

and experimental Hi-C data, we compared SpectralTAD with two single-level R-based

TAD callers (TopDom [13] and HiCSeg [14]), and two hierarchical TAD callers (R-

based rGMAP [27] and Python-based OnTAD [26]).

An important property of TAD detection methods is the ability to detect a hierarchy

of TAD structures [3, 8, 11, 12, 17, 28]. Among R packages, rGMAP allows for the de-

tection of two levels of the TAD hierarchy. Our method, SpectralTAD, and OnTAD

can detect deeper levels of hierarchy, though we limit it to three in the current paper

(Supplementary Figure S2, Additional file 4). Using simulated and experimental data,

we compared the robustness of hierarchical TAD detection and defined properties of

hierarchical TAD boundaries.

Multiple studies have demonstrated an enrichment of various genomic annotations at

TAD boundaries [7, 9, 11, 13]. We quantified the biological relevance of TAD boundar-

ies by using a permutation test to determine their enrichment in transcription factor

binding sites, histone modification marks, and chromatin segmentation states (Supple-

mentary Methods, Supplementary Table S2, Additional file 5).
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ICE-normalized and raw Hi-C data are better suited for TAD detection

Sequence- and technology-driven biases may be present in Hi-C matrices [29–32].

Consequently, numerous normalization methods have been developed [2, 31–36]. How-

ever, their effect on the quality of TAD detection has not been explored.

We investigated the effect of three normalization methods, Knight-Ruiz (KR), itera-

tive correction and eigenvector decomposition (ICE), and square root vanilla coverage

(sqrtVC) on TAD detection using SpectralTAD. Using simulated matrices with the

ground-truth TADs, we found that all normalization methods marginally degraded the

performance of SpectralTAD under different levels of noise, sparsity, and downsam-

pling (Fig. 2a-c). Based on these results, and the fact that previous studies showed

graph-based TAD identification methods work well un-normalized Hi-C data [37, 38],

consequent results are presented with the use of raw Hi-C data.

Using the experimental Hi-C data from the GM12878 cell line, we found that ICE

normalization only marginally affected the average number and width of TADs, and

these results were consistent across resolutions (Supplementary Figure S3A, Add-

itional file 6). In contrast, KR, and sqrtVC normalization resulted in a larger variability

in TAD widths across chromosomes and between resolutions (Supplementary Figure

S3B, Additional file 6). We also assessed the average number and the enrichment (per-

mutation test) of genomic annotations at TAD boundaries detected from unnorma-

lized, KR-, ICE-, and sqrtVC-normalized data. The average number of genomic

Fig. 2 The effect of normalization on TAD consistency and enrichment. To test for robustness to noise,
sparsity, and sequencing depth, simulated Hi-C matrices were used as-is, KR-, ICE- and square root VC-
normalized. TADs detected by SpectralTAD were compared with the ground-truth TADs using the Jaccard
similarity metric. The effect of normalization was assessed at different levels of noise (a, the percentage of
the original contact matrix modified by adding a constant), sparsity (b, the percentage of the original
contact matrix replaced with zero), and downsampling (c, the fraction of contacts kept, see Methods). Using
the raw and normalized data from the GM12878 cell line at 25 kb resolution, enrichment of genomic
annotations within 50 kb regions flanking a TAD boundary on both sides was assessed using a permutation
test. The average number of annotations for enriched (d) and depleted (e) genomic features and the
permutation p-values corresponding to enrichment (f), and depletion (g) for the top five most enriched/
depleted genomic annotations are shown. Results averaged across chromosome 1–22 are shown
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annotations was not significantly different in TAD boundaries detected from raw and

ICE-normalized data as compared with those from KR- and sqrtVC-normalized, where

the number of annotations was significantly less (Fig. 2d). We found CTCF, RAD21,

“Insulator,” and “Heterochromatin” states to be significantly enriched in TAD boundar-

ies, and this enrichment was frequently more significant in TAD boundaries detected

from the ICE-normalized data (Fig. 2f). Similarly, “enhancer”-like chromatin states were

significantly depleted at TAD boundaries, and this depletion was more pronounced in

boundaries detected from raw data (Fig. 2g). The enrichment results were consistent

across resolutions (Supplementary Figure S3C-F, Additional file 6). Furthermore, visual

inspection of TAD boundaries detected from raw and ICE-normalized data demon-

strated relatively good agreement, in contrast to those detected from KR-normalized

data (Supplementary Figure S2, Additional file 4B). These results suggest that both

ICE-normalized and raw Hi-C data are suitable for the robust detection of biologically

relevant TADs.

SpectralTAD frequently identifies more consistent TADs than other methods

Using simulated matrices, we compared the performance of SpectralTAD with rGMAP,

TopDom, OnTAD, and HiCSeg at different noise levels. We found that both Spectral-

TAD and TopDom had a significantly higher agreement with the ground truth TADs

than rGMAP across the range of noise levels (Fig. 3a). To better understand the poor

performance of rGMAP, we hypothesized that inconsistencies might arise due to the

“off-by-one” errors that occur when, by chance, a TAD boundary may be detected adja-

cent to the true boundary location. We analyzed the same data using TAD boundaries

flanked by 50 kb regions. Expectedly, the performance of all TAD callers, including

rGMAP, increased; yet, the performance of rGMAP remained significantly low (Supple-

mentary Figure S4A, Additional file 7). At low level of noise, HiCSeg detected highly

consistent TAD boundaries; however, these TAD boundaries were the least biologically

relevant, detailed below. In summary, these results suggest that, with the presence of

high noise levels, a situation frequent in experimental Hi-C data, SpectralTAD per-

forms better than other TAD callers in detecting true TAD boundaries.

We similarly investigated the effect of sparsity on the performance of the TAD cal-

lers. Expectedly, the average Jaccard similarity decreased for all TAD callers with an in-

creased level of sparsity (Fig. 3b). SpectralTAD outperformed all TAD callers except

HiCSeg at all sparsity levels. We further tested whether accounting for the “off-by-one”

error improves the performance; the performance of SpectralTAD remained superior

(Supplementary Figure S4B, Additional file 7). These results demonstrate the robust-

ness of SpectralTAD to sparsity.

TAD callers should be robust to changes in sequencing depth. We introduced four

levels of downsampling into simulated matrices and compared the detected TADs with

the ground truth TADs. Downsampling involves removing contacts at random, simulat-

ing reduced sequencing depth. Expectedly, the average Jaccard similarity degraded for

all TAD callers with an increased level of downsampling (Fig. 3c). Notably, the per-

formance of SpectralTAD was consistently higher than that of other TAD callers ex-

cept HiCSeg. Similar observations were true when accounting for the “off-by-one” error

(Supplementary Figure S4C, Additional file 7). Despite the seemingly good performance
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of HiCSeg, further inspection showed it detects wide TADs that corresponds poorly to

visually identifiable TADs while missing small-scale TADs detected by SpectralTAD

(Supplementary Figure S2, Additional file 4A). Consequently, the biological relevance

of TAD boundaries it detects is low, as discussed below (Fig. 3d-f). These observations,

along with the results concerning sparsity and noise, suggest that with realistic levels of

variation and noise in Hi-C data the performance of SpectralTAD in most cases is bet-

ter than other TAD callers.

SpectralTAD outperforms other TAD callers in finding biologically relevant TAD

boundaries

To evaluate the biological relevance of TAD boundaries detected by SpectralTAD and

the other TAD callers, we evaluated their enrichment in genomic annotations known

to be associated with TAD boundaries. We found that the TAD boundaries called by

SpectralTAD, TopDom, and OnTAD had a significantly higher number of CTCF and

RAD21, “Insulator,” and “Heterochromatin” annotations than those called by HiCSeg

and rGMAP (Fig. 3d). Consequently, these marks were more enriched at TAD bound-

aries detected by SpectralTAD and TopDom as compared with the other TAD callers

(Fig. 3f). In terms of depleted genomic annotations, “enhancer”-like chromatin states

were underrepresented at TAD boundaries, and this depletion was highly significant

Fig. 3 The comparison of SpectralTAD and other TAD callers regarding TAD consistency and biological
significance. To test for robustness to noise, sparsity, and sequencing depth, TADs were called from
simulated Hi-C matrices using SpectralTAD and four other TAD callers. They were compared with the
ground-truth TADs using the Jaccard similarity metric. The performance was assessed at different levels of
noise (a), sparsity (b), and downsampling (c, see Methods). Using the raw data from GM12878 at 25 kb
resolution, enrichment of genomic annotations within 50 kb regions flanking a TAD boundary on both sides
was assessed using a permutation test. The average number of annotations for enriched (d) and depleted
(e) genomic features and the permutation p-values corresponding to enrichment (f), and depletion (g) for
the top five most enriched/depleted genomic annotations are shown. Results averaged across chromosome
1–22 are shown
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for boundaries detected by SpectralTAD (Fig. 3e, g). Notably, the TAD boundaries de-

tected by HiCSeg had the lowest number of these genomic annotations. They also ex-

hibited the lowest level of enrichment and depletion (Fig. 3e, g). These results suggest

that, despite robustness to noise, sparsity, and sequencing depth, HiCseg detects

boundaries that are less biologically relevant in terms of known TAD biology. The per-

formance of SpectralTAD and other callers was consistent at different resolutions (Sup-

plementary Figure S4D-G, Supplementary Table S3, Additional files 7 and 8). In

summary, these results suggest that SpectralTAD outperforms other TAD callers in de-

tecting biologically relevant TAD boundaries.

SpectralTAD consistently identifies TADs across resolutions of Hi-C data

If TAD boundaries called at different resolutions of Hi-C data are inconsistent, one

risks receiving vastly different results despite the data being the same. Using the

GM12878 Hi-C data at 10 kb, 25 kb, and 50 kb resolutions, we estimated the average

number and width of TADs called by SpectralTAD, TopDom, HiCSeg, OnTAD, and

rGMAP. As the resolution of Hi-C data increased, the average number of TADs de-

creased for all but SpectralTAD (Supplementary Figure S5A, Additional file 9). Simi-

larly, the average width of TADs increased for all but SpectralTAD TAD callers

(Supplementary Figure S5B, Additional File 9). We further compared the consistency of

TADs detected in 50 kb vs. 25 kb, 50 kb vs. 10 kb, 25 kb vs. 10 kb resolution compari-

sons. We found that, for nearly all comparisons, SpectralTAD and HiCSeg had signifi-

cantly higher consistency quantified by modified Jaccard statistics than the other TAD

callers (Supplementary Figure S5C, Additional File 9). When comparing the exact loca-

tion of TADs detected by different TAD callers across four replicates of Hi-C data,

SpectralTAD identified a higher proportion of TADs detected four times than OnTAD

and rGMAP (Supplementary Figure S5D, Additional file 9). Consistent with previous

observations (Fig. 3), TopDom and HiCSeg performed well; however, this analysis does

not reflect the lower biological relevance of the detected TAD boundaries, as discussed

above. These results show that SpectralTAD identifies consistent TADs at different res-

olutions of Hi-C data in most cases.

TAD hierarchy is associated with biological relevance

Having established the strong performance of SpectralTAD, we investigated the bio-

logical importance of the hierarchy of TAD boundaries detected by it. We tested the re-

lationship between the number of times a TAD boundary occurs in a hierarchy (Fig.

1b) and the enrichment of genomic annotations. We hypothesized that TAD boundar-

ies shared by two or more TADs (Level 2 and 3 boundaries) would be more biologically

important, hence, harbor a larger number of key markers such as CTCF and RAD21.

We found that this is indeed the case, as illustrated by a significant increase in the aver-

age number of CTCF and RAD21 annotations, and “Insulator”/“Heterochromatin”

states around Level 2 and 3 boundaries as compared with Level 1 boundaries (Fig. 4a).

A similar trend was observed in the stronger enrichment of Level 2 and 3 TAD bound-

aries in those annotations (Fig. 4c). TAD boundaries at all levels of the hierarchy were

similarly depleted in the “enhancer”-like annotations (Fig. 4b, d), although these deple-

tions were more significant for the Level 3 TAD boundaries. These observations were
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consistent across resolutions (Supplementary Figure S6, Additional file 10). Our results

agree with previous research that has shown a positive correlation between the number

of sub-TADs sharing a boundary and the number of biologically relevant genomic an-

notations at that boundary [26, 27] and confirm that SpectralTAD identifies a biologic-

ally relevant hierarchy of TADs.

TADs identified by SpectralTAD are conserved across cell lines and tissues

Previous studies reported relatively high conservation of TAD boundaries identified in

different tissues and cell types, with the reported Jaccard statistics ranging from 0.21 to

0.30 [3]. We compared TAD boundaries called by SpectralTAD across various tissues

and cell types (Supplementary Table S4, [39], Additional file 11). The Jaccard for all

TADs, ignoring hierarchy, between cell-line samples ranged from 0.33 to 0.73 with a

mean of 0.45 (SD = 0.08). The Jaccard between tissues ranged from 0.21 to 0.38, with a

Fig. 4 The effect of the hierarchy of TAD boundaries detected by SpectralTAD on the average number of
annotations in enriched (a) & depleted (b) genomic markers and on enrichment (c) and depletion (d) for
different genomic annotations. Results for Level 1, 2, and 3 boundaries are shown. Genomic annotations
were considered within 50 kb regions flanking a boundary on both sides. Wilcoxon test p-values are shown
in panel a & b, and aggregated p-values, using the Fisher’s method, are shown for panels c & d. Raw data
from the GM12878 cell line, chromosome 1–22, 25 kb resolution
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mean of 0.27 (SD = 0.03), significantly lower than that of cell lines (Wilcoxon p-value <

0.0001). The lower conservation of TADs called from tissue samples is expected as cell

lines come from a “pure” single source while tissues are a mixture of different cells.

These results were summarized in heatmaps, comparing different cell lines (Supple-

mentary Figure S7A, Additional file 12) and tissues (Supplementary Figure S7B, Add-

itional file 12) according to Jaccard similarity. Hierarchical clustering of cell type-

specific samples by the Jaccard similarity of their TADs, ignoring hierarchy, identified

the expected associations between cell-type-specific data, with replicates clustering to-

gether and cell types being distinct (Supplementary Figure S7A, Additional file 12). To

a lesser extent, these results were similar in tissue-specific samples (Supplementary Fig-

ure S7B, Additional file 12). In summary, these results show the conservation of TAD

boundaries called using SpectralTAD across tissues and cell lines is similar to previ-

ously reported results [40].

Hierarchy of boundaries affect conservation of TADs

Following our definition of TADs (Primary, Secondary, and Tertiary, Fig. 1a), we hy-

pothesized that primary TADs would be better conserved than Secondary or Tertiary

TADs. The primary TADs are detected during the first pass of the algorithm; hence,

they are robustly supported by the underlying data and expected to reproduce across

different datasets. Indeed, the average Jaccard for Primary, Secondary, and Tertiary

TADs across cell types was 0.42, 0.40, and 0.35, respectively (Supplementary Table S5,

Additional file 13), and this decrease was significant (Wilcoxon p-value < 0.0001). These

observations were consistent when analyzing TADs called from tissue samples, al-

though the average Jaccard coefficients for Primary, Secondary, and Tertiary TADs

were significantly lower (Supplementary Table S5, Additional file 13). These results

demonstrate that Primary TADs are the most conserved across cell types and tissues.

We hypothesized that Level 3 TAD boundaries (Fig. 1b, boundaries that are shared

by three TADs), besides showing higher biological significance (Fig. 4), will be better

conserved. Indeed, the Jaccard coefficient of Level 3 TAD boundaries called in cell

types was significantly higher (0.30) than that of Level 2 (0.23) and Level 1 (0.23)

boundaries (Wilcoxon p-value ranging from 0.034 to < 0.0001, Supplementary Table

S5, Additional file 13). These results were also observed in TAD boundaries called in

tissue types. One possibility of the lower Jaccard coefficient for Level 1 and 2 boundar-

ies is that they may change their assignment due to higher probability of detection of

sub-TADs in different datasets. In summary, these results demonstrate that boundaries

shared by several TADs have high biological significance and are better conserved

across cell types and tissues.

SpectralTAD is the fastest TAD caller for high-resolution data

We evaluated the runtime performance of SpectralTAD, TopDom, OnTAD, rGMAP,

and HiCSeg. SpectralTAD showed comparable performance with TopDom and was fas-

ter than rGMAP at all resolutions (Supplementary Figure S8A, Additional file 14). Spe-

cifically, SpectralTAD takes ~ 45 s to run with 25 kb data and ~ 4min to run on 10 kb

data for the entire GM12878 genome. By comparison, TopDom takes ~ 1min to run

on 25 kb data but ~ 13min on 10 kb data. OnTAD takes ~ 4min to run on 25 kb data
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and ~ 30min on 10 kb data. rGMAP takes ~ 12 min on 25 kb data and ~ 47min on 10

kb data. We find that HiCSeg is prohibitively slow, taking ~ 609min on 25 kb data and

multiple days to run on 10 kb data with chromosome 1 taking over 24 h alone. Import-

antly, our method scales nearly linearly with the size of the data (see Methods), making

it amenable for fast processing of data at higher resolutions. Furthermore, when paral-

lelized, SpectralTAD is several orders of magnitude faster than other TAD callers (Sup-

plementary Figure S8A, Additional file 14), e.g., with the entire genome taking 1 s to

run for 25 kb data when using four cores. We demonstrate that our method has a linear

complexity O(n) (Supplementary Methods, Additional file 1), making it scalable for

large Hi-C datasets. In summary, these results demonstrate that SpectralTAD is signifi-

cantly faster than TopDom, rGMAP, and HiCSeg, providing near-instant results when

running on multiple cores.

Discussion
We introduce the SpectralTAD R package implementing a spectral clustering-based ap-

proach that allows for fast TAD calling and scales well to high-dimensional data. The

method was benchmarked against four TAD callers - TopDom and HiCSeg that detect

single-level TADs, and OnTAD and rGMAP that detect hierarchical TADs. We show bet-

ter performance of SpectralTAD vs. the other TAD callers in nearly all conditions. We

also demonstrate that SpectralTAD is more robust to sparsity, sequencing depth, and

resolution. We show that SpectralTAD can robustly detect hierarchical TAD boundaries.

Furthermore, we demonstrate different levels of TAD hierarchy to be differentially associ-

ated with known marks of TAD boundaries, highlighting their distinct biological roles

and the importance of the TAD hierarchy in general. The clear superiority of Spectral-

TAD regarding running speed and robustness to data irregularities suggests its use as the

new gold-standard of hierarchical TAD callers in the R ecosystem.

The performance of SpectralTAD was frequently better, but not always superior

to that of HiCSeg. The better performance of HiCSeg under different levels of

noise, sparsity, and sequencing depth in some cases may be explained by the fact

that HiCSeg identifies non-hierarchical TAD boundaries at once. Furthermore,

HiCSeg uses complete Hi-C matrices to detect robust data-driven features [14].

However, due to the inherent noise and sparsity of Hi-C data at larger distances

between interacting regions, those features may be detected due to consistent aber-

rations in the data. This may explain poor enrichment of HiCSeg-detected bound-

aries in CTCF, RAD21, and other functional signatures of TAD boundaries.

SpectralTAD, on the other hand, defines a hierarchy of primary, secondary, etc.,

TADs, restricted to the first three levels in the current analysis. Furthermore, the

sliding window approach implemented in SpectralTAD focuses on local, likely

biology-driven chromatin interactions that define TAD boundaries. This may ex-

plain stronger enrichment of SpectralTAD-detected boundaries in genomic annota-

tions previously associated with TAD boundaries. We suggest that the tradeoff

between robustness and biological relevance of TAD boundaries should be made

for the latter, with SpectralTAD providing the optimal balance.

One overarching limitation with non-hierarchical TAD callers like TopDom and

HiCSeg is their inability to capture all TADs in a dataset. While methods like TopDom

may find biologically relevant TADs, they cannot account for the common situation
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where sub-TADs occur within a TAD. In the case of TADs enclosing sub-TADs, non-

hierarchical callers are forced to make a choice that is often far from optimal (Supple-

mentary Figure S2, Additional file 4). We suggest that even when the hierarchy of

TADs is not essential, hierarchical TAD callers like SpectralTAD should be used for

maximally accurate reconstruction of TADs at the first level of the hierarchy.

Our work focuses on R-based software for TAD boundary detection, motivating the

selection of TAD callers implemented in R. However, many TAD callers, including

those detecting hierarchical TADs, have been implemented in Python and/or as

command-line tools (Additional file 1, reviewed in [41, 42]). One of our future goals in-

cludes a comparison of SpectralTAD with hierarchical TAD callers irrespectively of im-

plementation, focusing on the quality of hierarchical TAD detection.

The goal of the SpectralTAD package is to provide the R-based implementation of

our spectral clustering framework for TAD boundary detection. It outputs genomic co-

ordinates of the detected TAD boundaries along with their level of hierarchy. These

genomic coordinates provide flexibility for a range of downstream analyses and

visualization. Examples include functional enrichment analysis of genes and genomic

annotations in proximity of (different hierarchical) TAD boundaries using tools like

rGREAT, GenomeRunner, LOLA [43–45]. Although SpectralTAD provides basic

visualization functionality, external tools like HiCExplorer [46], Juicer [15], HiGlass

[47], reviewed in [48, 49], provide greater flexibility in visualizing Hi-C contact maps

and annotations. We continue exploring visualization options for SpectralTAD-

detected boundaries.

Conclusion
In summary, we show that SpectralTAD is a robust method for defining the hierarchy

of TAD boundaries. This method improves upon previous work showing the potential

of spectral clustering for finding structures in Hi-C data while introducing modifica-

tions to make these methods practical for users. Specifically, we introduce two novel

modifications to spectral clustering, the eigenvector gap and windowing, which can be

used to quickly and accurately find changes in the pattern for ordered data. By releasing

SpectralTAD as an open source R package, we aim to provide a user-friendly and ac-

curate tool for hierarchical TAD detection.

Methods
Data sources

Experimental Hi-C matrices from the GM12878 cell line ([3] at 50 kb, 25 kb, and 10 kb,

“primary+replicate”, replicates (HIC001-HIC004)) and 35 different cell line and tissue

samples ([39], 40 kb resolution) were downloaded from Gene Expression Omnibus

(GEO, Supplementary Table S4, Additional file 11). 25 simulated matrices with manu-

ally annotated TADs ([42], 40 kb resolution) were downloaded from the HiCToolsCom-

pare repository (Supplementary Table S4, Additional file 11). Data for chromatin states,

histone modification and transcription factor binding sites (TFBS) were downloaded

from the UCSC genome browser database [50]. Given the fact that some transcription

factors have been profiled by different institutions (e.g., CTCF-Broad, CTCF-Uw, and

CTCF-Uta), we selected annotations most frequently enriched at TAD boundaries
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(typically, CTCF-Broad, RAD21-Haib). All genomic annotation data were downloaded

in Browser Extensible Data (BED) format using the hg19/GRCh37 genome coordinate

system (Supplementary Table S2, Additional file 5).

Windowed spectral clustering

Hi-C data representation

Chromosome-specific Hi-C data is typically represented by a chromatin interaction

matrix C (referred hereafter as “contact matrix”) binned into regions of size r (the reso-

lution of the data). Entry Cij of a contact matrix corresponds to the number of times re-

gion i interacts with region j. The matrix C is square and symmetric around the

diagonal representing self-interacting regions. Our method relies on the fact that the

3D chromosome can be thought of as a naturally occurring graph [16, 51]. Tradition-

ally, a graph G(V, E) is represented by a series of nodes V connected by edges E. These

graphs are summarized in an adjacency matrix Aij, where entry ij indicates the number

of edges between node i and node j. We can think of the contact matrix as a naturally

occurring adjacency matrix (i.e., Cij =Aij) where each genomic locus is a node, and the

edges are the number of contacts between these nodes [51]. This interpretation of the

contact matrix allows us to proceed with spectral clustering.

Sliding window

To avoid performing spectral clustering on the entire matrix, which is highly computa-

tionally intensive, we apply the spectral clustering algorithm to submatrices defined by

a sliding window across the diagonal of the entire matrix. The size of the window (the

number of bins defining a submatrix) is based on the maximum possible TAD size of

2mb [7, 52]. In practice, the size of the window w is equal to 2mb
r , where r is the reso-

lution of the data. For example, at the 10 kb resolution, we would have a window size

of 2mb
10kb or simply 200 bins. Following the guidelines of previous works on the minimum

TAD size, we set a minimum window size of 5 bins [7, 53–55].

The restriction in window size means that the maximum resolution at which the al-

gorithm can be run is 200 kb. At this resolution, the window can be partitioned into

two separate TADs of 5 bin width. However, this is inappropriate as previous research

indicated that TADs do not begin truly appearing until the resolution becomes less

than 100 kb [7]. Therefore, our method is viable for all potential resolutions from which

meaningful TADs can be called.

The algorithm starts at the beginning of the matrix and identifies the TADs in the

first window. The window is then moved forward to the beginning of the last TAD de-

tected, to account for the fact that the final TAD may overlap between windows. This

is repeated until the end of the matrix. The result is a unique set of TADs.

Finding the graph spectrum

The first step of the algorithm is to find the graph spectrum. First, we calculate a Lapla-

cian matrix - a matrix containing the spatial information of a graph. Multiple Lapla-

cians exist [56]; but since our method builds upon the multiclass spectral clustering

algorithm [22], which uses the symmetric Laplacian, we use the normalized symmetric

Laplacian as follows:
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1. Calculating the normalized symmetric Laplacian

L‾ ¼ D − 1
2CD − 1

2

2. (where) D = diag (1TC)

3. Solve the generalized eigenvalue problem

L‾V ‾ ¼ λV ‾

4. The result is a matrix of eigenvectors V ‾
w�k , where w is the window size, and k is

the number of eigenvectors used, and a vector of eigenvalues where each entry λi
corresponds to the ith eigenvalue of the normalized Laplacian L‾.

5. Normalize rows and columns to sum to 1:

cV i: ¼ V i:
‾

‖V ‾
i:‖

6. where the subscript i. Corresponds to column i

Projection onto the unit circle

Our method builds on the approach to spectral clustering first introduced in [22],

which works by projecting the eigenvectors on a unit circle. Once we project these

values on the circle, we can cluster regions of the genome by simply finding gaps in the

circle (Supplementary Figure S9, Additional file 15). In the unit circle representation, a

TAD boundary can be thought of as a region of discontinuity in the eigenvectors of ad-

jacent values. Regions within the same TAD should have similar eigenvectors and have

small distances between them. This approach takes advantage of the fact that eigenvec-

tors are mapped to genomic coordinates which have a natural ordering. The steps for

this portion of the algorithm are below:

1. Normalize the eigenvectors and project onto a unit circle

~Z ¼ diag diag − 1
2 cVi:cV i:

T� �� �cV i:

2. For i = 2, …, n where n is the number of rows in ~Z and k is the number of

eigenvectors calculated (we suggest using two) to produce ~Z, calculate the

Euclidean distance vector D

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Zi1 − ~Z i − 1ð Þ1

� �2 þ ~Zi2 − ~Z i − 1ð Þ2
� �2

:…þ ~Zk − ~Z i − 1ð Þk
� �2q

This step calculates the distance between the entries of the first two normalized ei-

genvectors that are associated with bin i and the bin to its left.

Choosing the number of TADs in each window

1. Find the location of the first l ¼ w
5 largest values in Di, where w is the window size,

and l + 1 is the maximum number of TADs in a given window and partition the

matrix into l + 1 sub-matrices with boundaries defined by the location of the l lar-

gest values.

Cresswell et al. BMC Bioinformatics          (2020) 21:319 Page 14 of 19



2. For each sub-matrix calculate the silhouette statistic [25]:

si ¼ bi − ai
max ai; bi½ �

Here, a is the mean distance between each cluster entry and the nearest cluster, and

b is the mean distance between points in the cluster. The distance between two given

loci i and j is defined as 1
Cijþ1, with “+1” added to avoid division by zero. Cij corresponds

to the number of contacts between loci i and loci j.

3. Find the mean silhouette score over all possible numbers of clusters m and

organize into a vector of means

s‾m ¼

Xm
i¼1

si

m

4. Find the value of m which maximizes s‾m

By taking the mean silhouette score, we can determine the number of eigenvectors,

which allows us to maximize the similarity within clusters while minimizing the simi-

larity between clusters. This translates into the number of clusters (i.e., TADs) that pro-

duces the most well-separated clusters. This procedure is performed within each

window, allowing us to identify poorly organized regions (gaps, Supplementary

Methods, Additional file 1). Cluster (TAD) boundaries are mapped to genomic coordi-

nates based on their location in the contact matrix. If a TAD is detected and found to

be less than 5 bins wide it is ignored due to previous evidence suggesting these are not

biologically relevant [7, 53–55]. This step implies that, for a given window, the max-

imum number of TADs in a window is equal to the size of the window divided by 5.

Creating a hierarchy of TADs

We can find a hierarchy of TADs by iteratively partitioning the initial TADs. This is

done by running a modified version of the main algorithm that includes an extra filter-

ing step that tests for the presence of sub-TADs in each TAD. Briefly, each TAD is

treated as an individual contact matrix, and a window is not used. To test for the exist-

ence of sub-TADs, we convert the distance vector Di into a set of Z-scores by first tak-

ing the natural log of the distance vector before centering and scaling. This is done

following our empirical observation of the log-normality of eigenvector gaps (Supple-

mentary Figure S10, Additional file 16). We then label any distance with a Z-score

greater than 2 as a sub-boundary. If significant sub-boundaries are detected, we parti-

tion the TAD with each sub-boundary indicating the end of a given sub-TAD. This

procedure is then repeated for each sub-TAD until either the TAD is too small to be

partitioned into two sub-TADs or no significant boundaries are found. The TADs de-

tected during the initial run of the algorithm are considered primary TADs, and the

TADs detected after partitioning are considered secondary, tertiary, etc., sub-TADs. In

practice, this approach can also be used for the first iteration of the algorithm (non

sub-TADs) and is an option in the SpectralTAD R package.
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Benchmarking TAD callers

To evaluate the robustness of TAD callers, simulates Hi-C matrices were systematically

modified to contain pre-defined levels of noise, sparsity, and sequencing depth. The

overlap of TAD boundaries with the manually annotated TADs was tested using Jac-

card statistics; the cross-resolution TAD comparison was assessed using a modified ver-

sion of the Jaccard coefficient (Supplementary Figure S1, Additional file 3). The effect

of Hi-C data normalization was tested using the iterative correction and eigenvector

decomposition (ICE) [32], Knight-Ruiz (KR) [3, 33], and the Square Root Vanilla

Coverage (sqrtVC) [3] methods. The association of TAD boundaries with genomic an-

notations, such as CTCF, was assessed using a permutation test. See Supplementary

Methods (Additional file 1) for details.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-03652-w.

Additional file 1: Supplementary Material. An overview of previous methods, parameter selection, methods,
and results not included in the main manuscript.

Additional file 2: Table S1. Summary of gaps. The percentage of gaps is summarized for all chromosomes at 10
kb, 25 kb, and 50 kb resolution using raw GM12878 data [3]. Gaps are separated based on whether they are
centromeric or other (unsequenced, or poorly organized chromatin).

Additional file 3: Figure S1. Example of modified Jaccard statistics to measure agreement between TAD
boundaries detected at different resolutions. The top triangles indicate TADs detected at 50 kb resolution, while
the bottom triangles indicate those detected at 25 kb resolution. There are four shared boundaries (blue lines) and
two non-shared boundaries (red lines). The traditional Jaccard statistic underestimates the fact that the four TAD
boundaries agree at a different resolution, while the modified Jaccard statistics correctly identifies the perfect over-
lap between TAD boundaries by ignoring resolution differences.

Additional file 4: Figure S2. Examples of TADs detected under different conditions. A) TADs detected by
SpectralTAD, TopDom, OnTAD, HiCSeg and rGMAP. B) TADs detected from raw, ICE-, and KR-normalized data.
SqrtVC-normalized data could not be plotted due to format conversion issues. Red-yellow-blue color gradient indi-
cate a high-medium low chromatin interaction strength; triangles indicate TADs. GM12878 data from [3], resolution
50 kb, chr1:60000000–80,000,000 (hg19). All parameters were set according to the instructions of each TAD caller.
HiCExplorer v.3.0 [46] was used for visualization.

Additional file 5: Table S2. Experimental Data sources. Genome annotation (hg19/GRCh37) [50] data for
GM12878 cell line used in the analysis, sorted by category, then by data type.

Additional file 6: Figure S3. The effect of data normalization on the average number (A) and width in kilobases
(B) of TADs and the average number of peaks in enriched markers (C) and depleted markers (D), enrichment (F)
and depletion (G) for different genomic annotations. Counts (A) and widths (B) for raw, KR-, ICE- and sqrtVC-
normalized GM12878 data at 25 kb and 50 kb resolutions, averaged across chromosome 1–22, are shown for pri-
mary, secondary, and tertiary TADs detected by SpectralTAD. The average number of annotations for enriched (D)
and depleted (E) genomic features and the permutation p-values corresponding to enrichment (F), and depletion
(G) for the top most enriched/depleted genomic annotations (permutation test) at TAD boundaries for GM12878
data at 50 kb resolution are shown.

Additional file 7: Figure S4. The comparison of SpectralTAD and other TAD callers regarding TAD consistency
and biological significance. To test for robustness to noise, sparsity, and downsampling, TADs were called from
simulated Hi-C matrices using SpectralTAD and other TAD callers. The TAD boundaries were extended by 50 kb re-
gions flanking a boundary on both sides. They were compared with the ground-truth TADs using the Jaccard simi-
larity metric. The performance of the TAD callers was assessed at a different level of noise (A, the percentage of
the original contact matrix modified by adding a constant of two), sparsity (B, the percentage of the original con-
tact matrix replaced with zero), and downsampling (C, the fraction of contacts kept, see Methods). Using the raw
data from GM12878 at 50 kb resolution, enrichment of genomic annotations within 50 kb regions flanking a TAD
boundary on both sides was assessed using a permutation test. The average number of annotations for enriched
(D) and depleted (E) genomic features and the permutation p-values corresponding to enrichment (F), and deple-
tion (G) for the top five most enriched/depleted genomic annotations are shown. Results averaged across chromo-
some 1–22 are shown.

Additional file 8: Table S3 Enrichment by Method. Enrichment/Depletion results are provided for all genomic
annotations tested. Permutation p-values summarized using Fisher’s method are shown. Data is sorted
alphabetically by category and then by genomic annotation.

Additional file 9: Figure S5. The number, width, and consistency of TADs called across resolutions and primary
vs. replicate for different methods. The average number (A) and width (B) of TADs across resolutions, Jaccard
similarity between TAD boundaries detected from primary and replicate data and modified Jaccard similarity
between TAD boundaries detected from data at 10 kb, 25 kb and 50 kb resolutions (C) and the proportion of
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shared boundaries across four replicates (D) are shown. HiCseg failed to run on some data due to sparsity, as
indicated by gray bars on panel D. Wilcoxon test p-values are shown. Data from the GM12878 cell line,
chromosomes 1–22.

Additional file 10: Figure S6. The effect of the hierarchy of TAD boundaries detected by SpectralTAD on the
average number of annotations in enriched (A) and depleted (B) genomic markers and on enrichment (C) and
depletion (D) for different genomic annotations. Results for TAD boundaries detected as Level 1, 2, and 3
boundaries are shown. Genomic annotations were considered within 50 kb regions flanking a boundary on both
sides. Wilcoxon test p-values are shown in panel A & B, and aggregated p-values, using the Fisher’s method, are
shown for panels C & D. Raw data from GM12878 cell line, chromosome 1–22, 50 kb resolution.

Additional file 11: Table S4. Hi-C Data sources. Information about experimental [3, 39] and simulated [42] Hi-C
data.

Additional file 12: Figure S7. Jaccard similarity of TAD boundaries across cell types (A) and tissues (B). TADs
were called using SpectralTAD. Clustering was performed using Ward clustering applied to a Jaccard distance
matrix. All TADs were called on raw 40 kb data from [39]. Various cell-lines and tissues are used.

Additional file 13: Table S5. Jaccard similarity across TAD hierarchy. Results for the corresponding comparison of
Primary, Secondary, Tertiary TADs, and Level 1, 2, 3 TAD boundaries are shown. Jaccard similarity coefficients were
compared using a Wilcoxon signed-rank test. Column p-values correspond to the comparison of Jaccard within
levels between tissue samples and cell lines. Row p-values correspond to the comparisons within each type of data
across the hierarchy.

Additional file 14: Figure S8. Runtime performance of various TAD callers. TADs were called using data from the
GM12878 cell line at 10 kb and 25 kb resolution, and runtimes recorded. (A) Runtimes were summarized across
different chromosomes. Each dot represents chromosome-specific run time averaged across three runs, with the re-
gression line approximating the trend. X-axis – chromosome size in the number of bins, Y-axis – time in seconds.
(B) The total time to analyze chromosomes 1–22 was calculated and summarized across methods and levels of
parallelization for GM12878 25 kb resolution data. X-axis – Method, Y-axis – time in seconds. Results for HiCSeg are
excluded due to exceptionally slow runtimes (24h hours for one 10 kb chromosome).

Additional file 15: Figure S9. Projection of eigenvectors on the unit circle. This projection allows us to identify
TADs based on the distance between eigenvectors. The two largest gaps are used to separate TAD 1, TAD 2, and
TAD 3. We can also see the difference between a strongly organized group with close together points (TAD 1 and
TAD 2) and a weaker group with more spread out points (TAD 3). Simulated data from [42].

Additional file 16: Figure S10. Distribution of eigenvector gaps. The distributions of eigenvector gaps are
plotted separately for each 10 kb, 25 kb, and 50 kb contact matrix from [3], 131 chromosome-specific datasets total.
Results are colored by resolution. Higher-resolution data shows smaller overall gaps due to a larger number of re-
gions of high sparsity. The untransformed eigenvector gaps (A) and the natural log eigenvector gaps (B) are shown.
MASS::fitdistr() function was used to establish the best fit by a lognormal (67 datasets) or a Weibull (64 datasets)
distributions with similar log-likelihoods. The lognormal fit was chosen to model the distribution of log eigenvector
gaps.

Abbreviations
3D: Three-dimensional; Hi-C: Genome-wide chromatin conformation capture technology; ICE: Iterative correction and
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