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Abstract

Populations of Aedes aegypti naturally exhibit variable susceptibility to dengue viruses. This

natural variation can be impacted by nutritional stress resulting from larval-stage crowding,

indicating the influence of environment components on the adult mosquito immune

response. In particular, larval crowding was previously shown to reduce the susceptibility of

adult females of a Trinidad field isolate of A. aegypti to the dengue serotype 2 (JAM1409)

virus. Here, we present the first whole transcriptome study to address the impact of environ-

mental stress on A. aegypti response to dengue virus. We examined expression profiles of

adult females resulting from crowded and optimum reared larvae from the same Trinidad

isolate at two critical early time points—3 and 18 hours post dengue virus infected blood

meal. We exposed specimens to either a dengue or naïve blood meal, and then character-

ized the response in ten gene co-expression modules based on their transcriptional associa-

tions with environmental stress and time. We further analyzed the top 30 hub or master

regulatory genes in each of the modules, and validated our results via qRT-PCR. These hub

genes reveal which functions are critical to the mechanisms that confer dengue virus refrac-

toriness or susceptibility to stress conditioned A. aegypti, as well as the time points at which

they are most important.

Author summary

Dengue is a neglected tropical disease which infects about 390 million people a year, par-

ticularly in areas of poverty. Currently, control of the primary dengue virus vector mos-

quito, Aedes aegypti, remains the only effective method of preventing the proliferation

and spread of dengue virus. Contemporary control programs largely fail to consider the

effects of environmental conditions on the ecology and life history traits, including innate

immunity of mosquito populations. Here, we provide global, transcriptional analyses of
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how crowding-induced environmental stress results in reduced susceptibility of A. aegypti
to dengue virus. This information has potential to inform the accurate conception and

implementation of successful control programs. Additionally, the underlying genetic

mechanisms responsible for these differences in susceptibility may have application

toward either transgenic mosquito population replacement or transmission blocking vac-

cination approaches to disease prevention.

Introduction

The Aedes aegypti mosquito is the primary global vector of the dengue, chikungunya, Zika,

and yellow fever viruses. Dengue virus in particular is known to infect about 390 million peo-

ple a year, with approximately 96 million individuals a year afflicted with clinical symptoms

[1]. Presently, control of mosquito populations is the only strategy available for the suppres-

sion of many of these arboviruses [1, 2]. Unfortunately, the rise of insecticide resistant popula-

tions of mosquitoes has proven to impede traditional vector control strategies [3]. As such,

investigation into the genetic and environmental basis underlying differences of resistance of

mosquito populations to infection may inform efforts to develop novel future disease trans-

mission disruption methods. Here, we provide the first comprehensive transcriptional survey

of the impact of environmental stress on A. aegypti response to dengue virus (DENV)

infection.

In the wild, A. aegypti are opportunistic ovipositors and are known to utilize water-filled

vessels rather indiscriminately, often resulting in high levels of larval stress due to prevailing

environmental conditions and competition for nutritional resources. These stressors have

been demonstrated to impact a suite of life history traits including adult body size, reproduc-

tive fitness, longevity, blood-feeding, the ability of the innate immune system to resist viruses

such as DENV and vector competence [4–9]. Interestingly, this adaptive plasticity has been

found to diminish in laboratory populations of A. aegypti over time, with a key study demon-

strating the loss of variability in heritability with regard to body size declining over generations

of captivity [10]. This study concluded that body size plasticity is conserved in the field due to

the prevalence of variable environmental stress during larval development and is conserved by

balancing selection. We hypothesized that other life history traits, including the innate

immune response, would be likewise impacted by environmental stress.

Previous studies have already established that innate differences of susceptibility between A.

aegypti strains to DENV are reflected in transcriptional activity [11]. In particular, differential

expression of classic immune pathways such as Toll [12] and JAK/STAT [13] pathways have

been implicated in comparative and functional investigations of response to virus infection.

Despite this, there are a wealth of other genes, including those encoding vacuolar ATPases [14]

and serine proteases [15, 16], that have been shown to be highly differentially expressed in

response to DENV infection, but their exact role in determining eventual vector competence

are still poorly understood.

Nevertheless, these previous studies have established a foundation from which we may now

consider the influence of environmental stressors on mosquito innate immunity and how this

may translate to field populations. Here, we utilized larval rearing conditions to simulate envi-

ronmental stress and then characterized which functions were conserved as general responses

to DENV and which are modulated by stress, revealing those pathways from our modules that

are most promising for practical application in disease control. We previously demonstrated

that rearing mosquitoes of shared genetic background under optimal laboratory conditions vs.

RNA analysis of environmental stress and mosquito dengue response
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simulated field conditions via density induced nutritional stress impacts their susceptibility to

DENV, with stressed mosquitoes exhibiting significantly lower dissemination rates (18.1%)

than optimally reared individuals (37.5%) [17]. In that study, females testing negative for dis-

seminated head infection also failed to exhibit significantly increased midgut infection, indi-

cating the mechanism of action is likely an early preventative midgut infection barrier rather

than a post-infection midgut escape barrier. These results were supported by literature demon-

strating that exposure to DENV and subsequent endocytotic ingress of the virus occurs quickly

(<30 min) [18, 19], yet we know very little about the factors that link environmental stress to

the refractory phenotype.

Here, we reasoned that environmental stress further impacts the immune response in A.

aegypti, resulting in altered susceptibility to DENV infection. In this study we tested whether

or not increased resistance of stressed mosquitoes to DENV is mediated by differential tran-

scription at 3 and 18 hours post DENV exposure. We compared and evaluated expression in

stressed and optimally reared adult females after both DENV infected and uninfected blood

feeding. We identified extensive modular transcriptional networks underlying the above men-

tioned environmentally driven variability, as well as the master regulatory or hub genes that

represent key transcriptional regulators responsible for the appropriate innate immune

response.

Materials and methods

Mosquito rearing and maintenance

Experiments were performed on F3 progeny from a colony of Aedes aegypti established at the

University of Notre Dame using ovitrap collected eggs from Curepe, Trinidad [17]. Rearing

chambers were kept at 26˚C, 85% relative humidity with a 16 hour light:8 hour dark (L:D)

cycle with a 30 minute crepuscular period as per standard protocol [17]. Larvae were then

raised under density induced nutritionally stressed or optimal conditions [6, 17]. 75 first instar

larvae were placed in 1 liter of distilled water for the optimal treatment, and 750 larvae in the

same volume of water, for the stressed treatment. One day after hatching, larvae were provided

75 mg of bovine liver powder (MP Biomedicals, LLC), then on day two 0 mg, 75 mg on day

three, 113 mg on day four and finally 150 mg on day five. Upon pupation, individuals were

transferred to 500 mL of fresh water in 20x20x30 cm mesh cages until adult eclosion. Mosqui-

toes were then maintained on 10% sucrose saturated cotton balls until 7 days post eclosion. As

previously described [17, 20–22], in order to assess the efficacy of the treatments, the right

wings of thirty adult females from each treatment were then assessed for wing length, as a

proxy for body size. The remaining mosquitoes were then transferred to 500 mL paper cups

and starved for 24 hours prior to infectious blood feeding. Rat blood feeding was utilized for

mosquito colony maintenance. Animal use was as described in the Guide for the Care and Use

of Laboratory Animals by the National Institutes of Health using a protocol approved by the

University of Notre Dame Institutional Animal Care and Use Committee (Study #11–036).

Females were then briefly anesthetized with CO2 for sorting and then maintained as described

above until RNA extractions were performed.

Cell culture and dengue virus infection

Cell culture and mosquito infections were performed as previously described [22]. Briefly,

Aedes albopictus C6/36 cells were maintained on 10% fetal bovine serum (FBS) at 28˚C to near

confluence (~80%) in 75 cm3 flasks before inoculation with DENV2 (strain JAM1409) at a

multiplicity of infection (MOI) of 0.1. Infected cells were then incubated for 7 days on 2% FBS

infused L-15 media at 28˚C, before collection of the supernatant by centrifugation at 2,500

RNA analysis of environmental stress and mosquito dengue response
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RPM for 10 minutes, then freezing at -80˚C. For the infectious blood meals, frozen DENV2

supernatant (TCID50 of 106.5) was thawed and mixed with defibrinated sheep blood (Colorado

Serum Company) in an equal ratio before being offered to female mosquitoes using an artifi-

cial glass membrane feeder with a rat skin membrane at 37˚C. Stressed and optimal exposure

to dengue were performed simultaneously from the same aliquots of DENV2. Infection for

RNAseq analysis was performed concurrently with the previously reported dissemination

experiment [17], utilizing cohort specimens and the same aliquot of DENV2 for consistency.

Negative control individuals followed the same protocol with an uninfected C6/36 cell culture.

Library preparation and sequencing

RNA samples were collected from whole bodies of blood fed females at 3 hours and 18 hours

post DENV exposure via the RNAeasy Kit (Qiagen) as per manufacturer instructions. A total

of 5 samples of 5 pooled females were extracted per each of the 8 treatments. Blood meals were

first removed with micro syringe needles with care to leave the midgut intact. RNA was quanti-

fied by NanoDrop spectrophotometer (Thermo Fisher Scientific), then verified via Qubit fluo-

rometric quantitation (Thermo Fisher Scientific), and Kapa Library Quantification qPCR

assays (Illumina) with RNA integrity assessed via Bioanalyzer DNA 7500 chip (Agilent). The

three highest quality samples from each treatment were then selected for Truseq RNA Library

Preparation (Illumina) by the Genomics and Bioinformatics Core Facility (http://genomics.

nd.edu/genomics-bioinformatics-core-facility) at the University of Notre Dame before tran-

scriptomic analyses on a NextSeq 500 (Illumina).

Preliminary data analysis and preparation

Run statistics were assessed with FASTQC before read alignment and differential expression

analysis was carried out using EdgeR [23]and DESeq2 [24]. Transcripts were compared to the

reference genome of A. aegypti AaegL3.4 (www.vectorbase.org) [25]. Differential expression

was calculated by comparing the DENV2 and control samples from each of the experimental

conditions (3 hour optimum, 3 hour stressed, 18 hour optimum, 18 hour stressed). Only

genes, uniquely or significantly differentially expressed, false discovery rate adjusted p-value

(q-value) < 0.001, in the experimentals when compared to the controls were used for the

remaining analyses. DESeq2 was then used to normalize the raw count data for the 24 DENV2

samples, after which the data was transformed as log(x+1) to stabilize variances.

WGCNA analysis

Data was then analyzed via weighted gene correlation network analysis (WGCNA) in order to

reduce the high dimensional data into a scale-free network [26] as previously described [14]. A

soft-threshold was established with the graph leveling at 10 with an R2 value of approximately

0.62%. Modules were then identified using the dynamic cut method from the WGCNA pack-

age with the deepSplit parameter set to 1 and a minimum module size of 25. Dissimilarity

between eigengenes was then calculated (1 minus correlation), before hierarchical clustering

via average linkage. Modules which clustered at a merge height of 0.2 or less, corresponding to

a correlation of 0.8 or higher, were merged together. Relationships between modules were

then visualized in a cluster tree, a multidimensional scaling plot (MDS), module eigengene

expression bars and by global-cross talk mapping. The correlation between modules and the

experimental treatment and time point was calculated and visualized via heat map.

In order to characterize the properties of each module we performed DAVID (Database for

Annotation, Visualization and Integrated Discovery) analysis [27], where genes were classified

by biological process, cellular component and molecular function via the GO (Gene Ontology)
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database. The specific gene function of the top 30 hub genes, those genes representing master

regulators with the greatest connectivity to other genes, from each module were further evalu-

ated via the BioMart tool on the Vectorbase website (www.vectorbase.org). Hub genes were

then examined for intramodular connection as indicated by individual gene connectivity on

the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database (www.

string-db.org) [28].

qRT-PCR validation

RNA-seq expression of five genes selected from separate modules (module A, vigalin,

AAEL018034; module B, cathepsin B, AAEL007590; module C, APG8, AAEL007162; module E,

calponin, AAEL008315; module F, wnt10a, AAEL000600) were validated using quantitative real-

time PCR (qRT-PCR). Primers were identified utilizing Primer3Plus (http://www.bioinformatics.

nl/cgi-bin/primer3plus/primer3plus.cgi), and were designed to span exon-exon junctions (Sup-

plemental 4). Specimens were reared, pooled, infected, assessed and RNA extracted as described

above. Quantification was performed utilizing a Power SYBR Green RNA-to-CT 1-Step Kit

(Applied Biosystems) on an ABI 7500 Fast System Sequence Detector System (Applied Biosys-

tems). Expression of target genes were normalized with the endogenous housekeeping gene ribo-
somal protein S17 (RPS17) [29] using the delta-delta CT (ΔΔCT) method [30, 31]. Student’s t-tests

were utilized to determine differences in ΔCT between treatments at a threshold of P<0.05.

Results

General run statistics

The NextSeq 500 runs yielded a total of 800 million reads passing filter with a minimum of 56

million reads per treatment. Over 95% of the reads were assessed at Q30 or higher (above

99.9% base call accuracy).

Differential expression

A false discovery rate (FDR) adjusted p-value cut-off of 0.001 yielded a total of 2184 genes dif-

ferentially expressed between DENV2 infected and naïve blood fed samples. Distribution of

genes across treatments and time periods is displayed in Table 1.

Gene expression analysis

WGCNA analyses in R grouped differentially expressed genes with similar expression patterns

into modules via hierarchical average linkage clustering. Soft thresholding yielded a graph

Table 1. Number of Aedes aegypti genes showing differential expression between naïve and DENV2 infected

mosquitoes.

Condition Time No. of genes Expression

Optimum 3 hr 2 Up-regulated

Optimum 3 hr 1 Down-regulated

Stressed 3 hr 221 Up-regulated

Stressed 3 hr 818 Down-regulated

Optimum 18 hr 522 Up-regulated

Optimum 18 hr 581 Down-regulated

Stressed 18 hr 165 Up-regulated

Stressed 18 hr 15 Down-regulated

https://doi.org/10.1371/journal.pntd.0006568.t001
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leveling off around 10 with an R2 value of about 0.62%. After noise reduction via transforma-

tion of the correlation adjacency matrix into a Topological Overlap Matrix (TOM), conversion

to corresponding distance measures and average linkage clustering resulted in 22 modules,

containing between 28 to 254 genes, and a null module containing 6 genes remained (Fig 1A).

Hierarchical clustering of eigengenes resulted in 10 modules containing 28 to 676 genes, and

one null module containing 6 genes (Fig 1B). Each module was comprised of genes with corre-

lated expression patterns. Modules A, B and C share similar expression patterns, and branched

distinctly from the group formed by modules D, E, F, G, and H or by the last group containing

only modules I and J (Fig 2). The distribution of module genes can be seen in Table 2. Full

module gene lists may be found in Supplemental 1.

Modules were then examined for gene significance and correlation to optimal or stressed

treatments as well as relation to other modules (Fig 3), before further analysis on the GO data-

base. Full module DAVID analysis may be found in Supplemental 2. Modules A and B pre-

sented strong overall correlation to the DENV susceptible, optimal treatments. Module B was

further correlated with the early 18 hour time point, while module A followed suit with a

weaker association. Module A revealed enrichment in genes related to DNA replication and

initiation, while module B was associated with metabolism, autophagy, apoptosis and fatty

acid biosynthesis (Table 3). Module C demonstrated a large shift of optimal eigengene values

from 3 hours to 18 hours, and was associated with purine nucleotide biosynthesis, nucleoside

metabolism and branched-chain amino acid catabolism. As these modules were all correlated

Fig 1. a) Gene dendrogram after dynamic tree cut and after dynamic merge. b) Visualization of the eigengene network representing the relationships among the

modules and the trait weight. The top plot shows a hierarchical clustering dendrogram of the eigengenes. The heat map in the bottom plot shows the eigengene

adjacency. Merge cut-off was set at 0.2.

https://doi.org/10.1371/journal.pntd.0006568.g001
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with upregulation in the optimally reared DENV susceptible phenotype, it is likely that the

genes contained within are involved with susceptibility to DENV.

Modules E and F presented strong correlation to upregulation in stressed treatments. Mod-

ule F was correlated with the later 18 hour time point, and module E showed a weaker late

time association. Module E was associated with ATP hydrolysis coupled proton transport, oxi-

dative phosphorylation, serine endopeptidase activity, phagosome/lysosome activity as well as

enrichment pertaining to transmembrane activity. Similarly, module F exhibited enrichment

for membrane signaling and CUB domain extracellular/plasma membrane-associated proteins

Fig 2. Bar graph representation of the mean eigengene expression patterns for each module for both optimal (O) and stressed (S) treatments at 3 hours

(3h) and 18 hours (18h).

https://doi.org/10.1371/journal.pntd.0006568.g002
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(Table 4). This indicates that the mechanisms facilitating refractoriness in stressed mosquitoes

rely heavily on differential expression of gene associated with transmembrane activity and the

innate immune system. Interesting, while every other module associated with stressed or opti-

mal conditions reflected moderate cross-talk between intramodular hub genes, module E

exhibited light associations between hubs (Fig 4A).

Modules D, G, and H did not show strong correlations with either the optimal or stressed

phenotype and reflected a decrease in gene expression for both treatments from 3 to 18 hours.

These are patterns expected of genes representing a common response to DENV infection

across both treatments. These modules reflected enrichment in sphingomyelin activity, mem-

brane activity, ATP binding, translation, serine endopeptidase activity and WD40-repeat

related protein activity (Table 5).

Despite lacking a strong correlation to experimental treatment, modules I and J demon-

strated striking time-specific differential expression (Table 6). Both modules demonstrate high

expression of the optimal treatment and low expression of the stressed treatment at 3 hours,

and then a drop in optimal expression and an increase in stressed expression at 18 hours (Fig

2). While neither module I nor J have a strong overall correlation to treatment or time, the

reversal of both stressed and optimal expression from 3 to 18 hours shows a time specific pat-

tern for both treatments. Both modules demonstrate enrichment for integral components of

membrane function, but module I in particular exhibits extremely strong association with ser-

ine-type endopeptidase activity.

Optimal upregulation modules (A, B, C) and stressed upregulation modules (E, F) exhibit

low levels of cross talk, contrasted by high levels of connection between general response mod-

ules (D, G, H) and the time specific modules (I, J) (Fig 4B). We anticipate this is due to the

effects of environmental conditions during larval rearing subsequently modulating a subset of

pre-existing transcriptional factors in the adult female response to DENV exposure, rather

than employing completely novel pathways. Full hub gene lists with gene descriptions may be

found in Supplemental 3.

Quantitative PCR validates RNA-seq data

In order to validate our RNA-seq data, we performed qRT-PCR assays. Five genes were chosen

from different modules and samples for each permutation of time period (3hr, 18hr), rearing

condition (optimal, stressed) and blood meal type (DENV positive, naïve) were examined for

differential expression. All five genes exhibited expression patterns consistent with those seen

in the normalized RNA-seq data (Supplemental 4).

Table 2. Number of genes by corresponding module.

Module Gene Count

A 249

B 543

C 89

D 138

E 676

F 56

G 207

H 67

I 125

J 28

K 6

https://doi.org/10.1371/journal.pntd.0006568.t002
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Discussion

While much consideration has been given into the differences in susceptibility resulting from

genotype by genotype interactions of various populations of A. aegypti to different DENV sero-

types [32, 33], little regard has been given to the impact of the environment in which these

interactions normally occur. Here, we hypothesize that the previously reported environmen-

tally induced differences in DENV susceptibility between optimum and stress reared individu-

als [17] are mediated by differential gene expression. It is important to note that this previous

examination of stressed induced refractory phenotype indicated the mechanism of action is

not necessarily a midgut escape barrier, as most specimens with midgut infection also demon-

strated concurrent disseminated infection [17]; this study employed a whole organism view of

Fig 3. a) Heat map of module-trait relationships. Green correlated with optimal and 3 hour time point, red correlated

with stress and 18 hour time point. b) Bar plot of average gene significance across all genes in each module.

https://doi.org/10.1371/journal.pntd.0006568.g003
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the gene expression. Our comparative survey of post DENV-exposure A. aegypti female gene

expression revealed distinct trends associated with stressed and optimal rearing conditions

that subsequently determine differences in DENV susceptibility.

During the first 24–48 hours after ingestion of DENV, known as the eclipse period, viral

titers have been shown to drop as the midgut epithelia is infected [34, 35], and it is very likely

that any barriers to midgut infection would occur during this time period. Dissemination of

DENV is typically regarded to occur around three days post exposure, and it has been demon-

strated that the midgut epithelial cell may exhibit an infection rate of up to 30% by 2 days post

infection [36]. As viral endocytosis and replication in the midgut is known to occur shortly

after DENV exposure [18, 19], to examine the associated transcriptional responses we selected

early post–infection time points (3h and 18h) which had proven important in previous studies

of differential gene expression between refractory and susceptible A. aegpyti laboratory strains

[14].

Table 3. Up to top 4 GO annotation clusters for optimal upregulation modules. P-values adjusted by false discovery rate.

Mod Clstr GO Biological Process p-value GO Molecular Function p-value GO Cellular Component p-value

A 1 GO:0006270~DNA replication

initiation

0.00023 GO:0003678~DNA helicase activity 0.00001 GO:0042555~MCM complex 0.00001

GO:0005524~ATP binding 0.71542 GO:0003677~DNA binding 0.03613 GO:0005634~nucleus 0.38764

A 2 GO:0006412~translation 0.99986 GO:0003735~structural constituent of

ribosome

0.99991 GO:0005840~ribosome 0.99762

A 3 - - GO:0046872~metal ion binding 1.00000 - -

GO:0003676~nucleic acid binding 1.00000

A 4 - - - - GO:0016021~integral component of

membrane

1.00000

B 1 GO:0006633~fatty acid

biosynthetic process

0.07022 GO:0102337~3-oxo-cerotoyl-CoA

synthase activity

0.00129 - -

GO:0102336~3-oxo-arachidoyl-CoA

synthase activity

0.00129

GO:0102338~3-oxo-lignoceronyl-CoA

synthase activity

0.00129

B 2 - - GO:0008234~cysteine-type peptidase

activity

0.03762 - -

B 3 GO:0008152~metabolic process 0.12891 GO:0003824~catalytic activity 0.11434 - -

B 4 GO:0000398~mRNA splicing, via

spliceosome

0.37213 - - GO:0005681~spliceosomal complex 0.03948

C 1 - - GO:0005524~ATP binding 0.99567068 - -

C 2 - - - - GO:0016021~integral component of

membrane

0.999934875

https://doi.org/10.1371/journal.pntd.0006568.t003

Table 4. Up to top 4 GO annotation clusters for stress upregulation modules. P-values adjusted by false discovery rate.

Mod Clstr GO Biological Process p-value GO Molecular Function p-value GO Cellular Component p-value

E 1 GO:0015991~ATP hydrolysis coupled

proton transport

0.00049 GO:0046961~proton-transporting ATPase

activity, rotational mechanism

0.04192 - -

E 2 - - - - GO:0016021~integral

component of membrane

0.00419

E 3 GO:0055085~transmembrane transport 0.47292 - - - -

E 4 GO:0006629~lipid metabolic process 0.99921 GO:0052689~carboxylic ester hydrolase

activity

0.08903 - -

F 1 - - - - GO:0016021~integral

component of membrane

0.77858

https://doi.org/10.1371/journal.pntd.0006568.t004
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Our results point to several groups of genes that form distinct modules and work in concert

to impact innate immunity. We grouped genes by transcription profiles into modules, allowing

us to observe broad, general patterns by co-expression profiles. We envisioned that within

these subnetworks there is a subset of major hub genes essential for coordinating a number of

pathways responsible for the DENV refractory or susceptible phenotypes. We examined these

subnetworks to select critical effectors of phenotype based on degree of network connectivity

and selected the top 30 hub genes from the individual modules correlated with the susceptible,

optimal phenotype and the refractory, stressed phenotype.

Fig 4. a) Intramodular network of top 30 genes in optimal (A, B, C), stressed (E and F), general response (D, G, H) and time associated modules (I, J). Figure letters

correspond with module letter. Thickness of lines represent strength of connections. b) Intermodular network of 10 modules. Thickness of lines represent strength of

connections.

https://doi.org/10.1371/journal.pntd.0006568.g004

Table 5. Up to top 4 GO annotation clusters for general response modules. P-values adjusted by false discovery rate.

Mod Clstr GO Biological Process p-value GO Molecular Function p-value GO Cellular Component p-value

D 1 GO:0006685~sphingomyelin

catabolic process

0.00029 GO:0004767~sphingomyelin

phosphodiesterase activity

0.00018 - -

GO:0016798~hydrolase activity, acting on

glycosyl bonds

0.00044

D 2 - - GO:0005524~ATP binding 0.08599 - -

D 3 - - - - GO:0016021~integral component of

membrane

0.970066

D 4 - - GO:0004252~serine-type endopeptidase

activity

0.99996 - -

G 1 GO:0006412~translation 0.03284 GO:0003735~structural constituent of

ribosome

0.02833 GO:0005840~ribosome 0.020640

G 2 - - GO:0016887~ATPase activity 0.42381 - -

GO:0005524~ATP binding 0.93935

G 3 - - GO:0000166~nucleotide binding 0.54683 - -

G 4 - - GO:0004252~serine-type endopeptidase

activity

0.99999 - -

H 1 GO:0006457~protein folding 0.00129 - - GO:0016272~prefoldin complex 0.00114

H 2 - - - - GO:0016021~integral component of

membrane

0.99999

https://doi.org/10.1371/journal.pntd.0006568.t005
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Optimal upregulation modules

In insects, the innate immune response is a critical effector of pathogen resistance. This resis-

tance occurs through a variety of processes including phagocytosis, secretion of peptides, mela-

nization and physical sequester of pathogens [37]. Several pathways, including but not limited

to Toll, JAK-STAT, IMD, and RNAi have been implicated in mosquito response to these path-

ogens [38, 39]. We previously demonstrated that when stressed during larval development, A.

aegypti exhibit decreased DENV2 dissemination as adults [17], underscoring the importance

of environmental background on the innate immune response to foreign pathogens. The cur-

rent study revealed an association of our susceptible, optimal reared mosquitoes with DNA

replication, metabolism, and fatty acid activity. These results largely coincide with the findings

of Behura et al. [14], who found a similar over-representation of metabolism and DNA replica-

tion in susceptible individuals. It was proposed that these functions may be essential for viral

infection [14], noting that the cell cycle environment influences DENV replication in S-phase

of C6/36 cells [40]. Further, fatty acid biosynthesis at viral replication sites has been implicated

as important for successful DENV replication, with the rate of fatty acid biosynthesis being

essential in the cofractionation of lipids with DENV RNA [41, 42]. Together, this suggests that

optimal modules (A, B and C) are largely associated with viral co-option of insect pathways to

create essential replication complexes by 18 hours post DENV exposure.

A hallmark of these optimally associated modules is a marked increase in expression at 18

hours. As much of the activity is associated with metabolism, it is possible the increased avail-

ability of resources in these larger insects may lend to greater viral replication, and may explain

why stressed, refractory specimens present lower levels for these transcripts at this time point.

If increased metabolism is important for viral replication it is possible that the drop in expres-

sion of these genes at 3 hours reflect attempts by the mosquitoes at pre-emptive metabolic reg-

ulation to reduce viral replication.

Within these broad associations, a closer examination of optimal modules A, B and C reveal

enrichment of autophagy and apoptosis function. For example, module A positively correlates

DENV susceptibility with upregulation of caspase 7 (AAEL012143) at 18 hours post infection,

confirming the findings of Eng [43] where the silencing of the upstream caspase 7 autophagy

initiator Aedronc resulted in reduced susceptibility to DENV infection. The apoptosis/autop-

hagy contributor cathepsin B (AAEL007590) [44] and an autophagy related gene ATG4B

(AAEL007228), both from module B, and an autophagy related hub gene APG8

(AAEL007162), from module C, lend further credence to the importance of autophagy to the

susceptible phenotype and aligns with past studies that suggest the regulation of lipid metabo-

lism in DENV induced autophagy [45].

Stress upregulation modules

The importance of cell membrane recognition, endocytosis and endosome regulation towards

pathogen resistance is well documented [18, 19]. Enrichment of our stress associated modules

Table 6. Up to top 4 GO annotation clusters for modules associated with time specific expression. P-values adjusted by false discovery rate.

Mod Clstr GO Biological Process p-value GO Molecular Function p-value GO Cellular Component p-value

C 1 - - GO:0005524~ATP binding 0.99567 - -

C 2 - - - - GO:0016021~integral component of membrane 0.99993

I 1 - - GO:0004252~serine-type endopeptidase activity 0.00001 - -

I 2 - - - - GO:0016021~integral component of membrane 0.21746

J 1 - - - - GO:0016021~integral component of membrane 0.81558

https://doi.org/10.1371/journal.pntd.0006568.t006
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revealed heavy involvement of protein transmembrane transport and signaling pathways. The

Janus kinase (JAK/STAT) and Toll pathways have demonstrated importance in regulation of

innate immunity to viruses in Drosophila [46, 47]. While the mechanism of action is largely

unknown, both pathways utilize RNAi mechanisms in order to confer limited viral resistance

in Drosophila [38, 48]. Both the JAK/STAT and Toll pathways have demonstrated high levels

of conservation of function and form between flies and mosquitoes [49] and are known to be

of particular significance to A. aegypti DENV resistance [12]. Analysis of our data associates

stress module E with the upregulation of JAK/STAT and Toll genes that have been previously

implicated in the innate immune response of A. aegypti to DENV. The first gene of interest,

Toll9A (AAEL013441), was shown to be upregulated in mosquito carcasses and midguts in

response to DENV exposure, as well after silencing of the negative Toll regulators Cactus and

Caspar [12]. The second, DENV restriction factor (DVRF1) (AAEL008492), is a membrane

bound downstream target of the JAK/STAT pathway that has been implicated in genetic predi-

lection towards DENV resistance [13, 50]. Additionally, upregulation of a WD40-repeat pro-

tein, Ukn7703 (AAEL007703), in module F was also associated with stress mediated DENV

resistance [51]. WD40-repeat proteins are known to be involved in a range of functions

including signal transduction, transcriptional control, cell cycle control, autophagy and apo-

ptosis. Although WD40-repeat proteins present this wide range of functions, a recent study

demonstrated that silencing of the Ukn7703 signaling protein resulted in overexpression of the

Janus kinase Hopscotch and JAK/STAT receptor Domeless, and subsequent DENV inhibition

[50]. The same study also examined the aforementioned DVRF1, and found that it was not

impacted by the upregulation of the upstream Hopscotch and Domeless genes and concluded

there must be a limiting factor downstream of the latter two genes. The differential expression

of Toll9A, DVRF1 and Ukn7702 confirm the importance of the Toll and JAK/STAT pathways

to innate immune responses triggered by DENV exposure and further indicate that the level of

response is further modulated by environmental conditioning. That said, the conspicuous

absence of differential expression in our data of key pathway contributors such as Domeless,

Hopscotch, Spaetzle, Cactus, Re1A, and Tep13 suggest that environmental stress may utilize

modified pathways. This is supported by the high number of network connections revealed by

a STRING database search on predicted functional gene partners—Toll9A presented 10 exper-

imentally determined edges, and DVRF presented 8 experimental edges.

The association of DENV refractoriness with protein transmembrane transport and neuro-

peptide signaling is in line with previous assertions that the mechanism of action for environ-

mentally stressed, refractory mosquitoes is more likely an early midgut infection barrier rather

than a physical midgut escape barrier [17]. Enrichment of the myosin complex supports the

likelihood of it being a key player in transporting endocytic vesicles from the plasma mem-

brane to the cytosol [52–54]. Specifically, calponin/transgelin (AAEL008315) and its down-

stream target calmodulin (AAEL006921) [55] are hub genes in modules E and F, respectively.

Further, as previous studies have demonstrated calponin associated dephosphorylation inhib-

its myosin-associated activity [56, 57], it is likely that its upregulation in refractory mosquitoes

interferes with the proper egress of DENV into the cytosol. Calmodulin exhibits high levels of

intramodular connectivity and verifies the importance of major hub genes such as calponin

and cross-talk between modules. At this point it is important to note that the modules corre-

lated with the refractory, stressed phenotype (E, F) both reflect high upregulation in stressed

samples at 3 hours and down regulation of optimal expression at both time points. This can be

contrasted with the modules associated with DENV susceptibility (A, B, C) in which genes

reflect conserved high upregulation in optimal 18 hour samples. Together, this underscores

the importance of time specific expression to the refractory and susceptible phenotypes.
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Unexpectedly, the refractory, stressed module E also contains seven vacuolar ATPase (vAT-

Pase) subunits (AAEL002917, AAEL008787, AAEL005798, AAEL006516, AAEL011025,

AAEL012035, AAEL012113) previously associated with DENV susceptibility in a study com-

paring immune response of mosquitoes of divergent genetic background [14]. Additionally,

four of the vATPases associated with module E (AAEL012819, AAEL011025, AAEL012113,

AAEL002464) resulted in reduced DENV infection when knocked down in other studies [58,

59]. In contrast, a vATPase (AAEL015594) from the first study [14] was associated with our

susceptible, optimal module B, and another vATPase (AAEL006390), not found in other

DENV studies, was found in module A. It is widely accepted that vATPases are critical for the

acidification of endosomes necessary for the egress of dengue virus [14, 19]. While this seems

to be at odds with our current study, it is important to note that previous studies examined dif-

ferences in susceptibly due to divergent genetic background, while here we examined gene-

environment interactions in sibling mosquitoes reared under different conditions. Again,

STRING analyses reveal that each of these vATPases have numerous documented interactions

and may have disparate modes of action resulting from varied animal and viral genetic back-

grounds in the greater context of adaptive plasticity.

Previously, Price et al. concluded that nutritionally induced stress should increase innate

immunity to viral infection in DENV exposed mosquitoes [60], a hypothesis that was con-

firmed by the observed association with classic JAK/STAT and Toll pathway genes in our cur-

rent study. The same study by Price et al., reported reduced vitellogenesis and increased

expression of transcripts related to transmembrane activity in naïve blood fed stressed mosqui-

toes [60]. Similarly, our module E exhibited increased transmembrane activity and included

an allatostatin (AAEL012139), a neuropeptide known to inhibit juvenile hormone mediated

vitellogenesis in insects [61–65], as a major hub gene of this stress associated module. At this

point, it is important to note that a key difference between the aforementioned studies is our

use of naïve or DENV infected blood meals. Our results were screened for significantly higher

expression of our DENV exposed treatments when compared to our naïve blood fed controls.

This indicates that while nutritional stress may prime mosquito expression for these traits,

DENV exposure triggers significant upregulation of these transcripts.

Conserved response modules and modules demonstrating inverted

expression over time

Modules D, G and H, demonstrated sharp drops in expression over time for both stressed and

optimal treatments. Interestingly, modules D and G both exhibit high enrichment for WD40

motifs similar to those seen in Ukn7703 in module F. This is unsurprising and confirms our

suspicions that many responses are conserved in both stressed and optimal DENV responses.

In contrast, module I presented enrichment for both serine protease and endopeptidase inhibi-

tor activity, with the opposing differential expression patterns of both the optimal and stressed

samples transposing from 3 hours to 18 hours. While the exact role of serine protease activity

remains unclear [15, 16], it is apparent that these proteins are involved in functions that exhibit

time and treatment specific differential expression in response to dengue exposure. These results

are supported by a previous study demonstrating a positive correlation between an early fatty acid

synthase (AAEL001194) and proliferation of DENV in the Aedes aegypti midgut 4 days post infec-

tion [42]. Specifically, the initial high expression of this fatty acid in the optimal treatment pro-

vides further evidence that differences between optimal and stressed dissemination rates are due

to mechanisms related to early viral replication rather than a midgut escape barrier.

Interestingly, modules I and J, in which stressed and optimal expression swapped over

time, demonstrated the most global-cross talk—especially with each other, the conserved
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response modules (D, G, H) and optimal module C. This suggests that the activity demon-

strated in module I may indeed result in an overall increase in susceptibility to dengue.

Whether these expression patterns are the result or the cause of the mechanism responsible for

stress-conditioned differences of susceptibility remains to be seen.

Conclusion

Different populations of A. aegypti are known to exhibit variable levels of competence to host

different DENV isolates based on genotypes of both the mosquito and the virus. The literature

is further confounded by studies offering seemingly conflicting results on the impact of stress

on mosquito susceptibility to different arboviruses. Our previous findings on stress reducing

susceptibility of A. aegypti to DENV2 [17] correspond to the results found in wild A. aegypti
[66], but generally contradict a study reporting significantly lower DENV2 infection rates in

larger A. albopictus and no size related effects in a laboratory strain of A. aegypti [9]. This is fur-

ther complicated by the inclusion of literature for other arbovirus species, suggesting that lar-

val stress increases the susceptibility A. aegypti to Sindbis virus (SINV) [67, 68]. It is possible

that much of these differences may be explained by species specific responses to different

strains of arboviruses, or that the laboratory strains may have lost phenotypic plasticity over 80

years of captivity [69]. As such, our experimental design eliminates differences in genetic

architecture and arbovirus strains and focuses on the impact of environmental stress on the

susceptibility of a recent field isolate of A. aegypti susceptibility to a single isolate of DENV2.

Our data indicates that there exists a wide array of transcriptional responses unique to DENV

exposure when compared to naïve blood meals. These responses were not limited to classic

innate immunity pathways, and underscore the incomplete nature of our current understand-

ing of immunity in mosquitoes. Here, based on a mechanism stemming from environmental

stress, we present full gene lists of ten modules, representing co-expression networks corre-

lated with DENV susceptibility (A, B, C), DENV refractoriness (E, F), general DENV response

(D, G, H) and time specific DENV response (I, J), as well as the top 30 master regulatory or

hub genes that show high connectivity in each module. While qRT-PCR validation supports

the reliability of these correlations, the chief purpose of this study is to serve as a platform for

further mechanistic and functional analyses. In the future, we plan to perform RNA interfer-

ence knock-downs of these candidate genes in these mosquitoes, as well as laboratory strains

with documented differences in DENV susceptibility, to see how strongly these individual

genes influence the phenotype. Additionally, we expect to expand these future studies to

include tissue and time-specific analyses. We anticipate that further functional analyses of

these genes may lead to novel forms of DENV control and inform on which mechanisms of

the immune response may be conserved in the field independent of environmental conditions.
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