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A B S T R A C T

Chlorine reacts with both organic and inorganic matters in water. That is why water quality modeling has
received great attention in recent years. The serious issue in municipal water quality modeling is gathering the
essential input parameters of the model, particularly bulk decay (kb) and wall decay (kw) coefficients as well as
their calibrations. Therefore, this study first thoroughly formulates the problem in the form of a heuristic
optimization and then utilizes Genetic Algorithm, Particle Swarm Optimization, and Hybrid GA-PSO as the
model optimizers in order to best calibrate kw for minimizing the difference of residual chlorine concentrations
that exist between the simulated and observed values. These three algorithms are linked to EPANET, the
hydraulic and water quality simulator. The method is then applied to a real-world water distribution network.
Here, kw is considered as a decision variable. The objective function is to minimize both the Sum of Square Error
and Root Mean Square Error between the observed and simulated chlorine concentrations. According to the
simulation results obtained, the optimal value of wall decay coefficient is 1.233 m/day during the calibration
process while the minimum and maximum differences between the measured and simulated chlorine rates were
0 and 0.18, respectively.

� The method presented in this article can be useful for managers of water and wastewater companies, water
resources facilities and operators and operation manager of water distribution system to manage chlorine
dosing rate.
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� Due to adverse health effect of disinfection by product and poor microbial water quality as results of inefficient
chlorination, control chlorine concentration in water distribution networks and its consequence on human
health effect is necessary.

� Hybrid PSO and GA methods are used to cope with their falling in local optimum and requiring highly
computational effort.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Specifications Table
Subject Area: Environmental modeling Science
More specific subject area: Water quality modeling
Method name: Genetic Algorithm(GA), Hybrid of Genetic Algorithm and Particle Swarm Optimization

(HGAPSO), Particle Swarm Optimization(PSO)
Name and reference of
original method:

- Genetic algorithms in pipeline optimization [1]
- A new optimizer using particle swarm theory [2]

Resource availability: - Computer(Intel(R)CoreTM i7-7700 3.60-GHz 32 GB
- EPANET software [3]

Method details

Materials and methods

Hence, inthispaperthehybridmethodofHGAPSO developedandutilized,whichreliedonthe Genetic
Algorithm (GA) and Particle Swarm Optimization (PSO). This method is developed based on averysimple
but efficient hybrid use of GA and PSO. Thus, the aim was to calibrate kw to minimize the difference
between simulated and observed values of residual chlorine concentrations using EPANET 2.0 as the
hydraulic simulator and GA, PSO, and HGAPSO as the optimization tools. The methods were also
applied to a real-world water network. Indeed this study investigated the proposed method and
compared it with the method used by the previous researchers to perform quality calibration of the
network under study. In the following, the methodology employed in this paper, including water
quality model, objective function, and optimization algorithms are explained in detail.

Water quality modeling
In order to trace the growth or decay of reactions in water pipelines, EPANET requires the rate of the

reaction as well as its probably dependence on the substance concentration [4]. Chlorine decay is
categorized in two cases of bulk decay: reactions occur in the bulk flow and their rates depend on the
concentrations of both organic and inorganic substances and wall decay: reactions occur at or near the
pipe wall [3,5,6]. Some studies provided more detailed description of the chlorine decay model [7,8].

Laboratories and field studies have shown that decay constant may vary with respect to a few
factors (as previously mentioned). Estimation of the decay constant is a key issue in using the decay
equation. Therefore, the total decay constant (K) is often defined as the decay constant composed of
two terms, kb and kw [9]:

K ¼ kb þ kw ð1Þ
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Genetic Algorithm (GA)
Genetic Algorithm is an adaptive search algorithm that works based on the evolutionary ideas of

natural selection and genetics. It includes three major operators of selection, crossover, and mutation.
This algorithm generates a random initial population (represented by a string of genes or
chromosomes) within the search scope. The fitness values of these candidate solutions are
assigned proportionally to their pertinent objective function values. Based on fitness values, GA forms
a mating pool using the selection operation [10]. The selection process removes the inferior solutions
and allows multiple copies of the elite solutions in the mating pool. This step does not create any new
solutions. Then, GA performs the crossover operation to generate new solutions. At this stage, the
crossover operator randomly picks up two individuals from the mating pool and crosses them to
generate two new offspring. However, in order to maintain some of the superior solutions that exist in
the parent population, crossover operation will be carried out only in the case that the crossover
probability is satisfied. Mutation operation is responsible for maintaining the diversity of the solutions
by local altering the genes. Genetic algorithm performs the selection, crossover, and mutation
operation in an iterative way until the stop criterion is reached [10].

Particle Swarm Optimization (PSO)
Particle swarm optimization (PSO) is a meta-heuristic optimization method that was first used by

Eberhart and Kennedy [2]. This algorithm, inspired by the flocking and schooling of birds and fish
belongs to the category of swarm intelligence. In PSO, all possible solutions of a problem are in a search
framework called solution space. Each solution in this swarm is called a particle. Each particle, which
iteratively flies over the search domain, represents a solution to the problem. Three vectors exist in
each iteration that defines the movement of each particle into the next iteration. One of these vectors
is the velocity vector, which is randomly generated. The other two vectors update based on the best
position of particles. Then, each particle keeps tracking of its position vector; pbest, which has
acquired the best fitness function. The position vector; gbestis the best value of fitness function [11].
The position vector of the particles is updated as stated by the velocity vector. These new positions in
PSO algorithm are evaluated by an objective or fitness function in each iteration and then pbestand
gbestare updated again. The particle velocities Vt

ijand positions Xt
ij are calculated using the following

equations:

Vtþ1
ij ¼ wVt

ij þ c1rt1 pbest ðijÞ � Xt
ij

� �
þ c2rt2 gbest jð Þ � Xt

ij

� �
ð2Þ

Xtþ1
ij ¼ Xt

ij þ Vt
ij ð3Þ

Where, i = [1, 2, . . . , P], j = [1, 2, . . . , n], c1 and c2 are acceleration constants that range within [2–4], r1
and r2 are random numbers that are in the range of 0–1. The gbestand pbest are the global and particle
best known positions, respectively. Moreover, w is the initial weight that represents the exploration
and exploitation ability of the algorithm and ranges from 0.4 to 0.9. The characteristics of the
exploration algorithm increase if w is close to 0.9; otherwise, its exploitation properties increase. In
this step, a new modified parameter, called wdmp is used in each iteration to enhance the exploration
capability during the final steps (Eq. 4). The wdmp factor in this paper is 0.998, which decreases w and
particle movement in each iteration [12].

w ¼ w � wdmp ð4Þ

Hybrid GA and PSO
TheadvantagesofPSO algorithm overGA includeits simplicity, intelligibility, and controllabilityof the

convergence rate. In GA, mutation rate and crossover probability influence the algorithm convergence,
but it cannot control the rate of convergence as easily as the inertia factor in PSO. The effect of increase in
the rate of convergence can be directly observed in PSO as a result of decrease in the inertia factor, but the
major restrictions of PSO are its premature convergence and getting stuck in locally optimal points [13].
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To avoid this problem, the best position of the swarm should be changed iteratively. In order to hit this
target, diversity among the population members can be increased by including the mutation and
crossoveroperatorsof GA in PSO, sothat the probabilityof falling into local optima is reduced. In HGAPSO,
the total number of iterations is specified initially and later the algorithm is divided into its two sub-
algorithms of GA and PSO. In the first step, GA generates a high-quality population, inwhich the solutions
are sorted in an ascending order depending on their fitness, where PSO is the best algorithm used for the
specific and global purposes in all societies. At the end of each iteration, PSO measures are the best values
based on the informationprovidedby GA. These stagescontinueuntil the termination conditionsare met,
or the maximum number of iterations is reached.

Optimization model formulation

Decision variable. In this paper kw was considered as a decision variable that ranged within 1–1.5 m/
day depending on the pipe diameter, material, and initial chlorine concentration [8]. In the proposed
model, the wall decay coefficient is adjusted while calibrating the water quality model to reach the
least difference between the values obtained by field measurement and simulation. In this regard, the
wall decay coefficient can be assigned to study the pipes in three methods: 1) Assigning the same
coefficient to all the pipes of the system, 2) Assigning zonal coefficients to the pipes, and 3) Assigning a
coefficient a to each pipe that is inversely proportional to the Hazen-Williams roughness coefficient,
as stated in Eq. (5), where the fitting coefficient was adjusted during the calibration.

Kw ¼ a
C

ð5Þ

In this equation, kw is the wall decay coefficient, a is the fitting coefficient, and c is the Hazen-
Williams C-factor [14]. In this study the first method was used in assigning the wall decay coefficient.

Objective function. The objective function of the optimization model minimizes the sum of squared
error (SSE) and Root Mean Square Error (RMSE) that exist between the observed and simulated
chlorine concentrations as described below:

Minimize SSE ¼
Xn
j¼1

ðCobs
j � Csim

j Þ2 ð6Þ

Minimize RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
j¼1

ðCobs
j � Csim

j Þ2

n

vuuut
ð7Þ

Where, n is the number of observations and Cobs
j and Csim

j are the observed and simulated chlorine
concentrations at junction j mg/L.

The flowchart in Fig. 1 outlines the process of the proposed approach distinctly. The optimization
program is first coded in MATLAB and then linked to EPANET 2.0, as the hydraulic simulator.

Case study

In this study, Miraj real-world water network was used for calibration and water quality modeling.
This water network was previously studied by [8], who applied the inverse model to determine the
wall decay. They determined the chlorine reaction rate parameters, so that the observed and
computed chlorine concentrations were minimized in a least-squares manner. The region under study
included a number of residential houses and apartments. The storage reservoir had a capacity of
1000 m3 and a full supply level of 587 m. The dominant pipe material was Cast Iron (CI) with diameters
ranging from 80 mm to 400 mm. The schematic representation of this water distribution system is
shown in Fig. 2. The chlorine injection dose to the network was the constant value of 1.70 mg/L and kb
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was considered as 1.73 1/day. Simulation was conducted under the steady-state condition and the
demands were constant in nodes during the study time.

Results and discussion

To model the chlorine transport, DWDS calibration was performed to estimate the wall decay
coefficient of Chlorine properly. This goal was achieved using GA, PSO, and HGAPSO algorithms and the
results were compared. All these three algorithms aimed at minimizing the objective function. Since in

Fig. 1. The flowchart of the proposed approach.
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Munavalli’s paper, the field-measured chlorine levels were set at 22 nodes [14], specific consideration
was given to the same nodes when performing the chlorine concentrations analysis in the present
study. Table 1 represents the chlorine levels obtained from the field measurement and simulation
given by Munavalli et al. along with the values calculated throughout the proposed method.
Furthermore, the minimum and maximum differences between the measured and simulated chlorine
rates were 0 and 0.18, respectively. Differences of >0.1 mg/L were obtained at seven nodes and none of
them exceeded 0.2 mg/L. As Table 1 shows, SSE and RMSE obtained using the proposed methods (GA,
PSO, and HGAPSO) were equal to 0.166 and 0.091, respectively. Based on these results, SSE and RMSE
reduced by 67.25 and 82.5 percent, respectively compared with Munavalli’s method. This indicates
that the proposed methods outperformed the previous ones. It should also be mentioned that the
results yield kw = 1.233 m/day during the calibration process.

Fig. 3 represents the two different Chlorine levels at under-monitoring nodes obtained from field
observation and simulation by Munavalli. It also shows the levels obtained by our simulation-based
model. According to this figure, chlorine curve obtained using the proposed models (GA, PSO, and
HGAPSO) had fewer mismatches with the field-observed data, especially at nodes: 7, 12, 13, 14, 16, 18,
and 22, in comparison with the curve proposed by Munavalli.

Convergence curves of the three utilized methods are represented in Fig. 4. In order to avoid the
random effect of the initial population on the convergence, the initial population was considered the
same for all three algorithms. As depicted in Fig. 3, PSO had a fastest convergence. As it can be
observed, SSE reduced by 1.33 percent only in two iterations. However, in GA, it reduced by
0.54 percent in five iterations, which represents the global search capability of GA despite its slow
convergence rate. Furthermore, we found that HGAPSO reduced SSE by 0.54 percent only in three
iterations, indicating that HGAPSO outperformed both GA and PSO. It is worth mentioning that the
water network under study (Fig. 2) was not so complicated, which justifies lack of any significant
change in SSE after the fifth iteration.

Fig. 2. The schema of Miraj DWDS.
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Values of the setting parameters of GA and PSO measured by the sensitivity analysis. The PSO
properties include number of population = 10, maximum iteration = 20, w = 0.9, wdamp = 0.998, as well
as c1 and c2 = 2.05. The GA properties include number of population = 10, maximum iteration = 20,
crossover probability, mutation probability and mutation rate are 0.8, 0.3 and 0.01 respectively.
Roulette Wheel and Uniform are used as selection and crossover method. In HGAPSO, the parameters
were set according to the parameters used in GA and PSO.

Concluding remarks

Calibration of a water distribution network is beneficial for the operation and control of the water
system. In this paper, the water quality modeling and calibration were performed on a real-world
drinking water distribution network (Miraj) [8]. In this regard, two objective functions were defined. A
novel hybrid optimization algorithm, referred to as HGAPSO was used along with GA and PSO
algorithms to optimize these functions. The performance of these methods was evaluated and
compared with the findings of previous study. The results clearly demonstrated that the proposed
method, i.e., HGAPSO outperformed the other two algorithms. Furthermore, the specific features and
advantages of each optimization algorithm were described comparatively. It was observed that the
convergence rate of PSO was significant; however, getting stuck was less probable in the local
optimum points. In GA, the diversity of generations was wider, although the convergence rate was
lower in comparison with PSO. Finally, it was concluded that HGAPSO, as a hybrid of GA and PSO,
removed the restrictions of the constituent algorithms, so that the resulting hybrid algorithm was
more successful in finding the globally optimal solution. As verified by the results, only a minor
difference was observed between the observed and simulated chlorine concentration values.
Moreover, wall decay coefficient was obtained 1.233 m/day during the calibration process.

Table 1
The calibration data of wall decay coefficient.

Chlorine Location Observed Residual Chlorine Simulated Residual Chlorine

Calibration methods

Munavalli et al. PSO/GA/HGAPSO

1 1.4 1.170 1.316
2 1.1 1.160 1.226
3 1 1.080 1.156
4 1 1.100 1.032
5 0.95 0.920 0.887
6 0.85 0.850 0.771
7 0.9 1.060 0.882
8 0.8 0.960 0.981
9 0.75 0.670 0.659
10 0.8 0.830 0.778
11 1.5 1.300 1.500
12 0.7 0.850 0.755
13 0.7 0.810 0.663
14 0.6 0.760 0.606
15 0.7 0.760 0.575
16 0.6 0.670 0.534
17 0.7 0.640 0.854
18 1.1 0.720 1.056
21 1.3 1.250 1.422
22 1.3 0.960 1.334
Mean � SD 0.93 � 0.26 0.92 � 0.19 0.94 � 0.28
SSE 0.507 0.166
RMSE 0.520 0.091
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Fig. 3. Comparison between the observed and simulated residual chlorine rates in the monitoring nodes.
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