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The hypothesis-driven, single-gene analytic approach has

dominated molecular neurobiology research and has been

very successful. In grant submissions, the US National Insti-

tutes of Health demand succinctly defined, closed hypothe-

ses based on expected outcomes. Where does this leave

experiments utilizing high-density microarrays, which do

not fit this mold? The fact that microarray investigators do

not know which genes or pathways will be discovered by

their experiments is precisely the strength of microarrays.

The ability to examine the expression profile of potentially

the entire genome at once, without preconceptions, offers

the possibility of completely novel and unexpected insights

into entities as complex as the nervous system. But before

these insights can be made, the practical problems of experi-

mental design, data analysis, verification, and interpretation

need to be addressed. 

Optimizing experimental models and design 
The full potential of microarrays will be realized only when

the questions that are asked about a system are sophisticated,

rather than seeking simple changes or differences in expres-

sion profiles. We need to avoid experiments that generate

lists of genes, suitable only for archiving and future data

screening. In addition, technical aspects of any experiment

require attention; the speed of tissue removal to prevent RNA

degradation, extraction of high quality RNA, optimal reverse

transcription, amplification, labeling and hybridization with

arrays and the use of quality control measures at each step

are all critical. The suitability of different array formats also

needs to be considered in terms of representation, variability,

and sensitivity. Before considering data analysis and verifica-

tion directly, we will discuss several of the microarray studies

of neurobiological interest that have been completed to date.

In particular, we focus on those aspects of model choice and

experimental design that allow the conclusions of greatest

biological importance to be drawn.

Carefully designed microarray studies have already begun to

offer new forms of biological insight. To illustrate, microar-

rays have been used not only to validate putative drug

targets but also to identify the cellular consequences of drug

treatment and to differentiate target-specific drug effects

from non-specific effects. For example, a comparison has

been made between wild-type yeast treated with FK506, a

putative axon-regeneration-promoting drug [1] that is better

known for its use as an immunosuppressive agent, and

untreated yeast lacking the gene for calcineurin, the drug

target [2]. By identifying genes that were regulated in the

drug-treated yeast lacking the drug’s therapeutic target, the

investigators were able to describe genes representing the

drug’s transcriptional side-effect profile. Yeast studies have

also pioneered the use of arrays to identify cis-acting control

elements that regulate the transcription of many co-regulated
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genes [3], a phenomenon that may be important in both neu-

ronal development and the response of neurons to injury. 

Another promising neurobiological use of microarrays has

been in studying tumors of the central nervous system: here

arrays have been used not only for diagnosis but also as a

prognostic tool. Pomeroy and colleagues [4] collected a

microarray dataset from 99 embryonic tumor samples asso-

ciated with known diagnoses and patient survival outcomes.

They were able to distinguish the different histopathological

classes of medulloblastoma on the basis of expression pro-

files. In addition, they derived subsets of 21 or fewer genes

whose combined expression levels could classify the medul-

loblastoma samples according to survival versus treatment

failures. There were no known prognostic markers for

medulloblastoma prior to this study.

A variety of experimental models in neuroscience have now

been investigated using microarrays. For example, arrays

have been used to study differences in the expression profiles

of two inbred strains of mice with different levels of suscepti-

bility to seizure [5]. This study found that in a strain of mice

resistant to seizure-induced hippocampal cell death

(C57BL/6) the expression of many more genes was induced in

the hippocampus by seizure than in a strain of mice suscepti-

ble to post-seizure cell death (129SvEv). Other array studies

have examined the effects of diet and aging on the mouse

brain [6,7], and the effects of environmental influences, such

as exposure to an enriched environment [8]. Arrays have also

been used to examine gene-expression changes in models of

Parkinson’s disease [9], in patients with Alzheimer’s disease

[10], and in schizophrenia [11]. Although these studies are so

far purely descriptive or observational, they have uncovered

novel genes or suggested novel mechanisms, the significance

of which now needs to be explored further.

The ability to use microarrays to view changes in expression

induced by null mutations or gene knockouts is also of interest.

A gene-expression study of the pons and cerebellum has

used such a strategy to find genes that are involved in

normal target innervation [12]. In normal mice, pontine

neurons develop a projection that synapses with cerebellar

granule neurons. Diaz and colleagues [12] demonstrated that

in weaver mutant mice, which lack cerebellar granule

neurons, gene expression in the pons during the develop-

ment of the pontocerebellar projection is altered. Expression

of genes involved in axon outgrowth persists beyond their

normal phase of downregulation after target innervation,

whereas genes involved in synapse formation fail to be

upregulated at the proper time in development. This study is

noteworthy for its careful experimental design and data

analysis. Statistical principles were used to identify regu-

lated genes, and the data were examined using clustering

and linear regression modeling. When microarrays begin to

be used to study the effects of conditional knockout or over-

expression of genes, not only can the compensatory and

downstream effects of the constitutive loss of a gene

throughout development be examined, but global analysis of

the response to perturbations in the levels of single genes in

specific conditions will also be possible [13]. 

Complex tissues and diverse cell populations 
Heterogeneity of the tissue being examined is a major

concern when using arrays to analyze the nervous system.

Zirlinger et al. [14] have identified region-specific gene

expression within the brains of mice using microarrays. In

addition, they observed that some of the genes they identi-

fied could be grouped into three spatial expression patterns,

each consisting of expression within a different subset of the

amygdaloid subnuclei. Other genes, however, seemed to

exhibit expression patterns that did not conform to neuro-

anatomical subnuclei. Lockhart and Barlow [15] have used

microarrays to compare gene-expression profiles in six

specific regions of the brain (amygdala, cerebellum, cortex,

entorhinal cortex, hippocampus and midbrain) in human

and mouse tissue; they describe 23 genes that are specific to

the cerebellum, giving this region the highest number of

unique genes among the regions they studied. 

Averaging expression levels of an entire region of tissue,

such as the brain or even a specific brain area or nucleus,

will clearly minimize or even conceal large expression

changes that occur in small subpopulations of cells. There

are promising techniques for overcoming this obstacle,

however: laser capture to microdissect single cells [16], fluo-

rescence-activated cell sorting (FACS) [17], and cDNA syn-

thesis from single cells [18,19]. A key issue for all these

techniques is that the isolated RNA needs to be faithfully

amplified. New approaches have made it possible to start

with a limited number of cells and still obtain sufficient

material for successful microarray experiments. For

example, Affymetrix has developed a double in vitro tran-

scription protocol that allows array hybridization to be based

on as little as 50 ng of total RNA from the starting material

[20]. These amplification methods will be particularly useful

for studies of the development of the nervous system, where

region-specific tissue amounts are very limited [13].

Recently, Yamagata and colleagues [21] have successfully

applied single-cell RT-PCR to retinal ganglion cells, in an

effort to identify those genes involved in regulating topo-

graphic mapping in the chick retinotectal projection. They

were able to identify Sidekick-1 and Sidekick-2, adhesion

molecules that appear to have a role in lamina-specific target

recognition. The applicability of this technology to microarray

studies remains to be explored, however.

Experimental replication and modes of data
analysis 
The analysis of data from microarrays is non-trivial. Many

problems may arise in developing a means for ranking
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genes, which is typically based on the degree of difference

between two experimental conditions. Regardless of the par-

ticular measure of differential expression that the researcher

settles on, it is now clear that methods based on replicate

independent arrays are necessary for accurate gene identifi-

cation (Figure 1). Even apart from variability in technique,

most neurobiological experiments face such inter-individual

and inter-group biological variability that it is unlikely that a

single array comparison will ever provide a reliable estimate

of gene-expression levels, even for pilot studies. As with any

other experiment, multiple independent trials are necessary

if we are to obtain accurate data.

The next challenge is to determine how many of the genes

estimated from the array expression data are truly regulated.

Hundreds, or thousands, of genes are examined in microarray

experiments. A single null hypothesis (for example, the

absence of regulation) is generally rejected when the proba-

bility of false rejection is 1/20. When hundreds of hypotheses

are tested in the same experiment, multiple significant test
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Figure 1
Filtering array data. It is essential to remove as many false positives as possible at the earliest stages of analysis. Random errors occurring in
oligonucleotide array data were assessed by comparing three biologically independent control arrays to three other biologically independent control
arrays. Genes with a t test p < 0.05 in this comparison are plotted (a). Comparison of these results with the frequency of genes differing at p < 0.05
between control and experimental triplicate arrays (b) were used to define a set of criteria based on present/absent, fold change, t test p value, and a
signal threshold that minimized the estimated random error [31]. 
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results will be obtained. If each test was performed with a

threshold for a positive result of 0.05, then of the test results

identified as positives, it is likely that a subset of these will

be falsely assigned. Several different statistical corrections

are available to limit the accumulation of false positives,

most conservatively by dividing the p value threshold by the

number of hypothesis tests (Bonferroni correction). This

concern will be of the greatest importance when the popula-

tion under study contains rare true positives, as might occur

when comparing wild-type animals to mutants that have

very few transcriptional differences. Conversely, false posi-

tives will be less of a problem when there is a high prior

probability of true positives. Recently, methods have been

developed to limit the overall rate of falsely identified genes

with the specific case of microarray experiments in mind

[22]. This approach involves mathematically controlling the

overall proportion of false positives in the dataset, as

opposed to controlling the probability that any given test

result is a false positive. But the conservative nature of most

available statistical methods means that researchers often

find that even well-characterized genes with distinct differ-

ential expression patterns fall short of statistical signifi-

cance within array data sets. Thus, it might be appropriate

to consider the values of test statistics as a means for

weighting genes according to their reliability or promise for

further study, not as definitive rule-in or rule-out thresh-

olds. Researchers may also be able to define empirical sta-

tistical thresholds that are useful in their specific

experimental systems by performing appropriate control

experiments (Figure 1).

Microarray experiments offer the possibility of characterizing

the expression of large groups of genes simultaneously

using cluster analysis [23]. Briefly, clustering algorithms

may be divided into supervised and unsupervised

methods. Unsupervised methods are designed to group

similar expression patterns in a dataset without referring

to any outside information. The hierarchical, k-means, and

self-organizing map clustering algorithms fall into this cate-

gory, and they assist the researcher by identifying groups of

co-regulated genes. In contrast, supervised methods use

outside information about the experimental condition to

shape the derivation of a model from the dataset. For

example, a k-nearest neighbors algorithm was used by

Pomeroy et al. [4] to derive a set of genes that predict

medulloblastoma treatment outcome. In addition to being

useful for the researcher in thinking about the large datasets

that result from microarray experiments and in shaping

future hypotheses, the groups of genes resulting from either

supervised or unsupervised clustering approaches can be

used as a platform for further studies of signaling systems or

metabolic pathways [24].

Grouping genes into functional categories on the basis of

data from other experimental systems [25] provides a useful

heuristic tool for analyzing microarray data. Websites have

been set up to assist functional categorization, notably the

KEGG database [26]. Grouping can be used either alone or

in combination with cluster analysis to identify genes of

related function that exhibit similar expression patterns over

time (Figure 2) [3]. But this type of analysis has potential

pitfalls when applied to the study of the nervous system:

genes identified in other systems in the body frequently have

entirely different functions in the nervous system. For
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Figure 2
Candidate gene identification. Schematic of a protocol that may be used
to select a few genes that obey a defined set of criteria. See text for
further details.
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example, the platelet-activating factor signaling system,

involved in platelet aggregation and blood clotting, and the

major histocompatibility (MHC) class I genes involved in

cell-mediated immunity, are both involved in developmental

patterning of the brain [27,28].

Experimental validation 
Once the appropriate mathematical tools have been used to

identify genes likely to be regulated in the manner of inter-

est, the next step is biological characterization of these

genes. The first stage of this process is validation, which

requires measuring the expression of specific genes of inter-

est using independent methods and independent RNA

samples. There are important reasons why a gene identified

on an array should be validated by another method. For

oligonucleotide arrays, the labeled RNA used for hybridiza-

tion to the chip is not the original RNA population but an

amplified copy whose production requires multiple enzy-

matic steps, each of which may bias array results. Cross-

hybridization due to sequence homology may lead to

erroneous results, especially when using cDNA arrays to

examine genes that have many closely related family

members. If all things were equal, then different probe sets

(or cDNAs) representing the same gene should behave iden-

tically on the same array, but this is often not the case [29].

To illustrate this problem, in a study of amygdala-enriched

genes, the authors were able to validate expression of only

approximately 60% of the transcripts identified by the

microarray analysis [14].

Several possibilities are available for confirming expression

patterns that are shared by multiple genes. Real-time PCR

allows the expression profiles of many genes to be plotted

across many RNA samples [30]. We have found that slot or

dot blotting of RNA is a successful alternative option:

placing RNA directly on a filter allows the use of relatively

low amounts of RNA per sample (1 µg of total RNA) and rea-

sonable scale production of filters (10-15 per hour) [31].

Visualizing changes in mRNA expression using in situ

hybridization allows the cellular localization of regulated

genes to be identified. This is critical for the nervous system,

where it is the specific pattern of circuitry that is the vital

information [14,32]. Finally, it should be stressed that inter-

pretations of microarray results rely only on mRNA

signals. Changes in intracellular distribution of proteins,

post-transcriptional modifications, receptor sensitization

and desensitization, protein dimerizations, and other

protein-protein interactions are beyond the scope of

microarray analysis. Substantial changes in protein levels

can occur in neurons without any detectable change in

mRNA, indicating that translation rate may be important in

determining the amounts of some proteins [33].

We are about to face a massive expansion of microarray

studies of the nervous system [34]. But realizing the full

potential of this technology requires a clear understanding of

the technical, bioinformatic and scientific issues. With atten-

tion to design, quality control and methods of analysis, the

potential rewards are great. 
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